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Introduction

In the domain of syntactic parsing, a growing interest is dedicated to A parsing strategies [START_REF] Klein | A* parsing: Fast exact viterbi parse selection[END_REF] which allow to compute the most plausible parse tree(s) without having to generate the space of all the grammar-compliant solutions in advance. Such strategies enable efficient parsing within the context of large grammars and/or complex syntactic formalisms [START_REF] Angelov | Fast Statistical Parsing with Parallel Multiple Context-Free Grammars[END_REF]. They were also shown to finely combine with probabilistic supertagging, which can be used to pre-score the individual solutions and, hence, guide the parser to quickly find the most probable one(s) [START_REF] Lewis | A* CCG Parsing with a Supertag-factored Model[END_REF]. Once supertagging is correctly performed, determining the corresponding syntactic structure is greatly simplified [START_REF] Bangalore | Supertagging: An Approach to Almost Parsing[END_REF], and A parsing allows to backtrack and correct the possible misestimations of the supertagger. [START_REF] Lewis | A* CCG Parsing with a Supertag-factored Model[END_REF] showed that it is possible to obtain a highly accurate and fast CCG parser by (i) adopting a simple probabilistic model factored on lexical category assign-ments and (ii) using supertagging techniques to obtain relatively reliable probability estimations in a sentence-dependent manner. However, it seems that this proposal, even though quite generic, is not easy to extend to the context of a lexicalized grammar in which various categories of multiword expressions (MWEs) are represented as elementary grammar units, which is a standard approach to modeling MWEs in tree-adjoining grammars, TAGs [START_REF] Abeillé | Parsing idioms in lexicalized tags[END_REF][START_REF] Abeillé | The Flexibility of French Idioms: A Representation with Lexicalised Tree Adjoining Grammar[END_REF]. While adapting the [START_REF] Lewis | A* CCG Parsing with a Supertag-factored Model[END_REF] approach to continuous MWEs, such as all of a sudden or a hot dog, could be achieved by using word lattices to represent ambiguous input segmentations [START_REF] Constant | Combining compound recognition and PCFG-LA parsing with word lattices and conditional random fields[END_REF], non-continuous MWEs (as in he is making no good decisions) seem harder to account for.

At the same time, [START_REF] Wehrli | The relevance of collocations for parsing[END_REF] showed that promoting collocation-based derivations in syntactic parsing -MWEs often are statistical collocations -is potentially beneficial in that it helps to deal with syntactic ambiguity. MWEs account for up to 40% of words in a corpus [START_REF] Gross | Nouvelles bases statistiques pour les mots du français[END_REF] and, due to their lexicalized nature, should be easy to spot before parsing, which suggests the usefulness of enriching A parsing strategies with MWE-dedicated mechanisms.

We previously proposed such a mechanism (Waszczuk et al., 2016b), extending the [START_REF] Lewis | A* CCG Parsing with a Supertag-factored Model[END_REF] heuristic to a variant allowing multi-anchored TAG elementary trees (ETs). We showed that considerable speed-up gains can be achieved by promoting MWE-based analyses with virtually no loss in syntactic parsing accuracy. This is in contrast to purely statistical approaches where the idiosyncratic properties of MWEs are hard to capture, and systematically promoting MWEs may decrease the parser's accuracy due to the lack of control of the underlying grammar which would certify the plausibility of the re- However, the MWE-based A heuristic proposed in (Waszczuk et al., 2016b) has three important drawbacks. Firstly, it lacks the proof of correctness and, therefore, it is not clear whether the first derivation found by the parser is indeed the most probable one, a property normally assured by a well-defined A heuristic. Secondly, it produces sub-optimal estimations -the bottom-up Earlystyle parser the heuristic relies on (Waszczuk et al., 2016a) performs predictions in order to identify the spans over which adjunction can be potentially performed, but the inside probabilities related to such spans are ignored. Finally, computing the values of the heuristic is relatively easy (it can be performed in close to constant time), but it composes badly with grammar compression. In a real-world context, different parsing speed-up optimizations should ideally combine to provide an optimal solution. In this work, we propose an enhanced version of this heuristic, which copes with the three drawbacks mentioned above.

