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Local Exponential Stabilization of Semi-Linear Hyperbolic Systems by
Means of a Boundary Feedback Control

Liguo Zhang, Christophe Prieur, and Junfei Qiao

Abstract— This paper investigates the boundary feedback
control for a class of semi-linear hyperbolic partial differential
equations with nonlinear relaxation, which is local Lipschitz
continuous with a stable matrix structure. A sufficient condition
in terms of linear inequalities is developed for the existence of
global Cauchy solutions and the exponential stability by seeking
a balance between the relaxation term and the boundary
condition. These results are illustrated with an application to
the boundary feedback control for a class of hyperbolic Lotka-
Volterra models.

Index Terms— Semi-linear hyperbolic systems, Lotka-
Volterra, Lyapunov function, Boundary feedback control.

I. INTRODUCTION

Boundary feedback control is central for the stabilization
of hyperbolic PDEs (partial differential equations). We are
particularly focused on the influence of source terms on the
design of boundary conditions. This problem has gained sub-
stantial interest since many engineering or physical processes
may be represented by hyperbolic PDEs, such as Saint-
Venant equation for open channels [7], Euler equation for
gas pipes [9], and Aw-Rascle equation for traffic [2].

Some significant contributions have been given in this
field. A general condition using an assumption on the linear
source term to be marginally diagonally stable is proposed
in [6, Theorem 2]. For the linear 2×2 hyperbolic case a less
restrictive sufficient condition is proposed in [3]. Strict Lya-
punov functions can be defined to get input-to-state stability
for time-varying linear hyperbolic PDEs with relaxation as
presented in [14]. Recently, [10] derives a new stabilization
result by exploiting the relaxation structure. A constructed
linear Lyapunov function is presented in [17] for the positive
linear hyperbolic systems. All these works investigate the
boundary contractive conditions as in [4, Theorem 5.4].
However, as mentioned in [13], the source terms may be
beneficial to the stability of hyperbolic PDEs and allow to
construct the non-contractive boundary conditions.

In this paper, we consider a special class of semi-linear
hyperbolic PDEs with nonlinear relaxation. This relaxation
nonlinearity can be seen as a Lotka-Volterra type nonlinear
coupling, as for instance in the models of biological networks
[12], plug flow reactors [1] and Raman amplifiers [8]. The
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first contribution of this paper is the local existence of the
classical solutions even if the nonlinear relaxation is only
local Lipschitz continuous. We prove that the solutions of
the Cauchy problem are bounded in L2-norm. The second
contribution is the linear inequality conditions for the ex-
ponential stability. More precisely, this sufficient condition
depends on the balance between the relaxation term and
the boundary conditions of the semi-linear hyperbolic PDEs.
This is proved by designing the strictly Lyapunov function
with the weighting parameters that are not restricted to be
positive. Numerical computing of the inequality conditions
is discussed by combining the bounded line search and the
polytopic embedding techniques.

Moreover, the boundary feedback control is applied to
stabilize the hyperbolic Lotka-Volterra model in which the
boundary conditions are the power function type. Theoretical
contributions guarantee the exponential convergence of the
semi-linear hyperbolic model, even though under the non-
constructive boundary conditions.

This paper is organized as follows. The class of the semi-
linear hyperbolic systems with the nonlinear relaxation is
given in Section II. In Section III, our main result on the
sufficient condition for the exponential stability is derived.
The global existence of the classical Cauchy solution also
is presented. Numerical computation of the conditions is
discussed in Section IV. Finally, in Section V, the boundary
feedback control of the hyperbolic Lotka-Volterra model is
presented.

Notation. R+, Rn and Rn×n are the set of non-negative
reals, n-order vectors and n-order matrices. A matrix (vector)
A with entries in R+ is called non-negative and is denoted
as A º 0. It is said to be positive, A Â 0, if all entries are
positive. The expression Aº B, indicate the difference A−B
is non-negative. The term non-positive, negative are defined
analogously as ¹ and ≺. λmax(A), ρ(A) stand for the largest
real parts of eigenvalues and the spectral radius of A. Given a
function g : [0,1]→Rn, we define its L∞, L2-norm as ‖g‖L∞ =

supx∈(0,1) |g(x)|, ‖g‖L2 =
√∫ 1

0 |g(x)|2dx, respectively, where
| · | is the Euclidean norm in Rn. We call L2(0,1) the space
of all measurable functions g for which ‖g‖L2 < ∞.

