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Abstract

This paper generalizes the method proposed by Pouillat et al. for the determination of the optimal
Galois Field coefficients of a Non-Binary LDPC parity check constraint based on the binary image
of the code. Optimal, or almost-optimal, parity check coefficients are given for check degree varying
from 4 to 20 and Galois Field varying from GF(64) up to GF(1024). For all given sets of coefficients,
no codeword of Hamming weight two exists. A reduced complexity algorithm to compute the binary
Hamming weight 3 of a parity check is proposed. When the number of sets of coefficients is too high for
an exhaustive search and evaluation, a local greedy search is performed. Explicit tables of coefficients
are given. The proposed sets of coefficients can effectively replace the random selection of coefficients

often used in NB-LDPC construction.

Index Terms

Non-Binary Parity Check, Non-Binary LDPC, Hamming Weight, Error control code

I. INTRODUCTION

Non-Binary Low Density Parity Check Codes (NB-LDPC) have been proposed by Mackay
and Neal in 1996 as a generalization of the LPDC matrices [1]. In [2], Pouillat et al. present in
2008 a method to set the non-zero coefficients of a non binary parity check matrix /. The first
step of the method concerns the problem of row optimization, i.e, the selection of the coefficients
associated to a given parity check. The principle is to optimize the Hamming weight spectrum
of the binary code (md., m(d.—1)) associated to a parity check of degree d. over a Galois Field

GF(q) with m = log,(q). The authors show that the higher the minimum distance of the binary



equivalent code, the better is the convergence of the NB-LDPC code in the waterfall region.
They also show that, for two parity checks with the same associated binary minimum distance
dy, the multiplicity of binary codewords of Hamming distance dy verifying the parity check
equation should be minimized. Once the coefficients of the parity check equation are selected,
the second step of [2] is to enumerate the cycles of short lengths in the Tanner graph associated
to the parity check matrix and to constraint the GF(q) coefficients associated to each cycle so
that only the zero codeword is associated to the short length cycles. This second step is out of
the scope of this paper. The state of the art on coefficient selection is quite sparse, except in
[3] and [4]. In [3], Mackay proposed to select the set of non null coefficients that maximizes
the marginal entropy of one element of the syndrome vector. In [4], a method used to construct
the NB-LDPC code used by the Consultative Committee for Space Data Systems (CCSDS) are
presented and some sets of coefficients for d. = 4 over GF(64) and GF(256) are given. We
should also mention the paper of [5] which shows minimum Hamming distance upper bound of
short length binary codes.

A direct exploration of all possible codewords associated to a given set of coefficients is
limited to small check node degree and Galois Field order due to the exponential increase of
complexity. In fact, the number of codewords for a parity check of degree d. over GF(q) is g% 1.
For example, for d. = 5 over GF(64), there is 64* = 16.8 x 105 codewords per set of coefficients.
The number of sets of coefficients is around 8 x 10* (see section III): the direct method shows
rapidly its limit since it requires more that 100 billions of operations. In [2], optimal, or almost
optimal, sets of coefficients are only given for d. = 4 over GF(64), GF(128) and GF(256).

In this paper, we revisit the problem of coefficient optimization in the case where the binary
hamming weight associated to the parity check is equal to 3. We propose a method with a
complexity of O(d?) to evaluate the number of codewords of weight 3. When the number of
sets of coefficients is too high for an exhaustive search, a local greedy search is performed.
Explicit tables of coefficients are given for d. varying from 3 to 20 and for Galois Field GF(64)
up to GF(1024). The proposed sets of coefficients can effectively replace the random selection
of coefficients often used in NB-LDPC construction. For example, let us consider a check node
of degree 12 over GF(256), then, in average, randomly selected set of coefficients leads to 68
codewords of weight 3 while the optimized set of coefficients has only 11 codewords of weight
3. In other words, using proposed coefficients, each parity check equation has a better individual

error correction, leading globally to a better convergence in the waterfall of the whole NB-LDPC



code.

The remaining of the paper is organized as follows. Section II presents the background on
parity check equation and states the optimization problem. Section III evaluates the number of
configurations to be evaluated. Section IV proposes an heuristic method to determine the effective
set of coefficients. Finally, section IV concludes the paper. All the sets of optimal/optimized

coefficients are given in the annex.

II. DETERMINATION OF OPTIMAL COEFFICIENTS OF A PARITY CHECK EQUATION

The Galois Field GF(2™) will be represented by the set of polynomials over GF(2) modulo
P,,[X], where P,,[X] is an irreducible polynomial of degree m. Thus, by definition, GF(2™) =
GF(2)[X]/P,,[X]. It is usual to represent the element of this field either by setting X = a and
representing the non null element as power of «, i.e, if x € GF(q), then = # 0 implies that
x can be written as © = «“, with a a natural that takes its value between O and g — 2. It is
also possible to represent the element of GF by a binary vector of size m that represents the
coefficients of a polynomial of GF(2)[X]|/P,,[X] over the base (1,c,...a™'). In this paper,

we use the following irreducible polynomials to construct the Galois Field of size 32 up to 1024.