We first describe the baseline parser and its heuristic, and give a motivating example demonstrating its drawbacks (Sec. 2). Then we formalize a compressed grammar representation (Sec. 3) and our new parser adapted to it (Sec. 4). We introduce the enhanced heuristic and sketch a proof of its monotonicity (Sec. 5). Finally we present some experimental results (Sec. 6), as well as conclusions and future work (Sec. 7).

Baseline heuristic

In this section, we shortly review the heuristic proposed in (Waszczuk et al., 2016b) and point out its shortcomings. We assume the toy TAG grammar from Fig. 1, where each node is marked with a unique ID. This grammar contains two ETs representing two possibly discontinuous verbal MWEs Figure 2: Traversal configurations (making decisions and is no good). We also assume an input sentence s = s 1 . . . s n being a sequence of terminal symbols.

The parser in (Waszczuk et al., 2016b) is based on deduction rules [START_REF] Stuart M Shieber | Principles and implementation of deductive parsing[END_REF], which serve to infer chart items. Each chart item is a pair x, r , where x is a configuration and r is a span. Each configuration x represents a position in the traversal of the corresponding ET t x , and each span r represents a fragment of the input sentence. Informally, x, r asserts that the already traversed part of t x can be matched against the words in r.

Fig. 2 shows three different configurations corresponding to the traversal of the ET rooted at S 10 . For instance, Fig. 2 (a) stipulates that the parser has already matched the nodes VP 13 and making 16 , and that it still needs to match the remaining nodes in the ET. We will refer to the configurations by the nodes at which they are rooted -i.e., to Fig. 2 (a), (b), and (c) by {V 13 }, {V 13 , NP 14 }, and {VP 12 }, respectively. Any configuration x determines the split of the terminals present in t x into two parts: (i) the terminals already scanned by the parser, and (ii) the remaining terminals, which the parser still needs to match against the input words. We denote by inf (x) and sup(x) the multiset of terminals (written {} ms ) in part (i) and (ii), respectively. For instance, inf ({V 13 }) = {making} ms , sup({V 13 }) = {decisions} ms , inf ({AP 37 }) = {no, good } ms , sup({AP 37 }) = {is} ms , etc. 1Let pos(s) = {0, . . . , n} be the set of positions between the words in s, before s 1 and after s n . In TAGs, the yield of an ET can span two non-adjacent fragments of s, hence a span takes the form of a tuple r = i, j, k, l , where i, l ∈ pos(s) and j, k ∈ pos(s) ∪ {-}. j, k , when defined, represents the gap between the two non-adjacent fragments i, j and k, l . For instance, in Fig. 3, 2, -, -, 6 corresponds to continuous making no good decisions, 2, 3, 5, 6 corresponds to discontinuous making decisions with the gap no good, etc. We will refer to spans of the form i, -, -, l as i, l for short. Each span r determines the split of the terminals present in the input sentence into: (i) the terminals in r, and (ii) the terminals outside r. We denote by in(r) and out(r) the multiset of terminals in part (i) and (ii), respectively. For instance, in( 2, 6 ) = {making, no, good, decisions} ms , out( 2 , 6 ) = {he, is} ms , in( 2, 3, 5, 6 ) = {making, decisions} ms , out( 2, 3, 5, 6 ) = {he, is, no, good} ms , etc.

Given a deduced chart item x, r , it holds that inf (x) ⊂ in(r). Moreover, if sup(x) ⊂ out(r), then the item is a dead-end -no final derivations (i.e. the derivations covering the entire input sentence) based on x can be created (the tokens remaining to parse do not contain all the terminals present in the remaining part of t x 's traversal).