II. SEMI-LINEAR HYPERBOLIC SYSTEMS WITH
NONLINEAR RELAXATION

Consider a class of semi-linear hyperbolic systems with
relaxation

∂tξ +Λ∂xξ = M f (ξ ), t ∈ [0,∞), x ∈ [0,1] (1)



where ξ : [0,1]× [0,∞) → Rn, Λ is a diagonal matrix in
Rn×n such that Λ = diag{λ1,λ2, · · · ,λn}, with λi < 0 for
i ∈ {1, . . . ,m} and λi > 0 for i ∈ {m + 1, . . . ,n}. For the
relaxation term, matrix M ∈ Rn×n and nonlinear function
f (ξ ) = ( f1(ξ1), . . . , fn(ξn))>, where scalar function fi(ξi) is
continuous to ξi, fi(0) = 0, and satisfies ξi fi(ξi) > 0, for all
ξi 6= 0.

We use the notation ξ = [ξ−,ξ +]> with ξ− : [0,1]×
[0,∞) → Rm and ξ + : [0,1]× [0,∞) → Rn−m. In addition,
we consider the following boundary condition

[
ξ−(1, t)
ξ +(0, t)

]
= G

[
ξ−(0, t)
ξ +(1, t)

]
, (2)

where G ∈ Rn×n. Let us introduce the matrices G−− in
Rm×m, G−+ in Rm×(n−m), G+− in R(n−m)×m, and G++ in

R(n−m)×(n−m) such that G =
[

G−− G−+
G+− G++

]
.

We shall consider the initial condition given by

ξ (x,0) = ξ 0(x), x ∈ (0,1), (3)

for a given function ξ 0 ∈ L2(0,1).
Let |Λ| = diag{Λ−,Λ+} with Λ− = diag{|λ1|, · · · , |λm|}

and Λ+ = diag{λm+1, · · · ,λn}, the classical definition of a
solution to the Cauchy problem (1)-(3) in L2(0,1) is

Definition 1: Let ξ 0 ∈ L2(0,1). A map ξ : (0,1)× [0,T ]→
Rn is a solution of the Cauchy problem (1)-(3) if ξ ∈
C0([0,T ];L2(0,1)) such that, for every ϕ = (ϕ>− ,ϕ>+ )> ∈
C1([0,1]× [0,T ];Rn) with compact support and satisfying

[
ϕ−(1, t)
ϕ+(0, t)

]

=
[

(Λ−)−1G>−−Λ− (Λ−)−1G>−+Λ+

(Λ+)−1G>
+−Λ− (Λ+)−1G>

++Λ+

][
ϕ−(0, t)
ϕ+(1, t)

]
,

we have
∫ 1

0
ϕ>(x,T )ξ (x,T )dx−

∫ 1

0
ϕ>(x,0)ξ 0(x)dx

=
∫ T

0

∫ 1

0
[(ϕ>t +ϕ>x Λ)ξ +ϕ>M f (ξ )]dxdt. (4)

The global Lipschitz properties of the nonlinear relaxation
guarantee the well-posedness of the global solution to the
Cauchy problem (1)-(3), i.e, T = ∞. While, if f is only
locally Lipschitz continuous, such as f (ξ ) = eξ or f (ξ ) = ξ p

with p > 1, the solution may blow up in finite time. In this
case, we have the following results (see e.g. [5] for a well-
posedness result on semi-linear hyperbolic systems and [4,
Appendix B] for the quasi-linear case).

Theorem 1: If the nonlinear relaxation f is locally Lip-
schitz continuous, then there exists δ > 0 such that for
every ξ 0 ∈ L2(0,1), satisfying ‖ξ 0‖L2 ≤ δ , there exists T ∈
[0,∞)∪ {∞} and a unique solution ξ of Cauchy problem
(1)-(3) maximally defined for t ∈ [0,T ), such that

ξ ∈C0([0,T );L2(0,1)), (5)

with the property that either T = ∞ or T < ∞ and
limt→T ‖ξ (t)‖L2 = ∞.