P[X] =1+X%2+X°

Bs[X] =14 X+ X6

PX] =1+X3+X7 0
B[X] =1+X?+ X3+ X*+ X8

P[X] =1+ X°+X?

PplX] =1+ X*+ X0

A parity check code C of degree d. over GF(¢q)% is a code defined by a set of d. non-null
GF(q) coefficients H = {h;}i=12. 4., With h; = a%. Vector X = (z1,23,...,7q,) of GF(g)%

geen

belongs to the code C if and only if

hlxl + hQCL’Q + ...+ hdcflfdc = 0, (2)

where additions and multiplications are done in GF(g). Since addition in GF is commutative, the
order of the coefficients doesn’t impact the properties of the code. Moreover, multiplying (2) by a

constant factor doesn’t change the equation. In other words, we can always select the coefficients



of a parity check code C so that h; = % verifies h; = a® (or a; = 0) and i < j = a; < a;. In
the sequel, this convention will be used by default.

Since X € C is a vector of GF(q)%, it is possible to determine its binary image to define a
binary code of length (md., m(d. — 1)). The Hamming weight spectrum S[X] of this code is
defined as

S[X) =14 $1X + X7 + S3X° + ..+ Spg X, 3)

where S, is the total number of codewords of Hamming weight n of the code. By convention,
for a given set of coefficients H, S, (H) will denote the value of the n'" coefficient of the
Hamming weight spectrum of the code defined by the set of coefficients /. The computation
of the spectrum can be performed with a complexity of ¢*(d. — 1) + 2q using the recursive
algorithm used to compute the spectrum distance of a convolutional code [6]. The adaptation of
the algorithm is given in Algo. 1. The partial spectrum S, ({)[X], with y € GF(¢), 1 =0,1,2,...d,

represents the spectrum of codewords (x1, zo,...x;) of size [ that verify

!
Z hix; =v. “4)
i=1

Note that when [ = 0, we will assume that S, (0)[X] =1 if y = 0 (empty set is a solution), 0

otherwise (there is no solution).

Moreover, it is possible to attribute also a Hamming Spectrum S*[X] to an element of x €
GF(g). It is the monomial S*[X] = X" ®) where W (z) is the binary Hamming weight of z,
i.e., the number of 1 in the polynomial representation of .

In an Additive White Gaussian Noise (AWGN) channel, it is well known that the performance
is determined first by the Hamming distance of the code (the index d,,;, of the smallest non
null value of S[X], i.e. Sy, # 0 while 0 < i < d;, = S; = 0) and second by the multiplicity

of code word of minimum Hamming distance, i.e., the value Sy, ., .
Theorem 1: Let H be a set of d. coefficients in GF(2")%, then

Si1(H) = 0. ®)

Proof: Let us assume that there exits a vector X solution of (2) with a Hamming binary weight



Data: Initial set of coefficients H
Result: Spectrum S[X]

S:(0)[X] =1 if s =0, 0 otherwise.
for (=1,...d. do

for d € GF(q) do
| Sa(D[X]=0

end

for s € GF(q) do

for x € GF(q) do
d=s+ (hz);
Sa(D[X] += Ss(1 = D[X]S*[X];
end
end
end
SIX] = So(d.)[X]

Algorithm 1: Computation of Hamming weight spectrum associated to a parity check code

of 1. A binary hamming weight implies that there is only one non null value in vector X. Let
us assume that this value is x;. Then (2) reduces to x;h; = 0. Since h; is non null, then this

implies that x; = 0 which is in contradiction with the hypothesis l

Theorem 2: Let H be a set of d. coefficients in GF(2")%, then

de—1 de
Sa(H) = 3" 3 Sul{hi, hy)). (©)
i=1 j=i+1

Proof: The demonstration of theorem 1 implies that a non-null vector X verifying (2) contains
at least two non null GF values. If it contains more than two non-null values, then the binary
Hamming weight will be greater than 2. Thus, binary Hamming weight two implies exactly two
non null coefficients. The total number of codewords of binary Hamming weight two Sy(H) is
thus the summation of the number of codewords of binary Hamming weight two associated to

each distinct couple of coefficients B



Theorem 3: Let H be a set of d. coefficients in GF(2")%, then

Ss(H) = S3(H) — (d. — 3)S5(H) (7)

where the term S%(H) indicates the summation of binary Hamming weight 3 associated to all

possible triplets of non-null coefficients, i.e.,

S§HY = > Ss({hi, hyj, luc}), (8)

1<i<j<k<d.
and the term SS5(H) indicates the summation of binary Hamming weight 3 associated to all

possible couples of non-null coefficients, i.e.,

Ss(H)= > S5({halu}), )

1<a<b<d.