To each derivation constructed via the deduction rules the parser assigns a weight which allows to discriminate the more probable (lighter) from the less probable (heavier) derivations. Given a chart item η, the goal of an A heuristic h(η) is to estimate α(η), the minimal outside derivation weight (roughly, the cost remaining to parse the entire input sentence). Formally, α(η) = γ(η) -β(η),2 where γ(η) is the minimal weight of a final derivation containing η, and β(η) is the minimal weight of an inside derivation of η (roughly, the cost of the already parsed part of the sentence).

In (Waszczuk et al., 2016b) we assume a simple weighting scheme in which each ET t comes with its own weight ω t ≥ 0 and the weight of a derivation is the sum of the weights of the participating ETs. Consider Fig. 3, where each ET has weight 1, and two items: η gr = {VP 21 }, 1, 2, 6, 6 corresponding to the derivation marked in green (solid line), and η bl = {VP 12 }, 2, 6 corresponding to the derivation marked in blue (dashed line). Then, β(η gr ) = 1 and β(η bl ) = 2.

A heuristic should be admissible, i.e., never overestimate α(η), and monotonic. Monotonicity means that, when a chart item η is inferred from another item µ contained in its lowest-weight derivation, h(η) + β(η) should be at least as high as h(µ) + β(µ) [START_REF] Klein | A* Parsing: Fast Exact Viterbi Parse Selection[END_REF].

The A heuristic presented in (Waszczuk et al., 2016b) is based on the observation that the weight of a particular TAG derivation tree can be refor- mulated as follows. Firstly, the weights of the individual ETs are projected over the words in the input sentence to which they are attached. There are several possible ways of doing that, and the simplest one is to evenly distribute the weight of a given ET over its terminals, as shown in Fig. 3. Secondly, the weight of a derivation tree is redefined as the sum of the weights projected over the words in the sentence.

When the parser considers a particular item x, r , the weights which can be projected over the words in r are known, but not the weights which can be projected over the words outside r. One can easily find the lower-bound estimates of the latter -i.e., assume that the minimum possible weight, denoted minw (w) (e.g., minw (is) = 1 3 , minw (making) = 1 2 , etc.), will be projected over each word w outside r. Consequently, in (Waszczuk et al., 2016b) we define the baseline heuristic as:

h( x, r ) =      C(out(r)), if comp(x) ∞, if sup(x) ⊂ out(r) ω tx + C(out(r) \ sup(x)), o/w,
where C(m) is the globally minimal cost of scanning all the words in the multiset m (the sum of their minw values) and comp(x) is true iff the traversal represented by x is complete (all the nodes in t x have been parsed). For instance:

h(η gr ) = C(out( 1, 2, 6, 6 )) = C({he, making, no, good, decisions} ms ) = 1 + 1 2 + 1 3 + 1 3 + 1 2 = 2 + 2 3 , h(η bl ) = 1 + C({he, is} ms ) = 2 + 1 3 .
The heuristic does not take the weight ω tx of the ET t x being parsed into account if x is complete. This is because ω tx is already added to the weight of the inside derivation of x, r in this case. Moreover, comp(x) =⇒ sup(x) = ∅ ms .

This heuristic presents some important shortcomings, foremostly non-monotonicity. Given the predictive nature of the parser, an item x, i, j, k, l such that j, k = -,is inferred iff an appropriate derivation, spanning j, k , exists. In Fig. 3, η gr thus relies on η bl and when η gr is inferred, the weights which can be projected over the words in 2, 6 are already known. Nevertheless, h(η gr ) assumes that the globally minimal weights will be projected over 2, 6 , thus underestimating the weights projected over the words no and good. In Fig. 3, these projections are equal to 1, while minw (no) = minw (good ) = 1 3 , since both words belong to the MWE is no good. As a result, h(η gr ) + β(η gr ) = 2 2 3 + 1 is smaller than h(η bl ) + β(η bl ) = 2 1 3 + 2, which shows that the heuristic is not monotonic.