From Theorem 1 it follows that the Cauchy problem (1)-
(3) has a unique local solution. Given an initial condition ξ 0,
to prove that the solution to (1)-(3) locally defined on [0,T )
is maximally defined on [0,∞), it is sufficient by Theorem 1,
to prove that supt∈[0,T ) ‖ξ (t)‖L2 is bounded uniformly with
respect to T . This is indeed the case, as soon as G and M
have some stable structures, as proved in the next section.

The definition of the local exponential stability of system
(1)-(3) is as follows.

Definition 2: The steady-state ξ = 0 of system (1)-(3) is
said to be exponentially stable in L2-norm, if there exist ν >
0, C > 0 and δ > 0 such that the solution ξ of the Cauchy
problem (1)-(3) is defined on [0,1]× [0,∞) and satisfies

‖ξ (t)‖2
L2 ≤Ce−νt‖ξ 0‖2

L2 , (6)

for all t ∈ [0,∞) and every initial condition ξ 0 satisfying
‖ξ 0‖L2 ≤ δ .

After the previous result on the local unique solution, a
constructed Lyapunov function is used in the next section to
study both the global existence of the Cauchy problem and
the exponential stability of system (1)-(3).

III. GLOBAL EXISTENCE AND BOUNDARY STABILITY OF
SEMI-LINEAR HYPERBOLIC SYSTEMS

We start this section by giving an assumption on the struc-
ture of the boundary condition matrix and relaxation. Denote
the weighting matrix In(x) = diag

{
e2µxIm,e2µ(1−x)In−m

}
,

µ ∈ R.
Assumption 1: We assume in system (1)-(3), M := (mi j)

is a Metzler matrix and G := (gi j)º 0.
Theorem 2: Suppose the system (1) fulfills Assumption 1.

Let θ = (θ1, . . . ,θn)>, b = (b1, . . . ,bn)> be positive vectors,
i.e. θ Â 0, b Â 0, µ ∈ R be a constant such that, for all
x ∈ (0,1),

(G>− e−µ In)θ ¹ 0, (7)
(G− e−µ In)b¹ 0, (8)

(|Λ|−1M−2µIn)θ ≺ 0, (9)

M>|Λ|−1In(x)b¹ 0, (10)

then the following properties hold:
• [Well-posedness] There exists δ > 0 such that, for

every ξ 0 ∈ L2(0,1) satisfying ‖ξ 0‖L2 ≤ δ , there exists
a unique solution ξ of Cauchy problem (1)-(3) defined
for t ∈ [0,∞), such that

ξ ∈C0([0,∞);L2(0,1)). (11)

• [Exponential stability] The steady-state ξ = 0 is locally
exponentially stable for system (1)-(3), and moreover a
(local) Lyapunov function is given by

V =
∫ 1

0
ξ>|Λ|−1PIn(x)ξ dx, (12)

with

P = diag
{

b1

θ1
,

b2

θ2
, . . . ,

bn

θn

}
. (13)



Proof: Let us remark that V of (12) is a continuous
function of t by (5). In order to prove Theorem 2, pick δ > 0
given by Theorem 1, such that a solution to (1)-(3) exists as
soon as the L2-norm of the initial condition is smaller than
δ .

Part 1: Time-derivative of the Lyapunov function.
Consider a solution ξ of class C1 on [0,1]× [0,T ]. Under

this assumption (that will be relaxed later on) V is of class
C1 in [0,T ] and the first step of the proof is to compute
the following estimation of the time-derivative V̇ along the
solution ξ . It yields the following:

V̇ =
∫ 1

0
[ξ>|Λ|−1PIn(x)∂tξ +∂tξ>|Λ|−1PIn(x)ξ ]dx

=
∫ 1

0
[−ξ>Iλ PIn(x)∂xξ −∂xξ>In(x)PIλ ξ

+ f>(ξ )M>|Λ|−1PIn(x)ξ +ξ>|Λ|−1PIn(x)M f (ξ )]dx

with Iλ = diag{−Im, In−m}. Then, integrating by parts, and
because ∂xIλ PIn(x) =−2µPIn(x), we obtain

V̇ =−
[
ξ>Iλ PIn(x)ξ

]1

0

−2µ
∫ 1

0
ξ>PIn(x)ξ dx+2

∫ 1

0
ξ>|Λ|−1PIn(x)M f (ξ )dx

= ξ>(0, t)Iλ PIn(0)ξ (0, t)−ξ>(1, t)Iλ PIn(1)ξ (1, t)

−2µ
∫ 1

0
ξ>PIn(x)ξ dx+2

∫ 1

0
ξ>|Λ|−1PIn(x)M f (ξ )dx

= V̇1 +V̇2 +V̇3 (14)

with

V̇1 , ξ>(0, t)Iλ PIn(0)ξ (0, t)−ξ>(1, t)Iλ PIn(1)ξ (1, t),

V̇2 ,−2µ
∫ 1

0
ξ>PIn(x)ξ dx,

V̇3 , 2
∫ 1

0
ξ>|Λ|−1PIn(x)M f (ξ )dx.

