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Chapter 4: Acoustic Features for Environmental
Sound Analysis.

Romain Serizel, Victor Bisot, Slim Essid, Gaël Richard

1 Introduction

The time domain representation of a sound signal, or waveform, is not easy to inter-
pret directly. Most of the time it is nearly impossible, from a waveform, to identify
or even localise sound events (unless they occurs at different dynamic range, e.g.,
a loud noise in a quiet environment) and to discriminate between sound scenes.
Therefore, frequency-domain representations and time-frequency domain represen-
tations (including multiscale representations) have been used for years providing
representations of the sound signals that are more inline with the human perception.

However, these representations are usually too generic and often fail to describe
specific content that is present in a sound recording. A lot of work has been devoted
to design features that could allow extraction of such specific information, leading
to a wide variety of hand-crafted features. One problem with these types of features
is that, by design, they are specific to a task and that they usually do not generalise
well. They often need to be combined with other features, leading to large feature
vectors. During the past years, owing to the increasing availability of medium scale
and large scale sound datasets, an alternative approach to feature extraction has
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become popular, the so-called feature learning that has proven competitive with
most finely tuned hand-crafted features.

Finally, in both cases, using either feature engineering or feature learning, pro-
cessing the amount of data that is at hand nowadays can quickly become overwhelm-
ing. It is therefore of paramount importance to be able to reduce the size of the
dataset in the feature space either by reducing the feature vectors dimensionality or
by reducing the amount of feature vectors to process.

The general processing chain to convert a sound signal to a feature vector that
can be efficiently exploited by a classifier is described is this chapter. The standard
steps are presented sequentially (see also Fig. 1). It is also crucial to design fea-
tures that are robust to perturbation. Therefore, the possibility to enhance signals
or enforce robustness at each step is discussed in the corresponding section when
applicable. Finally, the relation to features used for speech and music processing is
briefly discussed in Sect. 7 and conclusions are presented in Sect. 8.

Feature engineering

(Sect. ??)

(Sect. ??)

Signal representations

Feature learning

(Sect. ??)

Feature selection

(Sect. ??)

(Sect. ??)

Temporal pooling/integration

(Sect. ??)

Dimensionality reduction

Fig. 1: Standard feature extraction process
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2 Signal representations

Over the years, a large amount of work has been devoted to finding appropriate
representations that allow extraction of useful information from sound signals. Some
of the main classes of sound signals representations are presented in this section.

2.1 Signal acquisition and preprocessing

In general terms, sound is the result of a vibration that propagates as waves through
a medium such as air or water. Sounds can be recorded under the form of an electric
signal x(t) by means of an electroacoustic transducer such as a microphone. This
analog signal x(t) can then be converted to a digital signal x[n] and stored on a
computer before further analysis. The necessary steps to perform this analog-digital
conversion include:

• A filtering stage: the analog signal x(t) is low-pass filtered in order to limit its
frequency bandwidth in the interval [0,B] where B is the cut-off frequency of the
low-pass filter.

• A sampling stage: the low-passed analog signal is then digitally sampled at a
sampling rate fs = 2B to avoid the well-known frequency aliasing phenomenon.

• A quantification stage: the obtained digital signal is then quantized (e.g. the
amplitude of the signal can only take a limited number of predefined values to
preserve storage capacity).

• Optional additional stage: in some cases, additional preprocessing stages can
be performed such as pre-emphasis. This step can be performed under the form
of a simple first order finite impulse response (FIR) high-pass filter. Historically,
this step was performed on speech signals prior to linear prediction (LP) analysis
to cope with its typical −6dB spectral tilt which was shown to be detrimental
for LP parameters estimation. In other situations, this step is less justified and is
therefore not mandatory.

Typical values for audio CD quality are a sampling rate of fs = 44.1kHz and a
quantization on 16 bits per sample leading to a bit rate of 705 600 kbit/s for a single
channel audio signal. Higher quality standards include sampling rates of 48, 96 or
192 kHz and quantization on 24 bits.

2.2 General time-frequency representations

The sound signals are usually converted to the frequency-domain prior to any analy-
sis. The frequency-domain representation of a signal x[n] on a linear frequency scale
can be obtained with the discrete-time Fourier transform (DFT):
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X( f ) =
∞

∑
n=−∞

x[n]e−i2π f n (1)

The spectrum X( f ) is fs-periodic in f with fs the sampling frequency. The fre-
quency f = fs

2 represents the Nyquist-frequency.
The spectrum X( f ) can be transformed back to time domain with the inverse

discrete time Fourier transform (IDFT):

x[n] =
1
fs

∫ fs
2

− fs
2

X( f )ei2π f nd f (2)

In practice, the spectrum X( f ) is approximated by applying the DFT on a win-
dowed frame of length N of the signal x[n]. This is referred to as the short-time
Fourier transform (STFT). The f th component of the DFT of the t th frame of x[n] is
computed as follows:

X(t, f ) =
N−1

∑
k=0

w[k]x[tN + k]e
−i2πk f

N (3)

where w[k] is a window function (e.g., rectangular, Hamming, Blackman,. . . ) used
to attenuate some of the effects of the DFT approximation and to enforce continuity
and periodicity at the edge of the frames. Equation (3) is given with a hop between
frames equal to the length of the frames (N). This means that there is no overlap
between consecutive frames. It is common to choose a hop size that is smaller than
the frame length in order to introduce overlap that allows for smoother STFT repre-
sentation and introduces statistical dependencies between frames.

The t th frame of time domain signal x[n] can be obtained from the discrete spec-
trum X(t, f ) by applying the inverse STFT. Both the STFT and the inverse STFT
can be efficiently computed using the fast Fourier transform (FFT) and the inverse
fast Fourier transform (IFFT), respectively.

The STFT allows for defining the linear-frequency spectrogram which is a 2D
representation of a sound where energy in each frequency band is given as a function
of time. The spectrogram is then the matrix where each column is the modulus of
the DFT of a sound signal frame (see also Fig. 2b).