Proof: Let us consider a triplet {h;, h;, hi} of coefficients of a parity check of degree 3. The
set C of triplets (x;, x;, x) verifying x;h; + x;h; + x1hi, = 0 can be partitioned in four different
sets: C7F = (0, z;, 1), C;k = (24,0,24), C}7 = (2, 2;,0) and C*/* = (Tis Tj, ) y£0,2; 40,25 0-
Thus, Ss({hs, hj, hi}) = S3(C7F) + S5(Ci*) + S3(CL7) 4 S5(CF). One can note that Ss(C}7) is
independent of k and is equal to S3({h;, h;}). Moreover, in the computation of S5(H), a given
couple (a,b), a < b appears exactly in d. — 2 triplets. Thus, S3({h,, hy}) contributes (d. — 2)
times in the summation of Si(H). Thus Si(H) — (d.— 2)S5(H) gives the exact enumeration of
weight 3 codewords with 3 non null values, while SS(H) gives the exact enumeration of weight
3 codewords with exactly two non-null terms. According to theorem 1, there is no solution with
exactly one non-null term. Thus, adding those two terms gives the exact number of weight 3

codewords W

Property 1 Let x = o* an element of GF(2™), then W (x) = 1 is equivalent to 0 < a < m.
In others words, the binary representation of x contains exactly one non null value (the binary
Hamming weight of x is equal to 1, or S%[X] = X!)” is equivalent to the property 0 < a < m.
For example, if GF(2?) is defined by P3[X] =1+ X + X3, then o° = (1,0,0), o' = (0,1,0),



a? = (0,0,1) while o = (1,1,0).

.....

m > 2, So(H) = 0 is equivalent to

V’L,] & {1,2, . ..dc}Q,i 7£j = |CLj — CLi|q,1 > m, (10)

where |a|,—; represents min(|al,|¢ — 1 — al).

Proof: Let us first prove the equivalence for a check node of degree d. = 2 with the set of
coefficients {hy, ha}, where hy = a® and hy = a2 and ay > ay. Multiplying the coefficients of
the check node by =% does not change the code, thus, h; can be set to h; = o and hy can be
set to a“; with a = ay — a;. The ¢ — 1 non null solutions of the parity check equation are thus
(2% = bt 28 =aP),b=0,1,...¢—2. In fact, hy 2§ +heal = 2ot +aal = a0+t = (.
For a given b, the Hamming weight of the codeword (z%,2%) is equal to W (2%) + W (x}).
According to property 1, We have W (2%) = 1 equivalent to 0 < a +b mod ¢ — 1 < m or
equivalently

(0<b<m—a)or (¢g—1—a<b<q-1). (11)

Similarly, W (z}) = 1 is equivalent to

0<b<m. (12)

Thus, according to theorem 1, W (z%) + W(ab) = 2 = W(z}) = 1 and W(z}) = 1, or
equivalently, there exists a value of b that satisfies simultaneously (11) and (12). There is a
solution if and only if 0 <m —1—-aorqg—1—a <m — 1. If m > 2, the second inequality
is never fulfilled and the existence of solution is given by a < m — 1. Reciprocally, for m > 2,
if a > m — 1, then W (z}) + W (2%) is always strictly greater than 2. The general case can be

proven by using theorem 2 Wl

Theorem 5: Let us consider a parity check of degree d. over GF(2™). Then, there exits H €
GF(2™)% so that Sy(H) = 0 is equivalent to d. < -



Proof: H = {a° o™, a®", ..., al%~ U™} verifies (10) if and only if (d. — 1)m < ¢—m B

Our objective in this paper is thus to find, for several values of d. and Galois Field GF(2"")
the sets of coefficients that minimize S3(H) with Sy(H) = 0. The design objective can be

formalized as

HP' =arg  min  {S3(H)/Sy(H) = 0}. (13)

HEGF(2m)de

The next sections show the method used to reach this objective.

III. ESTIMATION OF THE COMPLEXITY

It is useful to compute the exact number of configurations to be tested in order to explore all
possible sets of coefficients leading to Sy(H) = 0. To do so, we use a method inspired from the
Pascal’ Triangle method [7].

Let I',,,(p, n) be the set of p-uplet of integer (a(1),a(2),...,a(p)) verifying the following two

constraints

a(i)€{0,1,..n—1},i=1,2...,p (14)

and

a(i+1)—a(i)>m,i=1,2,....,p—1 (15)

The cardinality |I'| of set I" will be denoted as 7 = |I'|. According to this definition, I'¢(2, 8) is
equal to I'4(2,8) = {(0,6),(0,7),(1,7)} and the cardinality of I'(2,8) is 75(2,8) = 3.

Case p = 1: When p = 1, then only constraint (14) can be applied and thus T',,(1,n) =
{0,1,...,n} and 7,,(1,n) = n.