A similar situation occurs in top-down CFG parsing with prediction when the weight of the premise item of the prediction rule is not transferred to the conclusion. [START_REF] Nederhof | Weighted Deductive Parsing and Knuth's Algorithm[END_REF] shows that a simplified version of the A algorithm (the Knuth's algorithm, similar to the standard Dijkstra's shortest-path algorithm and relying on no heuristic) still correctly computes the derivations with the lowest weights in this case. While it can be stipulated that his proof applies to the algorithm used in (Waszczuk et al., 2016b), ignoring the weights of the items used for adjunctionrelated predictions not only makes the heuristic non-monotonic, it also means that the already computed inside weights, which could provide better estimations of α(x), are sometimes ignored.

Grammar representation

The complexity of TAG parsing is polynomial in the sentence length and linear in the grammar size (O(n 6 * |G|)) [START_REF] Gardent | Lexical Disambiguation in LTAG using Left Context[END_REF]. With realsize grammars, especially those containing explicitly encoded MWEs, the latter factor can be prohibitive. Therefore -in order to speed up parsingan A algorithm should ideally be combined with grammar compression, as proposed below.

We assume a twofold representation of a TAG grammar. It is first transformed into an equivalent directed acyclic graph with ordered outgoing edges for each node (GDAG). Then, traversals of the ETs and their subtrees are represented as paths in finite-state automata (FSAs). This is a simplified variant of the grammar encoding applied in (Waszczuk et al., 2016a), where we showed that grammar compression alone can greatly speed-up TAG parsing, while using a variant of the standard, bottom-up Earley-style parser [START_REF] Alonso | Tabular algorithms for TAG parsing[END_REF].

Formally, we define a GDAG as a tuple We assume that a GDAG satisfies all the relevant, TAG-related well-formedness constraintsfor example, that for each r ∈ R D there exists at most one v ∈ V D reachable from r such that foot D (v). Moreover, if such v ∈ V D exists, then

D = V D , E D , Σ D , N D ,
D (r) = D (v) ∈ N D , i.e.
, the root and the foot of an auxiliary tree must be labeled with the same non-terminal. Each v ∈ V D unambiguously determines the corresponding ET subtree (ES) rooted at v, denoted es D (v). Note that, by definition, each ET is also an ES. from Fig. 4 (b). 3 From the parsing perspective, each path in an FSA encoding represents the leftto-right traversal performed by the parser while matching, against the input words, a particular ES of height greater than 0.

Formally, we define an FSA encoding of a GDAG D as a tuple M

= Q M , δ M , S M , heads M such that Q M is the set of FSA states, δ M : Q M × V D → Q M is
the transition function consuming DAG nodes (V D thus constitutes the set of the FSA alphabet symbols), S M ⊂ Q M is the set of start states, and heads M : Q M → 2 V M is a function which returns the final symbols outgoing from a given state. For convenience, we represent the particular states in the FSA encoding as dotted rules, e.g., S 1 → NP 2 • VP 3 corresponds to the state reached by following the symbol NP 2 on the path (NP 2 , VP 3 , S 1 ). Informally, heads M represent the left-hand-sides of such dotted rules.

Each x ∈ V D ∪ Q M represents a particular traversal configuration (cf. Sec. 2): x ∈ V D stipulates that the parser has matched es D (x), while x ∈ Q M stipulates that it has matched all the ESs on the path from one of the states in S M to x ∈ Q M . For instance, VP 3 → V 4 NP 2 • stipulates that the parser has matched both es D (V 4 ) and es D (NP 2 ).

As mentioned in Sec. 2, when no grammar compression (i.e.

no subtree or prefix sharing) occurs, each traversal configuration 3 While a minimal FSA encoding, including both prefix and suffix sharing, might seem optimal, we empirically showed in (Waszczuk et al., 2016a) that it does not bring significant improvements over the prefix-tree encoding in TAG parsing. 