2.3 Log-frequency and perceptually motivated representations

It is often desirable to search for information in specific frequency bands. This may
be achieved by computing energy or energy ratios in predefined frequency bands
(see also Fig. 2c). The bands can be equally spaced on the frequency axis, placed
according to logarithm or perceptual laws. The number of bands, the shape of the
prototype filter and the overlap between bands can also vary greatly.
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1. Critical bands were introduced by Fletcher [33]. The key idea is that critical
bands describe the bandwidth of the auditory filters in the cochlea. Conceptually,
this means that two tones within the same critical band will interfere with each
other, this is the so-called frequency masking phenomenon. The equivalent rect-
angular bandwidth scale (ERB) provides a way to compute the central frequency
and bandwidth of the rectangular filters approximating the auditory filters [35]:

ERB( f ) = 24.7×
(

4.37
f

1000
+1
)

(4)

with f in Hertz. The Bark scale is another scale relying on the concept of critical
bands but that was derived from different experiments [95].

2. Gammatone filters are linear filters whose impulse response gamma[n] is com-
posed of a sinusoidal carrier wave (a tone) modulated in amplitude by an enve-
lope that has the same form as a scaled gamma distribution function:

gamma[n] = anγ−1e−2πbn cos(2π fcn+Φ), (5)

where a is the amplitude, γ is the filter order, b is a temporal decay coefficient
(related to the bandwidth of the filter), fc the frequency of the carrier (related
to centre frequency of the filter) and Φ the phase of the carrier (related to the
position of the envelope on the carrier). Similarly to ERB, gammatone filters of
order 4 have been shown to provide a good approximation to auditory filters [71].

3. Mel-scale corresponds to an approximation of the psychological sensation of
heights of a pure sound (e.g., a pure sinusoid) [86]. Several analytical expressions
exist [68], a common relation between the mel scale mel( f ) and the Hertz scale
f was given by Fant [31]:

mel( f ) =
1000
log2

log
(

1+
f

1000

)
(6)

4. Constant-Q transform (CQT) is closely related to DFT. One major difference is
that instead of using a frequency scale with constant spacing between frequencies
(as in DFT), the frequencies are distributed geometrically [13]. This yields a
constant ratio Q between the central frequency of a band fk and the frequency
resolution fk− fk−1, therefore the name CQT. The central frequency for the kth

band is the given by:
fk = f0×2

k
b , (7)

with f0 the central frequency of the first band and b the number of frequencies
per octave (see also Fig. 2d). This transform was originally introduced to map
the western musical scale.
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Fig. 2: Different time domain and time-frequency domain representations of a sound
signal recorded in a restaurant: at 0.5 s someone is clearing his throat, at 2 s there is
some cutlery noises [65].

2.4 Multiscale representations

Multiscale approaches allow for flexible decompositions, representing the sound
signal on multiple scales both for time and frequency. Some of the most common
approaches are presented below :

1. Pyramids are multiscale representations that were originally introduced for im-
age processing [15]. Pyramids are built recursively by applying at each step a
convolutive operation (filtering) followed by a down-sampling operation on a sig-
nal. This procedure allows to extract information at different resolutions. There
are two main-type of pyramids: the so-called Gaussian pyramids (where a low-
pass filtering is applied) [15] and the Laplacian pyramids (where a band-pass
filtering is applied) [14]. Pyramids with quadratic mirror filters (QMF) [22] have
been shown to be closely related to wavelets [60].

2. Wavelets are functions that can generally be visualised as a brief oscillation and
that should integrate to zero [36, 58]. Given a discrete-time wavelet Ψ(x), it is
possible to define a wavelet basis by applying translation and dilatation on the
wavelet

Ψab(x) =
1√
a

Ψ

(
x−b

a

)
, (8)
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with a ∈R+ the dilatation factor and b ∈R the translation factor. The translation
then allows for covering different time instants while the dilatation of the wavelet
enables multiscale analysis [60]. Note that in practice a and b often take their
value in a discrete subspace of R, defining so-called discrete wavelets bases.

3. Scattering transform builds invariant and stable representations by cascading a
wavelet transform, a modulus operation and a low pass filtering operation [59].
Scattering transform can capture non-stationary behavior and can be interpreted
as an operation that calculates modulation spectrum coefficients of multiple or-
ders. This approach can enable the modeling of signal dynamics as well as
sound textures that are important aspects in the characterization of environmental
sounds.

2.5 Discussion

Time-frequency representations such as STFT were designed mainly according to
mathematical rules leading for example to linear frequency scales. Human percep-
tion studies have shown that we do not perceive sound similarly in each region of the
spectrum and that the resolution of the human ear also varies along the frequency
axis. Therefore, non-linear frequency scales have been introduced in an attempt to
mimic human perception and provide a better way to extract information from sound
signals. The frequency scale can be tuned to map the auditory filters (critical bands,
ERB, bark scale), to match perceptual behaviour (mel scale) or according to the in-
trinsic properties of the signal to represent (CQT). In any case, adjusting the granu-
larity of the frequency scale usually allows designing more accurate representations
of the signal of interest and can therefore lead to increased robustness. It is also pos-
sible to apply standard frequency-domain filtering [29, 39, 93] to time-frequency
domain representations in order to attenuate the effects of additive perturbations.

Perceptually motivated time-frequency representation often constitute an impor-
tant part of sound scene and event analysis systems. They serve, either as a way
to visually observe the time-frequency content of the sound scene, or as an input
representation to more complex classification systems. Therefore, in many cases,
their computation is one the first steps for applying some of the feature engineering
or feature learning techniques presented in Sects. 3 and 4. Extracting representa-
tions based on mel or gammatone filter-banks can be necessary to compute cepstral
features (see Sect. 3.3), which are widely popular in the field [73, 90]. Other rep-
resentations such as the CQT are often used to build time-frequency images from
which image-based features are extracted [10, 79, 94]. Such representations are also
considered as inputs to feature learning techniques such as nonnegative matrix fac-
torisation [6, 11, 21], or can be directly used as features for deep neural network
based systems [70, 75].