Case p = 2: When p = 2, if n < m, there is no solution, thus T',,(2,n) = 0 and 7,,(2,n) = 0.
If n = m+ 1, there is a unique solution I',,,(2,m + 1) = {(0,m)} and thus ~,,(2,m + 1) = 1.
If n = m + 2, there are 3 possible solutions: I',,(2,m + 1) = {(0,m), (0,m + 1), (1,m + 1)}
and 7,,(2,m + 1) = 3.

If n = m+3, there are 6 elements [',,,(2, m+3). In fact, the elements of I',,,(2, m+2) belongs also



to I',,(2, m+3). The additional elements are the 3 couples (0, m + 2), (1,m + 2) and (2, m + 2).
These 3 couples can be represented by {I',,(1,n —m) || m + 2}, where {I'||z} means the set
obtained by concatenating x on the right to all elements of I'. In other words, I',,(2,m + 3) =

L (2,m+2) UL, (1, n—m)||m + 2}, and thus, 7,,(2,m 4+ 3) = % (2, m +2) + v (1,n —m).
General Case: In the general case, I',,(2,n) = I',,(2,n — 1) U{L',,(1,n —m)||n — 1} and thus

Ym(2,n) = Ym(2,n — 1) + (1, n — m). (16)
In (16), we recognize the structure of the Pascal’s triangle binomial construction, and thus

vm(2,n)=( : ): (n—m+1)(n—m)

n—m+1 2
In the general case, I',,(p, n) and 7,,(p, n) can be determined by a double recursive equation.

7)

First, let us assume that I',,(p/,n’) are known for all couples (p’ < p,n’ € N) and (p,n’ < n).

Then, I',,(p,n) can be generated as

L(p,n) =Thn(p,n—1)U{l(p—1,n—m)||n — 1}. (18)

This equality gives
(P, 1) = Ym (P = 1) +ym(p — Lin —m). (19)

The derivation of the exact value of ~,,(p,n) is out of the scope of this paper. We can

nevertheless derive from the recursion method that

Y1) = > Ym(p— 1,k —m). (20)
k=1

The important point is that the exact number of configurations can be, in practice, determined.
As an example, Tab. I gives the first values of v5(p,n) for p < 5 and n < 22
Let us go back to our initial problem: determine &,,(d.), the number of sets of coefficients

in a check node of degree d. over GF(2™) that gives a minimum Hamming weight 3 for its

0

equivalent binary code. The first coefficient can be always h; = «°, since the multiplication

0 is selected,

of all coefficients by the same constant value doesn’t change the code. Once «
{at, 0 ...;a™ '} and {971 ... @973 @472} are removed in order to respect theorem 4,

1.e., every pair of coefficients of the check node should have their logarithms separated by at
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valueofn | n <5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
p=1 n 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
p=2 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153
p=3 0O 0 0 O 0 0 1 4 10 20 35 56 84 120 165 220 286 364
p=4 0O 0 0 O 0 0 0 0 0 0 0 1 5 15 35 70 126 210
p=5 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 1 6

TABLE I

VALUES OF 75(p, n)

T T T T T
; o] & GF(64)
o o o GF(128)
; o O - GF(256)
o GF(512)
1051 ) 5 [ GF(1024) | |
o
[ o Greedy Search
—~ o
= 10" ; O 1
WE o o =]
5 a
(O Exhaustive Search o
o) o
10° O Q i
[}
o ¢ o
=0
8 o
10° 51 I I I I I I I &
2 6 8 10 12 14 16 18 20

Fig. 1. Number £(d.,m) of sets of coefficients for d. < 20 over GF(64) up to GF(1024)

least m. Thus, there are still p = d.— 1 points to be placed among 2" —1— (2m—1) = 2" —2m

values (see Fig. 2.a)

Em(de) = Ym(de — 1,2™ — 2m). (21)

From (21) and Table I, we deduce that there is exactly &5(4) = ~5(3,22) = 364, i.e., there
is 364 sets of coefficients, with the first one equal to o, that lead to a Hamming distance of
3 for a check node of degree 4 over GF(2" = 32) (coefficients are supposed to be sorted in
increasing order of their logarithm). It is thus easy to generate these 364 solutions in order to
keep the ones leading to the minimum multiplicity of weight 3 codewords (i.e., the minimum
of S3(H)). Fig. 1 shows the number of configurations &,,(d.) for m equal to 6 (GF(64)) to 10
(GF(1024)) and d. varying from 3 to 20.

Note that &(20) = 2.39 x 10?2 (not shown in Fig. 1), which is a far too high number

for an exhaustive search. In this paper, we limit the exhaustive exploration to solution where
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&n(d.) < 10% in order to get the optimal solution. When &,,(d.) > 107, a heuristic search should

be used to find good sets of coefficients.