T V 4 = T VP 3 →V 4 •NP 2 = T VP 12 →V 4 •NP 14 = {es D (S 1 ), es D (S 10 )}, T NP 7 →•N 8 = {es D (v) : v ∈ R D }, etc.
This brings us to the second issue with the heuristic defined in Sec. 2. One of the first steps of computing the value of h( x, r ) is to check whether sup(x) ⊂ out(r). This step allows to obtain better estimations of α( x, r ) -namely, to exclude the dead-end chart items, which cannot possibly lead to final derivations. However, with grammar compression, sup depends not only on the configuration x, but also on the corresponding ET t ∈ T x . Hence, we define a generalized version of sup as a two-argument function sup(x, t) which determines the multiset of words remaining to parse on t's traversal starting from x.

When estimating α( x, r ), the parser needs to consider all the different ET traversals containing x, leading to different ETs, and with different multisets of the words remaining to complete the traversal. Assuming the prefix-tree grammar compression and that q 0 is the root of the prefixtree FSA encoding, T q 0 is the set of all grammar ETs. Therefore, when grammar compression is used, computing h's values is O(N ), where N is the number of ETs.

Enhancing the baseline A TAG parser

In (Waszczuk et al., 2016b,a) we put forward a version of the bottom-up, Earley-like parser described in [START_REF] Alonso | Tabular algorithms for TAG parsing[END_REF] to test the idea of promoting MWEs in A parsing. We now formalize an enhanced version of this parser, adapted to AX (axiom):

(0,0): q 0 , i,i a i∈pos(s)\{n} q 0 ∈S M SC (scan):

(w,w ): q, i,j,k,l a (w,w ): δ M (q,v), i,j,k,l+1 a v∈L D : D (v)=s l+1 δ M (q,v) defined DE (deactivate):

(w,w ): q, i,j,k,l a (w+[ω es D (v) |v∈R D ],w ): v, i,j,k,l p v∈heads M (q) v ∈L D : D (v )= D (v)∧¬foot D (v ) δ M (q,v ) defined v∈R D
FA (foot-adjoin):

(w 1 ,0): q, i,l a (w 2 ,w 2 ): v, l,j ,k ,l p (w 1 ,w 2 +w 2 +[A(v)|v / ∈R D ]): δ M (q,v ), i,l,l ,l a v ∈L D : D (v )= D (v)∧foot D (v ) δ M (q,v ) defined v∈R D =⇒ (j ,k )=(-,-)
RA (root-adjoin):

(w 1 ,w 1 ): w, i,j,k,l p (w 2 ,w 2 ): v, j,j ,k ,k p (w 1 +w 2 ,w 2 ): v, i,j ,k ,l p w∈R D ∧(j,k) =(-,-) D (w)= D (v) v∈R D =⇒ (j ,k )=(-,-)
Table 1: Weighted inference rules of the Earley-style, bottom-up parser, where: (in PS) i ∪ j is equal to i if j =and j otherwise, and (in DE and FA) [x|p] = x if p is true and [x|p] = 0 otherwise. the grammar representation introduced in Sec. 3, and to the new heuristic defined in Sec. 5.

We say that a chart item x, r is active if x ∈ Q M , and that it is passive if x ∈ V D . We also write q, r a or v, r p to refer to an active or a passive item, respectively. Tab. 1 specifies the inference rules of the parser, using the weighted deductive framework [START_REF] Stuart M Shieber | Principles and implementation of deductive parsing[END_REF][START_REF] Nederhof | Weighted Deductive Parsing and Knuth's Algorithm[END_REF]. Each of the inference rules takes zero, one or two chart items on input (premises, presented above the horizontal line) and yields a new item (conclusion, presented below the line) to be added to the chart if the conditions given on the right-hand side are met. Besides, to each item η in each rule a pair of weights (w, w ), given before the colon, is assigned, thus specifying how to compute the weights corresponding to the conclusion based on the weights corresponding to the premises. The meaning of w and A (the latter used to compute w s values in the FA rule), both specific to the enhanced heuristic, will be detailed in Sec. 5. The value w, on the other hand, represents the weight of η's inside derivation. The idea of computing pairs of weights using inference rules comes from [START_REF] Nederhof | Weighted Deductive Parsing and Knuth's Algorithm[END_REF], who showed that such a solution can be used to overcome the non-monotonicity issue in top-down CFG parsing with prediction.