Yet, in these approaches there is only one fixed frequency scale that is non-linear
and the time scale remains linear. As sound signals contain information at different
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time and frequency scales, parts of the signal might be overlooked with these rep-
resentations. Some works based on variants of the scattering transform proved the
usefulness of multiscale representations to perform sound event classification in real
life conditions [56, 82].

3 Feature engineering

Similarly to other sound processing tasks, feature extraction for sound scene and
event analysis has often relied on so-called feature engineering. This is the art of
carefully crafting ad-hoc features from low level representations heavily relying on
expert knowledge about class invariances. Some of the most common feature classes
are presented in this section (see also Fig. 3).

Windowing Temporal features
(??)

FFT frames
Stack Image-base features

(??)

Cepstral features
(??)IDCTLog

(??)
Spectral features

Fig. 3: Feature engineering process.

3.1 Temporal features

These features are computed directly on the temporal waveform and are therefore
usually rather straightforward to compute. Some of the most common temporal fea-
tures are described below.

1. Time domain Envelope can be seen as the boundary within which the signal is
contained. A simple implementation relies on the computation of the root mean
square of the mean energy of the signal x[n] within a frame t of size N spanning
over the time indexes n ∈ {nt ,nt +1, . . .nt +N} :

e(t) =

√√√√ 1
N

nt+N

∑
n=nt

x[n]2 .

It is a reliable indicator for silence detection.
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2. Zero crossing rate (ZCR) is given by the number of time the signal amplitude
crosses the zero value. For a frame t of size N, it is given by:

zcr(t) =
1
2

nt+N

∑
n=nt

|sgn(x[n])− sgn(x[n−1])| , (9)

where sign(x[n]) returns the sign of the signal amplitude x[n]. It is a very popular
feature since it can, in a simple manner, discriminate periodic signals (small ZCR
values) from signals corrupted by noises that are random to a certain degree (high
ZCR values).

3. Temporal waveform moments allow the representation of different characteris-
tics of the shape of the time domain waveform. They are defined from the first
four central moments and include the following characteristics:

• centre of gravity of the waveform: temporal centroid,
• spread around the mean value: temporal width,
• waveform asymmetry around its mean: temporal asymmetry,
• overall flatness of the time domain waveform: temporal flatness.

Note that these moments can also be computed on the spectrum (see below).
4. Autocorrelation coefficients can be interpreted as the signal spectral distribu-

tion in the time domain. In practice, it is common to only consider the first K
coefficients which can be obtained as:

R(k) =
∑

N−k−1
n=0 x[n]x[n+ k]√

∑
N−k−1
n=0 x2[n]

√
∑

N−k−1
n=0 x2[n+ k]

3.2 Spectral shape features

Studies on the perception of sound widely rely on the frequency content of sound
signals. Therefore, it is a natural choice to derive features from frequency represen-
tations of a signal, for example its spectrogram. Some of the most common spectral
features are described below.

1. Energy is one of the most straight forward yet important sprectral feature. This
feature can be computed directly as a sum of the squared amplitude components
|X(t, f )| in the band. It is also common to compute the log-energy in a band.

2. Spectral envelope is conceptually similar to time domain envelope but in the
frequency domain. It can be seen as the boundary within which the spectrum of
a signal is contained. The spectral envelope can be approximated for example
using linear predictive coding (LPC) [69].

3. Spectral moments describe some of the main spectral shape characteristics.
They include the spectral centroid, the spectral width, spectral asymmetry and
spectral flatness. They are computed in the same way as the temporal waveform
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moments features by replacing the waveform signal x[n] by the Fourier frequency
components X(t, f ) of the signal.

4. Amplitude spectral flatness is an alternative to the spectral flatness feature. It
is computed as the ratio between the geometric and the arithmetic means of the
spectral amplitude (globally or in several frequency bands).

5. Spectral slope measures the average rate of spectral decrease with frequency
(more details can be obtained by Peeters [72]).

6. Spectral roll-off is defined as the frequency under which a predefined percentage
(typically between 85% and 99%) of the total spectral energy is present.

7. Spectral flux characterises the dynamic variation of the spectral information. It is
either computed as the derivative of the amplitude spectrum or as the normalised
correlation between successive amplitude spectra.

8. Spectral irregularity features aims at a finer information description linked to
the sound partials (e.g. individual frequency components of a sound). Several
approaches have been proposed to estimate these features [72].

In sound scene and event analysis, the temporal and spectral shape features are
rarely used separately. In fact, they are mostly simple features designed to model
specific aspects of the signal and thus are most often combined with several other
features. The log mel energy features are a notable exception, they are powerful
enough to be used on their own as input for classification or feature learning. Only a
few earlier studies have compared their individual effectiveness for the task [17, 73].
Instead, the temporal and spectral shape features are more often considered and
evaluated together as one set of features sometimes referred to as low-level features.

3.3 Cepstral features

Cepstral features allows the decomposition of the signal according to the so-called
source-filter model widely used to model speech production. The signal is then de-
composed into a carrier (the source, for speech it can be the glottal excitation) and
a modulation (the filter, for speech it includes the vocal tract and the position of the
tongue).

1. Mel-frequency cepstral coefficients (MFCC) are the most common cepstral
coefficients [23]. They are obtained as the inverse discrete cosine transform of
the log energy in mel frequency bands:

mfcc(t,c) =
√

2
Mmfcc

Mmfcc

∑
m=1

log
(
X̃m(t)

)
cos

(
c
(
m− 1

2

)
π

Mmfcc

)
, (10)

where Mmfcc is the number of mel frequency bands, m the frequency band in-
dex, X̃m(t) is the energy in the mth mel frequency band and c is the index of the
cepstrum coefficient (c ∈ {1,2, . . . ,Mmfcc}) (see also Fig. 4b).
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In practice, a common implementation uses a triangular filter bank where each
filter is spaced according to a mel frequency scale (6) (see also Fig. 4a). The
energy coefficients X̃m(t) in the band m are obtained as a weighted sum of the
spectral amplitude components |X(t, f )| (where the weights are given according
to the amplitude value of the corresponding triangular filter). The number Mmfcc
of filters typically varies between 12 to 30 for a bandwidth of 16 kHz. MFCC
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Fig. 4: Mel filterbank (a) and MFCC decomposition (b)

are widely used for speech processing but they are also among the most popular
features for sound scene analysis [73].