IV. HEURISTIC SEARCH OF COEFFICIENTS

When the value of &,,(d.) is too high for an exhaustive exploration, a heuristic search should
be used. In this paper, we propose a basic but effective method. It is based on a greedy search
repeated several times, each attempt starting from an initial state taken randomly. Let N, be
the number of attempt, H%* the k" random initial set of coefficients, G(H%*) the final state

obtained when a greedy algorithm is applied on H%*. The final solution H. 3{[ is taken as

H{ = argmin{S5(G(H"*)),k=1...N,}. (22)

Let us describe in more details the method to draw the H%* and the greedy algorithm.

A. Method to generate initial sets of coefficients

The generation of the initial set should be unbiased, i.e., any element of ,,(d.) should have
the same probability P = @ of being chosen. This requirement can be achieved by a step by
step generation process. In the sequel, the index £ is omitted for clarity.

The first element A of HY is always h? = a. Then, the smallest (in the sense of logarithm
over GF) next element is hg = a™ (ay = m) according to theorem 4. In that case, there are still
d. — 2 coefficients to be drawn among 2™ — 3m positions, as shown if Fig. 2.b. The number
of elements is thus 7,,(d. — 2,2™ — 3m) possibilities. If the next chosen element is ay > m,
as shown in 2.c, there is still d. — 2 coefficients to be drawn among 2™ — ay; — 2m, and thus
Ym(de —2,2™ — ay — 2m) possibilities. In order to draw a set of coefficients randomly, we should
have, for the second coefficient:

~ Ym(de — 2,2 — ay — 2m)

Prob(hy = a®?) = : 23
rob(hy =0 = @ L~ am) 2

One should note that the sum of the probability Prob(h9 = a“2) for all values of a, is equal to
1 according to (20). For the third element (and the fourth up to the last one), the same method
can be applied, leading to the general formula to generate the ;™ coefficients a; knowing that

the previous coefficient is a;_1, a; > a;_; 1S given by
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0 2"—1

d.—1 coefficients to select ‘ ‘

|
m—1 2"—2m m—1

0 m
o o
b) I:I ‘ d.—2 coefficients to select ‘ ‘
2m 2"—3m m—1
aO G'a
c) I I ‘ d_—2 coefficients to select ‘ ‘
a*m 2"—a,—2m m—1

I Coefficient D Non available D Free

Fig. 2. TIllustration of the random coefficients selection process.

Prob(h? = oﬂf/hg_1 =% 1) =
’Ym(dc - jv 2" —2m — aj)

. 24
Ym(de — 7+ 1,2™ —2m — a;_4) (24)

To conclude, the generation of uniformly distributed sets of coefficients reduces to a Markov

process where probability of transition at a given stage is given by (24).

B. Proposed greedy algorithm

The initial set of H coefficient is H = HY, then all possible values for the second coefficient
hy verifying hy = a®®, with m < a(2) < a(3) — m are tested. This limited search space
guaranties that Sy(H) = 0 (see Theorem 4). The value of a(2) that minimizes S5 is selected to
generate the new set of coefficients /7. Then the same process is applied on the third coefficient
(with a(2) +m < a(3) < a(4) —m) up to the d** coefficient. The whole process is started again
until no more improvement is obtained. The algorithm is given in details in algorithm 2. Note
that when [ = d., [+ 1 goes back to 1, and thus, a4, —m = —m mod 2™ —1 = 2™ —m. One
should note that many more sophisticated and efficient algorithms can be imagined. Nevertheless,
repeated many times from random initial states, the overall search method is effective.

Fig. 3 shows the histogram of S3(H°) obtained with N = 20,000 draws as well as the best
value found for d. = 6, 8, 10 and 12 over GF(256). In order to evaluate how far is the best found

solution ng compared to the average value of S3(H°), we use the two following metrics
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Data: Initial set of coefficients H° = {a®®},_; 4
Result: Final set of coefficients Hz{

Improved = true;

Sopt = 53(H )§

G(H) = HY

while Improved do
Improved = false;

for (=2,...d.do

H = G(H"),

forb=a(l—1)+m, .., a(l+1) —m do
hl = ab;
S = Sg(H),

if s < s,, then
G(H®)(l) = o’
Sopt = S5
Improved = true;
end

end

end

end

Algorithm 2: Greedy algorithm to compute G(H")

_qf
Ay =M= (25)
03
Ry — 5 100 (in %) (26)
3 — M, 0

where M; and o3 are respectively the mean and the standard deviation of S3(H°) for H°
satisfying So(H) = 0. The first metric A3 measures how far is the found value relatively to the
“gaussian like shape” distribution of S3(H°) while the second metric indicates the relative gain,
in %, compared to the mean value Mj3. Fig. 4 and Fig. 5 show the evolution of A3 and M; for
several values of d. and GF order. One can note that the curves for GF(128) and GF(256) show

smooth variations while curves for GF(512) and GF(1024) show some irregularities. A probable
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Fig. 3. Histogram of S3(H°) and the best value S5” * over GF(256) for several values of check node degree d.