The way the inside weights are computed by the parser corresponds to the assumption that the probability of a derivation is the product of the probabilities of the participating ETs, hence the weight computed for the conclusion item is the sum of the weights of the premise items, with two exceptions. The DE inference rule, responsible for matching full ESs, adds the weight es D (v), provided that es D (v) is an ET. The FA rule, used to predict that adjunction over a particular span r is possible, does not transfer the weight of the premise item spanned over r. In the baseline parser, the same behavior was precisely the reason of the non-monotonicity in Fig. 3 discussed in Sec. 2. However, now this weight is accounted for in w , which preserves monotonicity, as shown below.

Enhanced heuristic

We now propose an enhanced version of the heuristic described in Sec. 2, with the goal of overcoming the issues related to non-monotonicity and grammar compression. However, for the sake of clarity, we start by assuming that no grammar compression is performed.

As mentioned before, w represents the weight of an inside derivation of the corresponding item η. The weight w , on the other hand, represents (roughly) the weight of η's witness derivation, i.e., the previously obtained derivation which can fill η's gap. Consider Fig. 6 (b) and three chart items: µ gr = S 8 , 1, 2, 4, 5 , µ bl = S 3 , 2, 2, 3, 4 , and µ rd = S 6 , 2, 3 . Then, the derivation delimited by the green solid line is µ gr 's inside derivation, while the derivation delimited by the blue dashed line is µ gr 's witness derivation. Sim-Figure 6: Copy language ilarly, the derivation delimited by the blue line is µ bl 's inside derivation, while the derivation delimited by the red dotted line is µ bl 's witness. Finally, the derivation delimited by the red line is µ rd 's inside derivation, but µ rd has no witness derivation, since it is not gapped. In general, for any nongapped item η, w = 0.

Given a configuration x ∈ V D ∪ Q M , we define x's amortized weight as:

A(x) = ω tx -C(sup(x)).
For instance, in Fig. 6 

(a), A(S 3 ) = A(S 10 ) = 1 2 (since minw (a) = minw (b) = 1
2 ), and A(S 6 ) = A(S 1 ) = 1. A(x) accounts for the weight of the ET t x , and for the fact that t x may still contain some terminals which need to be consumed (w.r.t. to the position of x in t x 's traversal). Thus, A(x) can be intuitively understood as the weight of the already parsed part of t x .

A version of h which performs no dead-end detection, i.e. never takes the ∞ value unlike h in Sec. 2, but, otherwise, provides identical estimations as h, can be defined in terms of A as:

h spl ( x, r ) = C(out(r)), if x ∈ R D A(x) + C(out(r)), o/w.
We also define the amortized weight of a derivation δ as the sum of the amortized weights of the ESs (more precisely, their roots) present in δ. For instance, in Fig. 6 (b), the amortized weight of µ bl 's inside derivation is A(S 6 ) + A(S 3 ) = 1 + 1 2 . The weight w , attached to each chart item η, is precisely the amortized weight of η's witness derivation (if η is gapped, otherwise w = 0).

Then, given a chart item η = x, r such that r = i, j, k, l and the corresponding weight w , we define the enhanced A heuristic as: where rest(r) = out(r) \ in( j, k ), i.e. the multiset of words outside r but not in the gap, whose cost is already accounted for in w . The advantage over the baseline heuristic is precisely that, instead of assuming that the lowest possible weights will be projected over all words in the gap, the weights of the existing derivations spanning the gap are considered. The disadvantage is that, by not checking that the remaining part of the sentence contains all the tokens required by t x 's traversal, h adj does not detect the dead-end items, which is the price to pay for better integration with grammar compression techniques (see below). Fig. 7 shows a fragment of the inference corresponding to µ gr 's inside derivation in Fig. 6 (b). Each node in Fig. 7 represents a deduced chart item, and each hyperarc (which connects one target node with zero, one or two tail nodes) represents an application of an inference rule. Besides, to each item the corresponding pair of weights (w, w ) is attached via an undirected dashed edge. In particular, the pair attached to S 8 , 1, 2, 4, 5 is (1, 1.5), since the amortized weight of its witness derivation is 1.5. Note that the baseline heuristic would assume that the globally minimal weights minw (a) = 0.5 are projected over both a in the gap and, thus, underestimate the gap's parsing cost as 1.