2. Alternative cepstral decompostions can be obtained similarly to MFCC from
other frequency-domain representations. This had led to the introduction of fea-
tures such as the linear prediction cepstral coefficients (LPCC) based on LPC
coefficients, the gammatone feature cepstral coefficients (GFCC) or constant-Q
cepstral coefficients (CQCC). None of these features are as popular as the MFCC
but GFCC for example have been applied to sound scene analysis [74, 90].

3.4 Perceptually motivated features

Studies on human perception have allowed for a better understanding of the human
hearing process. Some results from theses studies (such as results on auditory filters)
have been exploited in feature engineering and led to widely used features such as
MFCC. However, there is still a large variety of perceptual properties that could be
exploited in feature extraction (see [80] for a list of common perceptually motivated
features for audio classification). To illustrate this category, three perceptual features
are described below:

1. Loudness (measured in sones) is the subjective impression of the intensity of
a sound in such a way that a doubling in sones corresponds to a doubling of
loudness. It is commonly obtained as the integration of the specific loudness
L(m) over all ERB bands:

L =
MERB

∑
m=1

L(m) , (11)
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with MERB the number of ERB bands. The loudness in each band can be approx-
imated [72] by :

L(m) = X̃0.23
m (12)

where X̃m is the energy of the signal in the mth band (see also (4)).
2. Sharpness can be interpreted as a spectral centroid based on psychoacoustic

principle. It is commonly estimated as a weighted centroid of specific loud-
ness [72].

3. Perceptual spread is a measure of the timbral width of a given sound. It is
computed as the relative difference between the largest specific loudness and
the total loudness:

Sp =

(
L−maxm(L(m))

L

)2

(13)

3.5 Spectrogram image-based features

Features can also be extracted from the time-frequency representation of a sound
scene. Spectrogram image-based features rely on techniques inspired by computer
vision to characterise the shape, texture and evolution of the time-frequency content
in a sound scene. Such features have proven to be competitive with more traditional
audio features on some sound scene classification tasks [79, 47].

1. Histogram of oriented gradients (HOG) are image-based features used in com-
puter vision to perform shape detection in images. They are computed from a
spectrogram image of a sound scene with the goal of capturing relevant time-
frequency structures for characterising sound scenes and events [79]. They are
usually extracted by computing a gradient image containing the gradients of each
pixel in a spectrogram image. Each pixel of the gradient image represents the di-
rection of the change in intensity in the original image. After separating the image
in non overlapping cells, a histogram of the gradient orientations for each pixel
is computed in each cell. Variations for the HOG features include the choice of
the cells, the normalisation of the histograms and the number of orientations.

2. Subband power distribution (SPD) rely on a transformation of a time-frequency
image into a two dimensional representation of frequency against spectral power [24].
They are computed by estimating the spectral distribution in each subbands of a
spectrogram. In practice the distributions are estimated by extracting a histogram
of the pixel values in each subband. The SPD image can either directly be used
as features [24] or as an intermediate representation for extracting other image-
based features [10].

3. Local binary pattern (LBP) analysis is a feature extraction technique used in
image recognition to characterise textures in an image. The LBP features are bi-
nary vectors associated with each pixel in an image. They are build by comparing
the value of a given pixel to others in a fixed neighborhood. For example, local
binary patterns can formed by comparing a given pixel to its eight neighbors,
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leading to a vector of size eight filled by attributing a value of one to neighbor
pixels that have a value above the center pixel and zero to the others. Similarly
to the HOG features, the final LBP features are often obtained by computing the
distribution of the different local binary patterns in regions of the image. LBP
have been applied sound scene analysis in order to capture the texture and geo-
metrical properties of a scene’s spectrogram [4, 47].

3.6 Discussion

“Hand-crafted” features are generally very successful for sound analysis tasks but,
very few works in sound scene and event analysis focused on creating features
adapted to the specificity of the problem. Instead, a more common approach is to
select and adapt features initially introduced for other tasks. A now well established
example of this trend is the popularity of MFCC features in sound scene and event
analysis systems. Although many studies have proved the superiority of other “hand-
crafted” features for the task, many systems limit themselves to the use of MFCCs
while mostly focusing on the classification and detection stage.

One advantage of this approach is that it allows to re-use the work done on
MFCC. For example time domain and frequency-domain filtering [29, 39, 93] to
enforce robustness to additive perturbations or cepstral mean normalisation [52] to
attenuate the effects of convolutive perturbations. One of the main drawbacks of
feature engineering is that it relies on transformations that are defined beforehand
and regardless of some particularities of the signals observed at runtime (recording
conditions, recording devices. . . ).

4 Feature learning

Representation learning techniques have recently proven superior to manually de-
signed features in many classification and other sound analysis tasks. Indeed more
and more datasets of significant size have become available that can be used to
develop feature learning techniques. Developments in nonnegative matrix factori-
sation [53], sparse representation learning [40], dictionary learning [57] and deep
learning [8] are manifestations of this trend. This approach allows for extracting
features that reflect the underlying structure of the data considered in a particular
task, providing high level representations that can generalise, to some extent, to
data configurations unseen during the training phase.

The potential of feature learning techniques is particularly clear for sound scene
event analysis. In fact, real life sound events can be of very different nature result-
ing in a wide variety of possible time-frequency structures present in a sound scene.
Moreover, for tasks like sound scene or event classification, only parts of the in-
formation is relevant to discriminate the different target sound object classes. The
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usefulness of feature learning has already been demonstrated on many scene and
event classification datasets. For example, works relied on clustering [83], bag-of-
features [76, 94] or nonnegative matrix factorisation [5, 11, 64] techniques in order
to learn more discriminative representations of sound scenes and events.