Evolution of Ajasa function of dC

30

—o— GF(128)
—b— GF(256)
GF(512) |]

L (
25 —&— GF(1024)

Fig. 4. Value of As as a function of d. for GF(64) up to GF(1024)

explanation is the inefficiency of the greedy algorithm that requires a lot of time per trial for
those high order Galois Field. In fact, H. g are obtained with 20000 trials up to GF(256), but with
only 100 trials for GF(1024). In other words, there are probably sets of coefficients that lead to
slightly smallest S:{ values for those high order fields. The search for better set of coefficients
for GF(512) and GF(1024) is still open.

Values of HI, M;, o5 and the corresponding set of coefficients are given for GF(64) up to
GF(1024) in annex 1.
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Evolution of F!3 as a function of dC

——C T
—o— GF(128)
—p— GF(256) |4

GF(512)

—*— GF(1024) |

R, (in %)

Fig. 5. Value of M3 as a function of d. for GF(64) up to GF(1024)

V. CONCLUSION

In this paper, we have generalized the method proposed by Pouillat et al. for the determining
the optimal Galois Field coefficients of a Non-Binary LDPC parity check code based on the
binary image of the code. An algorithm with a complexity in (O)(d?) has been proposed to
determine the number S3(H) of codewords of binary Hamming weight 3 of a parity check of
degree d. over GF(qg). The low computational complexity of the algorithm opens exploration
to new regions of the design space, i.e. check node degree d. greater than 4 and high order
Galois Field (up to GF(1024)) by an exhaustive search. A new greedy search algorithm has also
been proposed to find good solutions when the number of sets of coefficients is too high for
an exhaustive search. Tables of sets of coefficients are given for values of d. between 4 and
20 and GF order varying from 64 to 1024. For each set of coefficients, the best found value
SI(H) is compared with the distribution of S3(H) obtained by taking randomly the coefficients
of H. In some cases, S (H) can be at a distance to the mean value of S3(H) greater than 10
times the standard deviation of the distribution. The proposed sets of coefficients can effectively
replace the random selection of coefficients often used in NB-LDPC construction over high order
Galois Field, and thus helps the construction of new generations of NB-LDPC codes with better

decoding performance.
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VI. ANNEX

In the annex, we give the results obtained by the proposed methods in order to help the
construct optimal, or almost optimal, NB parity check codes. Note that multiplying a set of
coefficients does not change the code. For example H = {a', o', a*, a®} over GF(64) gives

the same code as H' = Ha™ = {a®,a%, o™ o'} = {a®, al, o', a®®}. After reordering of

the coefficients, H' is equal to H' = {a', a'3 a?® a"}. Since the parity check generated by

H, H = Ho*, H' = Hao'® and H” = Ha? are all equal, only the set of coefficients that
minimizes the value of ay will be given to represent the equivalent set of coefficients through a
multiplicative factor. When distinct optimal solutions exist for a given configuration of d. and

GF(q), those solutions are enumerated.
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de | 81| Ms o3 Az Rs (%) | GF(64)

4| *20 | 315 33 35 634% | {0,9,22, 37}

521 *51| 650 35 40 784% | {0,6,17,43,52} ; {0,6,32,41,54} ; {0,7,17,43,52} ; {0, 7,18, 43,52}
{0,7,18,44,53} ; {0,7,18,44,52} ; {0,7,32,41,54} ; {0,7,33,41, 54}
{0,7,33,42,54} ; {0,7, 33,42, 55}

6| 100 | 1159 3.6 44 863 % | {0,6,12,19,45,54} ; {0,6,13,19,45,54} ; {0,6,13,20,45, 54}
{0,6,13,20,46,55}

70 *173 | 1879 3.1 48 921 % | {0,6,12,20,27,43,53} ; {0,6,13,21,27,43,53} ; {0,6,13,21,28,43,53}
{0,6,13,21,28,44,53} ; {0,6,13,21, 28,44, 54}

8| *276 | 2833 1.7 40 974 % | {0,6,12,20,27,35,43,53} ; {0,6,13,20,27, 35,43, 53}
{0,6,13,21,27,35,43,53} ; {0,6,13,21, 28, 35,43, 53}
{0,6,13,21,28,36,43,53} ; {0,6,13,21,28, 36,44, 53}
{0,6,13,21,28,36, 44, 54}

9 | *402 | 4068 1.0 50 988 % | {0,6,14,21,27,35,42,48,55} ; {0,6,14,21,27, 35,42, 48,56}

10 | *560 | 560.9 0.2 4.1 99.8% | {0,6,12,18,24,30,37,44,50,56} ; {0,6,12,19,25, 31, 37, 43,49, 55}

{0,6,12,19,25,31,37,43,49, 56}

“This set of coefficients was initially proposed in [3] and [8]

bIn [3], a list of 77 of sets of coefficients are given for d. = 5 over GF(64). In this list, some sets of coefficients have

So(H) > 0. The best proposed one is H = {a*,a”,a®®, a"®} with So(H) = 0 and S3(H) = 57.