Under the boundary condition (2), we have

V̇1 =
[

ξ−(0, t)
ξ +(1, t)

]> ([
Im 0

G+− G++

]>
Iλ PIn(0)

[
Im 0

G+− G++

]
−

[
G−− G−+

0 In−m

]>
Iλ PIn(1)

[
G−− G−+

0 In−m

])[
ξ−(0, t)
ξ +(1, t)

]

=
[

ξ−(0, t)
ξ +(1, t)

]> [
Q−− Q−+
Q+− Q++

][
ξ−(0, t)
ξ +(1, t)

]
, (15)

with Q−− = e2µ(G>
+−P+G+−+ G>−−P−G−−)−P−, Q+− =

e2µ(G>
+−P+G++ + G>−−P−G−+), Q−+ = Q>

+−, and Q++ =
e2µ(G>

++P+G++ +G>−+P−G−+)−P+. Here, P∓ contain the
corresponding m and n−m diagonal entries of P, i.e.,P =
diag{P−,P+}.

Denote Q =
[

Q−− Q−+
Q+− Q++

]
, then Q can be rewritten as

Q = (eµ G)>P(eµ G)−P. Multiplying eµ > 0 on one side of
inequalities (7) and (8), we have

(eµ G− In)θ ¹ 0, (eµ G>− In)b¹ 0. (16)

Because eµ G includes non-negative entries, from the Perron-
Frobenius theorem ([16, Theorem 2.4, p.72]), inequalities
(16) are equivalent to the existence of a positive diagonal
matrix P defined as (13), such that matrix Q is semi-definite
negative. Then, it follows that V̇1 ≤ 0.

Let b(x) = In(x)b, for all x ∈ (0,1), using inequalities (9)
and (10), we have ∑n

i=1 mi j|λi|−1bi(x)≤ 0, for all j = 1, . . . ,n,
and ∑n

j=1 mi jθ j ≤ 2µ|λi|θi−νθi, for all i = 1, . . . ,n, with a
sufficient small variable ν > 0, which depends on µ , M and
Λ.

Since M is a Metzler matrix and ξi fi(ξi) > 0, for all ξi 6= 0,
using Jensen inequality, we obtain the estimate

V̇3 = 2
∫ 1

0

n

∑
i, j=1

bi(x)
|λi| θ jmi j

ξi

θi

f j(ξ j)
θ j

dx

≤
∫ 1

0

n

∑
i=1

bi(x)
|λi|

(
ξi

θi

)2 n

∑
j=1

mi jθ jdx

+
∫ 1

0

n

∑
j=1

θ j

(
f j(ξ j)

θ j

)2 n

∑
i=1

mi j
bi(x)
|λi| dx

≤
∫ 1

0

n

∑
i=1

bi(x)
|λi|

(
ξi

θi

)2

(2µ|λi|θi−νθi)dx

≤ 2µ
∫ 1

0

n

∑
i=1

bi(x)
θi

ξ 2
i dx−ν

∫ 1

0

n

∑
i=1

bi(x)
θi

|λi|−1ξ 2
i dx

≤−V̇2−νV. (17)

Finally, it follows from (14), (15) and (17) that the time-
derivative of V satisfies

V̇ ≤−νV. (18)

On the other hand, by remarking the definition of V , there
exist α > 0, β > 0 (depending on P, Λ, and µ) such that

α‖ξ‖2
L2 ≤V (ξ )≤ β‖ξ‖2

L2 . (19)

The remaining part of the proof of Theorem 2 is split into
two parts: 1) the Cauchy problem has a global solution, 2)
the system is locally exponentially stable.