4.1 Deep learning for feature extraction

During the past decade, advances in terms of training algorithms [42, 92] and
computing power have lead to the generalisation of the use of deep learning tech-
niques [7] that are now the state-of-the-art in many audio applications. Besides their
most common application in pattern classification (see also Chap. 5) deep learn-
ing techniques such as deep neural networks (DNN) (Chap. 5, Sect. 4.2), convolu-
tional neural networks (CNN) (Chap. 5, Sect. 4.3), recurrent neural networks (RNN)
(Chap. 5, Sect. 4.4) can be applied to learn features. A particular type of network ar-
chitecture that is often used in feature learning are the so called bottleneck networks
(BN) that contain a hidden layer which size is smaller than other hidden layers.
There are then two main different strategies than can be applied to learn features
with deep learning:

1. Supervised learning: When annotated data is available it is often desired to train
the network in a supervised manner in order to learn features that are discrimina-
tive between the target classes. At run time, in the case of DNN, the last hidden
layer is used to extract features [41] while in BN it is the bottleneck layer [37]
that provides the features.

2. Unsupervised learning: With the increasing amount of data at hands it is of-
ten the case that at least part of the data available is not annotated. In this case,
feature learning will have to rely on unsupervised techniques in order to extract
intrinsic properties of the sound signals. Deep networks can then be trained with
restricted Boltzmann machine [42] or stacked auto-encoder [92]. In the latter ap-
proach, the network is built gradually by combining denoising autoencoders [91].
An autoencoder is a neural network with one hidden layers whose targets are low
level representations of the sound signal. The input of the autoencoder is gener-
ally obtained from a (artificially) degraded version of the sound signal. During
the training phase the autoencoder then aims at learning how to reconstruct a
clean signal from a noisy signal. At run-time, the feature extraction is generally
performed similarly as in the supervised case.

More technical details about deep learning in general, network topologies and learn-
ing algorithms in particular can be found in Chap. 5, Sect. 4.
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4.2 Matrix factorisation techniques

Matrix factorisation (MF) techniques are non-supervised data decomposition tech-
niques, akin to latent variable analysis. In sound analysis applications it generally
consists in explaining a set of frequency representations for T frames {v1, · · · ,vT},
as linear combinations of basis vectors, also called dictionary elements, atoms, ele-
mentary patterns, or topics. This is accomplished by determining an approximation
of the matrix V=

[
v f ,t
]

assembled by stacking the observations column-wise, under
the form:

V≈ V̂ = WH (14)

where W =
[
w f k
]

is a F ×K-matrix whose columns wk are the basis vectors; and
H = [hkt ] is a K×T -matrix whose elements are the so-called activation coefficients,
encodings or regressors.

In the following, the t th column of H will be denoted by ht , whereas hk: will
denote its kth row relating to the sequence of activations of basis vector wk.

Generally, MF has been employed as a means of addressing diverse machine
learning or signal processing tasks, including clustering, topics recovery, temporal
segmentation and structuring, source separation or feature learning. Here, we focus
on the latter usage, which have proven effective in sound scene and event analysis
applications [12].

In such scenarios, the observations correspond to an appropriate low-level repre-
sentation, usually a variant of time-frequency representations (described in Sect. 2.2),
e.g., mel-spectra. These time-frequency representations are analysed by MF, in the
training stage, in order to obtain a dictionary W to be used to decompose both
training examples and new test observations vt , yielding feature vectors ht , to be
processed by a classifier.

Various data decomposition methods may actually be described with the matrix
factorisation formalism, which optimises different criteria, notably principal com-
ponent analysis (PCA) [43] (see Sect. 5.1), independent component analysis [20]
and nonnegative matrix factorisation (NMF) [53]. The latter has been found to be a
particularly effective feature learning approach in the context of sound scene analy-
sis [11, 21] and event classification [64, 6]. Hence it is briefly described hereafter.

The technique, which has actually been known for more than 30 years, was pop-
ularised by Lee et al. [53] who demonstrated its ability to learn “the parts of objects”
through an application to face image decomposition. This tendency to decompose
data in a “natural” way, is due to the constraint imposed to both the dictionary and
the activation, that is all coefficients of W and H are constrained to be nonnegative.

W and H are obtained by minimising a measure of fit D(V|WH), while imposing
the nonnegativity of W and H, which is approached as a constrained optimisation
problem. Unfortunately, this problem is not jointly convex in (W,H), and hence
admits numerous local and global minima. This is one of the principal reasons that
have led researchers to consider imposing different types of additional constraints on
W or H, based on prior knowledge available when handling a particular application.
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In many cases, constraints have been expressed through the choice of a form of
regularised objective function, such as:

C(W,H) = D(V|WH)+λS(H)+ηR(W) (15)

where S(H) and R(W) are constraints on the coefficients of H and W, respectively.
Different types of constraints have been imagined, notably sparsity constraints—
possibly group sparsity—on either W or H, which is usually translated into sparsity-
inducing penalties (e.g., [26, 44, 87]). Such strategies are quite natural in a feature
learning context where they are akin to sparse coding.

Fortunately, for many choices of measure of fit D(V|WH) and penalties S(H)
and R(W), the objective function C(W,H) is separately convex w.r.t W for H fixed
and vice-versa. Consequently, most methods aiming to solve the minimisation prob-
lem, adopt a block-coordinate descent approach whereby update rules are alternately
applied to iterates of W and H [51].

The choice of an appropriate measure-of-fit function D(V|WH) is of course cru-
cial. It is usually chosen to be a separable matrix divergence, taking the form:

D(V|V̂) =
K

∑
f=1

T

∑
t=1

d
(
v f ,t |v̂ f t

)
(16)

where d(x|y) is a scalar divergence. A function d(x|y) is said to be a divergence if it
is i) continuous over x and y; ii) d(x|y)≥ 0 ∀x,y≥ 0; and iii) d(x|y) = 0 if and only
if x = y.

Many variants have been considered in previous works including the β -divergence [28],
the general Bregman divergences [25], the α-divergences [18] and Csiszar’s diver-
gences [19], to mention a few of them. When considering sound signals, it is com-
mon to exploit the β -divergence, focusing on particular cases which have proven
sufficiently well-adapted to our applications. Special cases of the β -divergence yield
popular cost functions, namely: the Itakura-Saito (IS) divergence [32] (β = 0),
Kullback-Leibler (KL) divergence (β = 1) and the `2-norm or squared Euclidian
distance (β = 2).