TABLE II

LIST OF OPTIMAL COEFFICIENT’S EXPONENTS {d; }i—1,...d, FOR GF(64). THE SYMBOL * INDICATES THAT THE VALUE OF

SJ 1S EQUAL TO S§P".
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de sy Ms o3 Az Rz (%) | GF(128),

4 *4 | 233 57 339  17% | {0,11,84,101} ; {0,12,84,101}

5 20 | 490 7.0 414 41 % | {0,10,21,94,111} ; {0,11,55,84,101}

6 “44 87.8 81 541 50 % | {0,9,21,60,93,112} ; {0,9,21,60,94,112} ; {0,9,21,61,93,112}
7 *92 | 143.0 87 586 64 % | {0,7,24,39,48,60,99}

8| *157 | 2172 89 676  72% | {0,7,16,33,50,59,71,111}

9 | *252| 3131 9.0 679 80 % | {07,19,30,37,53,68,77,89}

10| 370 | 4334 84 755  85% | {0,7,38,45,59,68,75,91,106,115}

11 522 | 5814 77 771 90 % | {0,7,22,30,37,48,55,69,78,89,96}

12| 709 | 7593 65 7794 93 % | {0,7,18,25,39,48,59,66,88,97,104, 118}

13 928 | 969.6 55 756 96 % | {07,17,24,38,48,58,65,72,87,96,103, 117}

14 | 1182 | 12156 42 800 97 % | {0,7,14,29,38,45,55, 62,69, 76, 86,93, 106, 115}

15 | 1473 | 1499.0 3.1 839 98 % | {0,7,18,25,32,39,47,54,61,69,78,89,96,103, 118}

16 | *1813 | 1823.0 1.7 588 99 % | {0,7,17,24,31,38,47,54,61,68,75,82,89,96,103117}

17 | *2190 | 21907 04 175 100 % | {0,7,14,21,28,35,42,49, 56,63, 70, 77,84, 91,98,105, 118}

18 | *2604 | 2604.0 0.0 0.0 100 % | {0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119}

“In [8], the best given sets of coefficients have S3(H) =5

LIST OF OPTIMAL OR OPTIMIZED (Ng = 20,000) SETS OF COEFFICIENT’S EXPONENTS {a; }i=1,...q, FOR GF(128). THE

TABLE 1II

SYMBOL * INDICATES THAT THE VALUE OF SJ IS EQUAL TO S$P*.
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de | S{| Ms o5 As Rs (%) | GF256)
2] 0| 192 63 30 0% | {0,8 172,183} ; {0,8,172,182} ; {0,8, 171, 182}
5| 3| 386 42 85 78% | {0,8,66,172,180}
6| 11| 681 53 107 162% | {0,8,75,83,01,149}
70 20| 1092 63 126 266% | {0,8,76,84,92,131,150}
8| 58| 1645 7.3 145 352% | {0,8,36,75,83, 91,128, 148}
9| 103 2356 82 161 437 % | {0,8,37,76,84,092, 129, 149, 233}
10| 175 | 3247 88 171 539 % | {0,8,16,54,74,139, 158, 178, 187, 214}
11| 264 | 4336 93 182 609 % | {0,8,27,92, 109, 131, 139, 169, 208, 216, 224}
12| 371 | 5649 102 190 657 % | {0,8,27,39,92,109, 132, 140, 169, 208, 216, 224}
13| 522 7200 102 195 722% | {0.8,18,38,46,65, 77, 130, 147, 170, 178, 207, 245}
14| 701 | 9013 101 198 77.8% | {0,8,16,42,82,90,98, 107, 128, 136, 154, 166, 219, 236}
15| 908 | 11103 103 197 81.8% | {0,8,29,37,76,84,92,103, 123, 131, 150, 162, 192, 214, 232}
16 | 1150 | 13498 10.6 193 849 % | {0,8,16,34,42, 79,87, 95, 106, 126, 134, 153, 165, 195, 217, 235}
17 | 1426 | 16213 105 187 880 % | {0,8,45,53,61,69,77,94, 102, 121, 133, 164, 186, 203, 221, 229, 237}
18 | 1737 | 19269 107 178 90.1 % | {0,8,19,27,35,52,60,92, 100, 108, 116, 126, 147, 155, 173, 185, 216,
237}
19 | 2083 | 22685 11.0 168 91.8 % | {0,8,26,39,70,91,109, 117,126, 134, 142, 161, 169, 183, 202, 210, 218
226,236}
20 | 2473 | 26484 151 113 934% | {0,8,22,30,38,52,61,75,93, 101,109, 117, 127, 147, 155, 174, 186,

206, 216, 238}

“The set H = {0, 8,172,183} is also given in [8]. Note that for these 3 sets, S4(H) is minimal and equal to 156.