Part 2: Well-posedness proof.
Estimates (18) and (19) are obtained under the assumption

that ξ is of class C1 on [0,1]× [0,T ]. But the selection of α ,
β and ν does not depend on the C1-norm of ξ : they depend
only on the C0([0,T ];L2(0,1))-norm of ξ . Hence, using a
classical density argument (see e.g., [4, Section 2.1.3]), the
estimates (18) and (19) remain valid in the distribution sense
if ξ is only of class C0.

Let ξ ∈C0([0,T );L2(0,1)) be the maximal solution of the
Cauchy problem (1)-(3). Using estimates (18) and (19) for
all t ∈ [0,T ), we get that

‖ξ (·, t)‖2
L2 ≤ α−1βe−νt‖ξ 0‖2

L2 , (20)

as soon as the L2-norm of ξ 0 is less than δ . Then, using
(20) and Theorem 1, we have that T = ∞.

Part 3: Exponential stability proof.
Consequently, if the initial condition ξ 0 has a L2-norm

smaller than δ , then (20) guarantees the global solution ξ



to (1)-(3) stays in a neighborhood (with C0([0,∞);L2(0,1))-
norm), while exponentially converging in L2-norm to the
origin.

This completes the proof of Theorem 2.
Remark 1: Variable µ of inequalities (7)-(9) might be

positive or negative, based on the boundary condition matrix
G is contractive or not, which also explores the central idea
of seeking a balance between the boundary condition and the
relaxation. This is essential for the stability of the semi-linear
hyperbolic systems. ◦

Without a priori Assumption 1, let us deduce a corollary
from the previous result.

To do that, define the auxiliary source matrix M̄ = (m̄il)
with m̄ii = mii and m̄i j = |mi j|, for j 6= i, and boundary
condition matrix Ḡ = (ḡi j) with ḡi j = |gi j| for all i, j =
1, . . . ,n, respectively. Thus, M̄ is a Metzler matrix and Ḡ
is a non-negative matrix.

Corollary 1: If there exist positive vectors θ Â 0, b Â
0, and a constant µ ∈ R, such that the following linear
inequalities hold:

(Ḡ>− e−µ In)θ ¹ 0, (21)
(Ḡ− e−µ In)b¹ 0, (22)

(|Λ|−1M̄−2µIn)θ ≺ 0, (23)

M̄>|Λ|−1In(x)b¹ 0, (24)

for all x ∈ (0,1), then the global Cauchy solutions of (1)-(3)
exist and the steady-state ξ = 0 is exponentially stable for
system (1)-(3).

Proof: Here, we also consider the Lyapunov function
V of (12), besides the time-derivative (14) still holds. Since
the symmetric matrix (eµ G)>P(eµ G)≤ (eµ Ḡ)>P(eµ Ḡ)≤ P
holds, we obtain V̇1 ≤ 0.

On the other hand, linear inequalities (23) and (24)
mean that ∑n

i=1 mi j|λi|−1bi(x)≤∑n
i=1 m̄i j|λi|−1bi(x)≤ 0, and

∑n
j=1 mi jθ j ≤ ∑n

j=1 m̄i jθ j ≤ 2µ|λi|θi − νθi are satisfied, in
which ν > 0 is chosen depending on µ , M̄ and Λ.

Therefore, the conditions (7)-(10) for system (1)-(3) are
deduced from (21)-(24).

This concludes the proof of Corollary 1.

IV. COMPUTATIONAL ASPECTS

Since inequality (10) of Theorem 2 involves the spatial
variable, the number of inequality constraints is infinite. In
this section, we develop some numerically computational
conditions by integrating the bounded line search with the
polytopic embedding.

Four vertical diagonal matrices Ei, i = 1,2,3,4, are de-
fined as E1 = In, E2 = e2µ In,E3 = diag

{
Im,e2µ In−m

}
,E4 =

diag
{

e2µ Im, In−m
}

, respectively.
Proposition 1: If there exists positive vector b Â 0 such

that M>|Λ|−1Eib¹ 0 holds for all i = 1,2,3,4, then inequal-
ity (10) is satisfied for all x ∈ (0,1).

Proof: For all x ∈ [0,1], In(x) lies in the convex hull
formed by the vertical matrices Ei, i = 1,2,3,4. Then matrix
M>|Λ|−1In(x), x∈ (0,1), is embedded in the polytope formed
with four vertical matrices M>|Λ|−1Ei, i = 1,2,3,4. Thus,

the inequality condition (10) of Theorem 2 is satisfied as
M>|Λ|−1Eib¹ 0, for all i = 1,2,3,4.