4.3 Discussion

Feature learning techniques have seen an increase in popularity for sound scene and
event analysis applications in the last few years. They mainly aim at addressing the
general limitations of hand-crafted features mentioned in Sect. 3.6 and have proven
to be viable alternatives. Techniques such as NMF have shown, on multiple occa-
sions, to provide better representations than most feature engineering-based meth-
ods. For example, NMF allowed to reach improved performance on sound scene
and event classification problems, either by considering the dictionaries learned on
individual sounds as features [16] or by keeping the projections on a common dic-
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tionary representing the full training data as features [11]. Further improvements
have been attained by using sparse and convolutive variants of NMF [11, 21, 48].
Another commonly used dictionary learning technique is probabilistic latent com-
ponent analysis (a probabilistic equivalent of NMF), which has mostly been applied
in its temporally constrained shift-invariant version [5, 6]. Other successful unsu-
pervised feature learning approaches include the use of spherical K-means [83],
bag-of-features [76, 94] for classifying sound scenes and events. Interested reader is
referred to the corresponding references for further information about these feature
learning techniques.

Another trend in sound scene and event analysis has been to introduce super-
vised variants of some of the feature learning techniques mentioned above. For
classification problems, supervised feature learning mainly aims at incorporating
prior knowledge about the class labels during the feature learning stage in order to
learn more discriminant representations of the data. Once again, several supervised
extensions of NMF have been proposed. For acoustic event detection, some works
incorporated the sequence of labels in the data before decomposing with NMF or
convolutive NMF [48, 64]. Moreover, for sound scene classification, supervision has
been introduced to NMF either by learning a nonnegative dictionary and a classifier
in a joint optimisation problem [12] or by constraining each dictionary elements to
represent only one sound label [77].

5 Dimensionality reduction and feature selection

A large number of potentially useful features can be considered in the design of
sound scene or event classification systems. Though it is sometimes practicable to
use all those features for the classification, it may be sub-optimal to do so, since
many of them may be redundant or, even worse, noisy owing to non robust ex-
traction procedures. Thus, feature selection or compression (by transformation) be-
come inevitable in order to reduce the complexity of the problem—by reducing its
dimensionality—and to retain only the information that is relevant in discriminating
the target classes.

5.1 Dimensionality reduction

A common approach to cope with the potentially large dimensionality of the feature
space is to use transformation techniques such as PCA, linear discriminant analysis
(LDA), or more recent approaches such as so-called bottleneck DNN. Here, we
focus on the popular PCA technique.

PCA, also known as the Karhunen-Loeve transform, computes low-dimensional
linear approximations v̂ of the original data points v in the least-squares sense, that
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is by seeking a transformation matrix U∗ such that U∗ = argminU||v̂−v||2, with v̂ =
UUTv and rank(U)< F . This can be viewed as a projection of the initial data v on
the new coordinate axes for which the variances of v on these axes are maximized.

The method is actually a special case of matrix factorisation, previously pre-
sented, where W=U and H=UTV. Thus, the procedure can be viewed as a projec-
tion of the initial data points v on new coordinate axes, called principal components.
It is worth noting that other matrix factorisation variants (presented in Sect. 4.2) can
be used for dimensionality reduction, as long as K < F , merely using the activation
vectors ht as low-dimensional representatives of the original vt data points.

Solving the PCA least-squares problem is shown to be equivalent to computing
an eigen value decomposition (EVD) of the covariance matrix Rvv of the data and
taking U to be the K dominant eigenvectors of this decomposition. This yields the
best K-dimensional approximation of the original data in the least-squares sense.
It can then be easily verified that the covariance matrix of the transformed data is
diagonal, hence the components of the transformed data v̂ are uncorrelated, and
the first few components (the so-called principal components) capture most of the
variance of the original data x. The interested reader is referred to Murphy [67] for
more details about the method.

5.2 Feature selection paradigms

Feature selection is an interesting alternative to feature transform techniques such as
PCA as the latter present the inconvenience of requiring that all candidate features
be extracted at the test stage (before the transform found during training is applied
to them). Moreover, PCA does not guarantee that noisy features will be eliminated
(since noisy features may exhibit high variance) and the transformed features are
difficult to interpret, which is a major drawback if one expects to gain some under-
standing of the qualities that best describe the classes.

By feature selection (FS), a subset of K′ features is selected from a larger set
of K candidates with the aim to achieve the lowest classification loss. The task is
quite complex: not only is it impracticable to perform the exhaustive subset search
because of the extremely high combinatorics involved, as the size of search space is
2K when K′ is not given in advance, but also it is costly to evaluate the classification
loss for each candidate feature subset. Therefore feature selection is generally solved
in a sub-optimal manner, usually by introducing two main simplifications:

• Brute-force search is avoided by recurring to a near-optimal search strategy.
• Instead of using the classification loss, a simpler feature selection criterion is

preferred, which exploits the initial set of features intrinsically, as part of pre-
processing stage, before the learning the classifiers (using only selected features).
This is referred to as filter approaches (Sect. 5.3), as opposed to the embedded
approaches (Sect. 5.4), where the selection is integrated in the classifier learning
process.
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5.3 Filter approaches

Such approaches rely on some subset-search method [54] and selection criteria—
often heuristic ones, related to class separability (possibly described using a Fisher
discriminant), or a measure of the association between features and classes (e.g.,
mutual information between them).

As for the subset search method, various strategies can be considered [54] which
entail choosing a feature subset generation procedure, generally in a sequential
way (e.g., forward/backward generation, sequential floating search, random genera-
tion. . . ), as well as a sub-optimal search strategy, which may be either deterministic,
using heuristics in the choice of the search path (e.g., adding a new feature at a time
in a forward generation process), or stochastic (e.g., using simulated annealing or
genetic algorithms).