TABLE 1V

LIST OF OPTIMAL OR OPTIMIZED (/N4 = 20,000) SETS OF COEFFICIENT’S EXPONENTS {ai}izl,”_dc FOR GF(256). THE

SYMBOL * INDICATES THAT THE VALUE OF SJ IS EQUAL TO S5".




20

de S:{ M3 o3 Az R3 (%) | Optimized (Vg = 1,000) coefficient’s exponents {a; }:=1,...q. for GF(512)
6 0| 453 116 39 0% | {0,20,120, 157,390,474}
7 5 73.8 142 4.9 6.7 % | {0,20,74,159, 228,312,366}
8 12| 1118 167 60 108 % | {0,20,74,119,159,228, 312, 366}
9| 40| 161.1 193 63 248 % | {0,14,49,213,288,332,353,411,441}
10 57 2236 219 7.6 255 % | {0,14,64,213,232,332, 354, 372,441,476}
11 94 | 2995 243 84 31.4% | {0,14,173,212,231, 287,331,352, 371,410,440}
12| 119| 3917 266 103 304 % | {0,14,62,212,231, 287,331,353, 372,410, 441, 477}
13 197 5004 29.0 12.6 268 % | {0,13,120,160,180,238,281,303, 322,390,427, 459,474}
14 293 6274 310 139 314 % | {0,9,35,58,115,158,180, 199,237,268, 304, 337, 352,401}
15 338 7753 331 146 37.8 % | {0,12,34,53,91,122,158,179, 191, 205, 255, 365, 404, 424,478}
16 | 481 | 9434 344 176 358 % | {0,12,27,76,113,192,224, 243,299, 343, 364, 384, 422, 437, 453,490}
17 | 611 | 11352 364 180 424 % | {0,11,40,59,117, 148,159, 180, 202, 253, 268, 305, 325, 337, 352, 402, 441}
18 800 | 1350.6 37.7 184 48.6 % | {0,12,34,53,91,106,121, 159,179,191, 205, 261, 294, 346, 363, 403, 422,
479}
19 | 981 | 1592.6 389 252 384 % | {0,10,40,76,97,110, 124,137,161, 174, 207, 282, 322, 341, 397, 428, 441,
462,484}
20 | 1217 | 18912 404 263  43.0 % | {0,9,42,91,108, 148, 167,225, 244, 256, 268, 291, 310, 346, 377, 414, 434,
446,461, 497}

TABLE V

LIST OF OPTIMIZED (N4 = 1000) SETS OF COEFFICIENT’S EXPONENTS {@; }i=1,...q, FOR GF(512).
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d. | 51 Ms o3 As Rs (%) | GF(1024)
70 0] 506 139 36 00% | {0,66,207,591,684,828,955}
8| 5| 767 169 42  65% | {0,22,61,287,478,691,826,878}
9| 11| 1104 196 51 10.0% | {0,23,128,241, 353,471,497, 666,696}
10| 21| 1533 227 58 137 % | {0,22,249,410, 666,730, 845,901,939, 986}
11| 26| 2050 259 69 12.7% | {0,29,163,199,229,450, 554, 649, 808, 847,991}
12| 39| 2675 288 7.9 146 % | {0,24,52,219,258, 321,452, 577,618,793, 818, 955}
13| 68| 3424 317 87 199 % | {0,16,135,181,358,382,519, 586, 610, 638, 724, 845, 908}
14 | 102 | 4286 352 93 238 % | {0,25,144,259,322, 421,518, 546, 618, 675, 810, 859, 953,990}
15 129 | 5288 38.1 105 244 % | {0,24,52,144,219, 258,322,420, 575, 618, 675, 794, 822, 886, 955}
16 | 144 | 645.1 410 122 223 % | {0,24,52,133,219, 258, 321,420, 575, 618, 675, 761, 791, 817,953, 988}
17 | 245 | 7759 439 121 316 % | {0,22,61,125,255, 378,421, 478,597,622, 712, 759, 793, 825, 849, 877, 958}
18 | 298 | 9225 467 134 323 % | {0,14,98,126,155, 198,255, 341, 373, 535, 570, 602, 626, 735, 821, 860, 900,
923}
19 | 432 | 10872 49.8 132 397 % | {0,21,60, 179,204, 243,271, 339, 374,407, 432, 460, 605, 666, 730, 771, 842,
938,981}
20 | 507 | 1270.0 52.8 144  40.0 % | {0,11,59,85,124, 188,235,287, 300, 384, 412, 441, 484, 541, 660, 684, 820,

857,889,913}

TABLE VI

LIST OF OPTIMIZED (Ny4 = 100) SETS OF COEFFICIENT’S EXPONENTS {a; };=1,...d, FOR GF(1024).