h adj (η) = C(rest(r)) + w , if x ∈ R D A(x) + C(rest(r)) + w , o/w,
The enhanced heuristic composes smoothly with grammar compression techniques. To recall, under compression, each configuration x ∈ V D ∪ Q M can belong to several ETs and, conse-quently, to several ET traversals. To ensure that the heuristic does not overestimate, it is sufficient to calculate the minimal amortized weight, i.e., assume that the least-weight traversal will be taken from any given

x ∈ V D ∪ Q M : A(x) = min{ω t -C(sup(x, t)) : t ∈ T x }. (1)
The definition of h adj remains unchanged. The values of A can be pre-computed on a pergrammar basis, just as the values of C•rest 4 can be pre-computed on a per-sentence basis, 5 hence the robustness of h adj w.r.t. grammar compression.

To show that h adj is monotonic, it is sufficient to consider each inference rule from Tab. 1 separately and to show that the total weight (w + h adj (η)) it computes for the conclusion item η is at least as high as the total weight of any of its premise items. As an example, we sketch below the proof of monotonicity of the PS rule.

Proposition 1. Let v ∈ V D and q ∈ Q M such that δ M (q, v) is defined. Then, T δ M (q,v) ⊂ T (q).
Proof. Follows from the fact that any FSA path crossing δ M (q, v) must also cross v.

Observation 1. Let v ∈ V D , q ∈ Q M such that δ M (q, v) defined, and t ∈ T δ M (q,v) . Then, C(sup(δ M (q, v), t)) = C(sup(q, t)) -C(inf (v)). Proposition 2. Let v ∈ V D and q ∈ Q M such that δ M (q, v) defined. Then, A(δ M (q, v)) ≥ A(q) + C(inf (v)).
Proof. Follows from Pr. 1, Ob. 1, and Eq. 1.

Proposition 3. Let η = x, r be a chart item such that x / ∈ R D , r = i, j, k, l , and (w, w ) be the corresponding weights. Then,

w + w ≥ C(in( i, l )) -C(inf (x)).
Proof. The LHS is the total weight projected by η's inside derivation over i, l , with the exception of the words in inf (x). The RHS is, by definition, a lower-bound for the projected weight.

Observation 2. In the PS rule, it holds that:

C(rest( i, l )) = C(rest( i, l )) -C(in( l, l )).
Proposition 4. The PS rule is monotonic. 4 The symbol • stands for function composition. 5 In both cases dynamic programming techniques can be used to speed up the process.

Proof. Let η be the conclusion and µ be the active premise. Then:

w 1 + w 2 + h adj (η) -w 1 -h adj (µ) = (h adj ) w 2 + A(δ M (q, v)) + C(rest( i, l )) + w 1 + w 2 -A(q) -C(rest( i, l )) -w 1 = (Ob. 2) w 2 + A(δ M (q, v)) + w 2 -A(q) -C(in( l, l )) ≥ (Prop. 2) w 2 + C(inf (v)) + w 2 -C(in( l, l )) ≥ 0. (Prop. 3)
It can be shown that PS is monotonic w.r.t. its passive premise item in a similar fashion.