A simpler yet popular approach, reduces the task to one of ranking each fea-
ture. Here, each individual feature is first scored—independently from the others—
using some criterion (say a separability criterion for example). Then the features are
sorted with respect to their scores and the K′ top-ranked elements are retained for the
classification. Such an approach is clearly sub-optimal compared with the previous
search strategies, which does not prevent it from yielding satisfactory performance
in practice. Its main advantage is naturally its low complexity.

5.4 Embedded feature selection

The embedded methods have attracted most of the attention in recent years, taking
different forms. Hereafter, we briefly cover the most salient of such approaches.

5.4.1 Feature selection by sparsity-inducing norms

In linear-models, including support vector machines (SVM) and generalised lin-
ear models [9], feature selection is achieved using a form of regularisation, usually
`1-norm regularisation in order to promote sparsity of the linear weight vector, as
done in the LASSO [88]. The classification model estimation problem then takes the
general form:

min
βββ∈RK

1
T

T

∑
t=1

`
(

yt ,βββ
Tht

)
+αΩ (βββ ) ; (17)

where y f is the class label associated to feature vector observation ht , `(., .) is a
classification loss function, and Ω (βββ ) is a sparsity-inducing norm. This norm may
be constructed in such a way to account for prior knowledge on the structure of the
data, especially to perform feature-group selection, as opposed to feature-coefficient
selection [45, 3]. Such a selection process (aka feature-subset selection) may be
more advantageous, since it may be known in advance that some variables do not



20 Romain Serizel, Victor Bisot, Slim Essid, Gaël Richard

make sense when isolated from a “natural” group to which they belong. Moreover,
this may allow for implicitly selecting only a subset of channels, in multi-channel
setups (again provided that different feature groups are associated to them) which
in practice is very valuable, as this could result in a simplification of the hardware
used for capturing the data.

5.4.2 Multiple kernel learning

A set of advanced feature selection techniques have been developed for kernel-based
methods [84], especially SVM classifiers, within the framework of multiple kernel
learning (MKL) [50, 85, 78]. Here the main principle is to learn the kernel κ0 to be
used by the classifier as a convex combination of pre-defined base kernels κr accord-
ing to: κ0(h,h′) = ∑

R
r=1 µrκr(h,h′). Now by defining the different base kernels on

different feature groups (possibly different feature coefficients in the extreme case),
and with a proper formulation of the classifier learning problem, involving sparsity-
promoting penalties [78], only a subset of the considered kernels will have non-zero
weights in the final solution, hence only a subset of features will be retained.

5.4.3 Feature selection in tree-based classifiers

In classification schemes based on trees, possibly under boosting or random-forest
settings [38, chap. 10], feature selection often comes as a by-product of the classifier
learning process, which may occur at various levels: either at the stage of the actual
tree growing process, where at each node a particular feature (or feature set) is nat-
urally selected; or at the level of the ensemble meta-classifier, which through the
selection of the weak classifiers (in boosting schemes) or the random sub-sampling
of the variables (in random forests), retains at the end of the learning only the sub-
set of the most useful features. Additionally, further dimensionality reduction can
be accomplished as part of a post-processing stage where efficient procedures for
variable importance determination and pruning exist [38, chap. 10].

6 Temporal integration and pooling

Most of the features described above (see Sect. 3) capture specific properties of the
given signal over short-time signal analysis windows (or frames) over which the
signal can be considered stationary. Then, it is commonly assumed that the succes-
sive observations of features in different frames are statistically independent, which
means that the time evolution of these features is neglected for classification. In this
section, we describe several strategies, often termed temporal integration, to take
into account the information conveyed in the temporal evolution of the signal.
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6.1 Temporal integration by simple statistics
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Fig. 5: Illustration of the different windows used (analysis frame and texture window

Temporal integration can be directly performed on the “instantaneous” features
computed locally over short analysis frames. This so-called early integration is then
commonly done over larger time windows called texture windows (see Fig. 5). The
early temporal integration process can be represented by a function g which is ap-
plied on a sequence of feature vectors, noted ht = [h1,t h2,t . . . hK,t ] where h f ,t cor-
responds to the f th scalar feature observed in the t th frame.

The aims of the integration function is to either capture short time statistics (such
as the mean and covariance described below) or to more complex temporal integra-
tion using some kind of models (see Sect. 6.2). A straightforward mean for early
integration is to compute first order statistics of the feature process. The mean inte-
gration function is then defined as

gmean (ht , . . . ,ht+N−1) = µt =
1
N

t+N−1

∑
k=t

hk . (18)

This simple approach can be extended max-abs pooling (Chap. 5, Sect. 4.3) or to
higher order statistics using for example the full co-variance matrix (or only the
empirical variance of the features), the skewness or kurtosis (see for example [46,
61, 89] for some examples on music signal processing applications).
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6.2 Model based integration

More sophisticated models can also be used to model the temporal dependency be-
tween successive features. It is for example possible to model the sequence of fea-
tures as an autoregressive process. Such a model will capture some global spectral
properties, where the level of details depend on the order of the AR model. Fol-
lowing the multivariate autoregressive model used in Meng [63] for music genre
classification, the corresponding integration function gMAR can be written as :

gMAR (ht , . . . ,ht+N−1) =
[
ŵ Â1 . . . Âp

]
, (19)

where ŵ and {Âp}p=1,...,P are the least-square estimators of the model parameters
for the t texture window and where the pth order model, denoted by MAR(p) is
defined as:

ht = ŵ+
P

∑
p=1

ht−pÂp + εεε t , (20)

with εεε t being a D-dimensional white noise vector.
A number of variations of this model have been proposed including for example

the diagonal autoregressive model or the centred autoregressive model.
Direct extensions of the previous concepts aim at computing spectral charac-

teristics of the feature sequence. Such integrated features include for example, the
modulation energy of “instantaneous” MFCC features [62], the spectral moments
of the feature sequence over a texture window, the STFT coefficients (or as more
recently proposed the coefficients of the scaterring transform) for every feature over
a texture window.

An alternative strategy will consist in incorporating some learning or classifica-
tion paradigms in the feature calculation. It is for example possible to estimate the
probability density of the feature sequence over a texture window and to model it us-
ing a Gaussian mixture model (GMM), GMM super-vectors or even I-vectors [27].
Since these integration approaches can be considered as part of the classification
algorithm, they are not further discuss herein.

6.3 Discussion

In sound scene and event analysis, the importance accorded to temporal integra-
tion of features largely depends on the target problem. First, for a task like sound
event detection, where precise estimation of event onset times is required, the use of
temporal integration is rather uncommon. Instead, the temporal information of the
sound scene is modelled during the classification stage by using technique such as
hidden Markov models [30, 66], RNN [1, 70] or CNN for finite context [75].

The importance of temporal integration is particularly clear for other tasks like
sound scene and event classification, where the decision is taken on longer segments
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of sound. Because of the frame-based nature of many of these features, a particular
focus on temporal integration is required in order to model the distribution of the
features across the full duration of the sound examples. In that case, the most com-
mon approaches are either, to classify the frame-based features before performing
voting strategies, or to directly classify statistics of frame-based features computed
over the full duration of the sound (see also late and early fusion techniques in Chap.
5). In the latter case, the most common way of modelling the temporal information
is either to extend the feature set with their first and second order derivatives or to
compute their average over time, possibly combined with more complex statistical
functions [34, 49]. The use of Recursive Quantitative Analysis [81] on frame-based
features has also proven to be effective for modelling temporal information.

7 Relation to work on speech and music processing

Speech and music are specific examples of sound signals and, as such, share many
acoustical characteristics with sound scenes and sound events recordings. Speech
processing is a well established field with a long history of research. Numerous
features have then been proposed to characterise speech signals and used in sev-
eral major classification tasks such as speech recognition or speaker identification.
Music signal processing, although more recent than speech, is nevertheless another
major domain of audio signal processing with a strong history.

It is therefore not surprising that a large body of features formerly introduced in
speech and music research has been directly applied to sound scene or sound event
recognition. ZCR, filterbanks, cepstral features, and a number of perceptually moti-
vated features [80] were indeed proposed previously for varied sound classification
tasks.

In particular, the MFCC described in Sect. 3.3, remain, even today, one of the
most widely used features in sound classification since its initial use for a music
processing task by Logan [55]. This is surprising since MFCC were initially de-
signed for processing speech signals and in particular for speech recognition [23].
In fact, MFCC integrate some perception properties and, with reference to the clas-
sic speech source-filter production model, mainly discard the source part making
the MFCC rather pitch independent. A direct application of MFCC for music and
environmental sound analysis is surprising since 1) the pitch range is much wider
in general sound signals than in speech; 2) For high pitches the deconvolution prop-
erty of MFCCs does not hold anymore (e.g. MFCC become pitch dependent); and
3) MFCC are not highly correlated with the perceptual dimensions of polyphonic
timbre in music signals despite their widespread use as predictors of perceived sim-
ilarity of timbre [2, 66, 80]. It seems however that the MFCC‘s capacity to capture
global spectral envelope properties is the main reason of their success in sound clas-
sification tasks.

However, it is worth emphasising that some recent proposals targeted features
especially designed for sound scenes or sound events recognition. These include for



24 Romain Serizel, Victor Bisot, Slim Essid, Gaël Richard

example the matching pursuit based features proposed in Chu et al. [17], the image-
based histogram features proposed in Rakotomamonjy et al. [79] or the learned
matrix factorisation features [11]. Indeed, the problem of sound scene and sound
event recognition is different and calls for features that are adapted to the specifici-
ties of the problem, to the scarcity of training (annotated) data and to the fact that
individual classes (especially events) may be only observed in mixtures.

8 Conclusion and future directions

In this chapter we have presented an overview of the different blocks of a standard
feature extraction process. The analysis of sound scene and events is a relatively
new field of research in the context of sound signal analysis in general. Thus, the
majority of the techniques presented in this chapter were introduced for other appli-
cations and have only later been applied to address sound scene analysis problems.
In fact, many early works focused on comparing the effectiveness of different pre-
viously existing feature extraction techniques with strong inspirations from speech
and music processing techniques.

We have shown that the first step in most feature extraction techniques is the
choice of a suited time-frequency representation. Being at the beginning of the pro-
cessing chain they play crucial role in building a sound scene analysis system. How-
ever, the choice of the representation and its parameters is rarely justified apart from
stating the perceptually motivated aspect of most of them. As mentioned, many sys-
tems directly input such representations into the classification stage especially for
deep learning techniques. Therefore, the performance of such systems can be lim-
ited to the quality of the representation/features used for training. Hence, the sound
scene and event analysis field would benefit more in depth studies of the advantages
and drawbacks of certain representation to accurately describe and discriminate the
useful information in sound scenes. Moreover, new alternative representations have
emerged, mostly based on scattering transforms, and have provided significant in-
creases in performance for some problems.

We have also presented a selection of the most frequently used hand-crafted fea-
tures. It is still common to see the introduction of new features for sound scene and
event analysis mainly inspired from speech, music or image processing processing.
The study of hand-crafted features often brings interesting insight on the content
and behaviour of sound scenes. However, they are often limited to describing only
specific aspects of the time-frequency information. Multiple studies have exhibited
this limitation of hand crafted features by showing that combining a large variety
of different features is often required to improve performance over features taken in
isolation.

Finally, the most recent performance breakthroughs in sound scene and event
analysis have been attained by using feature learning based on MF or deep neural
network techniques. These have the advantage of automatically learning the relevant
information in the data often directly from time-frequency representations. There-
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fore they allow for bypassing the exploration and engineering effort of choosing
suited features for the task. However, deep learning techniques require their own
kind of engineering effort for finding the appropriate architecture for the target task,
which is highly dependent on the content and size of the datasets. In contrary, MF
techniques for feature learning demands a lot less tuning effort and have shown on
many occasions to be competitive with deep learning systems even when using sim-
ple classifiers. We believe that future progress in the field will be highly conditioned
on the release of new larger datasets, which will further increase the effectiveness
of deep learning techniques, as well as future developments in unsupervised or su-
pervised feature learning techniques such as matrix factorisation.
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