Experiments

We repeated the experimental evaluation proposed in (Waszczuk et al., 2016b) in order to compare the new heuristic (cf. Sec. 5) with the baseline (cf. Sec. 2). The experiment was based on the version of the Składnica treebank [START_REF] Świdziński | Towards a bank of constituent parse trees for Polish[END_REF] annotated with MWEs [START_REF] Savary | Projecting multiword expression resources on a polish treebank[END_REF]. For each sentence in the corpus, the grammar was first reduced to only those ETs whose terminals occurred in the sentence, and compressed according to the methods described in Sec. 3. Then, the parser (specified in Sec. 4) was run and the search-space-size reductions stemming from promoting MWEs (a behavior obtained by assigning the weight 1 to each ET in the grammar) were measured. We also implemented runtime verification tests which empirically confirmed the monotonicity of (the implementation of) h adj . We observed only minor differences between the results obtained with both heuristics. On average (at most, respectively), h adj led to searchspace-size reductions of 16.8% (90.6%) vs. 18.1% (90.7%) reductions obtained with h, a drop in performance related to the lack of dead-end detection in h adj . Recall, however, that calculating h's values can be costly (linear w.r.t. the number of ETs) when grammar compression is used, and can be thus infeasible in practical parsing applications. In our experiment, grammar compression alone decreased (on average) the search-space to less than 1 3 of its original size.

Conclusions and future work

Our previous state-of-the-art A heuristic for promoting MWEs in TAG parsing is not monotonic and it composes poorly with grammar compression methods. We have presented here an enhanced version of this heuristic, which improves the estimations of the outside derivation weights by making the predictions of the weights related to items' gaps more accurate. The new version is monotonic and combines with our grammar compression techniques with no significant computational overhead. The price to pay is the lack of detection of dead-end items, which partially explains the slight drop in search-space-size reductions in comparison with the baseline heuristic.

To the best of our knowledge, this is the first approach explicitly addressing interactions between A parsing and grammar compression.

For future work, we plan to repeat the experiment with a truly weighted grammar, i.e., with the weights corresponding to single-anchored ETs being estimated from a treebank. We believe that such an experiment will lead to more insightful conclusions as to the pros and cons of the new heuristic. We also plan to optimize the implementation of the parser, in order to verify that the search-space-size reductions transfer to proportional reductions in parsing time.

Figure 1 :

 1 Figure 1: A toy TAG grammar

Figure 3 :

 3 Figure 3: Projecting the weights of the ETs in a TAG derivation on the corresponding terminals. The weights of the ETs are shown, in square brackets, above their roots, while the projected weights are shown, also in square brackets, below the terminals.

  S D , D , foot D such that V D and E D are the sets of DAG nodes and (ordered) edges, respectively, Σ D and N D are the sets of terminals and non-terminals, respectively, S D ∈ N D is the start symbol, D : V D → Σ D ∪N D is a function assigning non-terminals or terminals to D's nodes, and foot D : V D → B tells whether a given node is a foot node. Also, R D , L D ⊂ V D are the sets of roots and leaves in D, respectively. Fig. 1 is a straightforward encoding where each ET is represented by a separate tree. Fig. 4 compares two GDAG representations of three ETs from Fig. 1: (a) the straightforward encoding, and (b) the encoding with common subtrees shared among ETs. Both representations are equivalent, i.e., they entail the same TAG, which can be obtained by the traversals of the sub-DAGs rooted in the GDAG roots. For instance, the traversals starting from S 10 in (a) and (b) entail the same ET.

Fig. 5

 5 illustrates two possible FSA encodings, without and with prefix sharing, of the GDAG

Figure 4 :

 4 Figure 4: Two possible DAG encodings of three ETs from the grammar in Fig. 1. The values of D are put in place of the corresponding nodes, and the node identifiers (the values of V D ) are placed in subscript on the right. All the edges are implicitly oriented downwards.

Figure 5 :

 5 Figure 5: Two possible FSA encodings of the GDAG illustrated in Fig. 4 (b): (a) a simple FSA encoding in which each GDAG traversal is represented by a distinct path, and (b) a prefix-tree-like FSA encoding.

Figure 7 :

 7 Figure 7: A fragment of an inside derivation of S 8 , 1, 2, 4, 5 p , represented as a hyperpath.

We extend the standard set operations (sum, difference, etc.) to multisets.

This equation holds provided that the weighting function is monotonic in the sense of[START_REF] Huang | Proceedings of the Ninth International Workshop on Parsing Technology[END_REF].
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