This concludes the proof of Proposition 1.
We define

µm =
1
2

λmax(|Λ|−1M), (25)

µg = min
i=1,...,n

{− lngii}. (26)

Proposition 2: Let µ ∈ R, inequalities (7)-(10) of Theo-
rem 2 are all satisfied, only if µm < µ ≤ µg.

Proof: Since |Λ|−1M− 2µIn also is a Metzler matrix
and there exists a positive vector θ such that the linear
inequality (9) holds, then matrix |Λ|−1M−2µIn is Hurwitz.
Hence, the inequality µ > 1

2 λmax(|Λ|−1M) is necessary to
satisfy the condition (9) of Theorem 2.

On the other hand, since matrix Gº 0 and vector bÂ 0,
inequality condition (7) holds only if µ ≤ − lngii, for all
i = 1, . . . ,n. Thus, µ ≤mini=1,...,n{− lngii}.

This concludes the proof of Proposition 2.
Proposition 3: If there exist µ ∈ (µm,µg], positive vectors

bÂ 0 and θ Â 0, such that the conditions

(G>− e−µ In)θ ¹ 0, (27)
(G− e−µ In)b¹ 0, (28)

(|Λ|−1M−2µIn)θ ≺ 0, (29)

M>|Λ|−1Eib¹ 0, (30)

hold, for all i = 1,2,3,4, then inequalities (7)-(10) of Theo-
rem 2 are satisfied for all x ∈ (0,1).

Proof: The proof directly follows the results of Propo-
sitions 1 and 2.

Remark 2: Based on the polytopic embedding method,
Proposition 3 provides a numerical algorithm for solving the
infinite-dimensional linear inequalities (7)-(10) by combining
the bounded line search, such as Euler method, with the
linear programming method. ◦

Example 1: Let us consider the matrices

Λ = diag{−1,1},
M =

[ −0.3 0.1
0.1 −0.3

]
,

G =
[

0.1 0.8
0.6 0.4

]
.

In this example inequality (10) is equal to the existence of
b Â 0 such that 1

3 e4µxb1 ≤ e2µ b2 ≤ 3e4µxb1 holds, for all
x∈ (0,1), in which µ ∈ (−0.1,0.9163] is given from (25) and
(26). Let x = 0,1 in the upper and lower bound, respectively,
to form an overlap, we can easily get a feasible solution
b = (1.0011,1.0667)Â 0, such that condition (30) holds. ?

V. APPLICATION TO HYPERBOLIC LOTKA-VOLTERRA
MODELS

Consider a class of hyperbolic cooperative Lotka-Volterra
model

∂twi +λi∂xwi = wi

[
ci +

n

∑
j=1

mi jw j

]
, i = 1, . . . ,n, (31)



where wi(x, t) is the population size of the i-th species, x ∈
[0,1], t ≥ 0. The nonlinear relaxation of system (31) is of the
cooperative Lotka-Volterra type, in which ci is the intrinsic
growth rate of each species, and mi j is interspecific (mi j ≥ 0
as i 6= j) or intraspecific (mi j ≤ 0 as i = j) interaction. We
assume the characteristic speeds λi < 0, for i = 1, . . . ,m, and
λi > 0, for i = m+1, . . . ,n.

For the hyperbolic system (31), there exist global positive
solutions, i.e., w = (w1,w2, . . . ,wn)> Â 0, as the initial con-
ditions are positive, w0(x)Â 0. We further assume that there
exists a positive steady-state w∗ Â 0 for system (31), such
that ci +∑n

j=1 mi jw∗j = 0 holds, for all i = 1, . . . ,n.
Denote yi(x, t) = lnwi(x, t), then (31) can be rewritten as

∂tyi +λi∂xyi = ci +
n

∑
j=1

mi j exp(y j(t)). (32)

Furthermore, let ξi = yi− y∗i , y∗i = lnw∗i , one can obtain the
hyperbolic model

∂tξi +λi∂xξi =
n

∑
j=1

mi j f j(ξ j), (33)

for all i = 1, . . . ,n, where fi : ξi 7→ exp(ξi + lnw∗i )−w∗i .
Then we are going to show how the boundary condition

might be applied to stabilize the hyperbolic Lotka-Volterra
model (31). The candidate boundary feedback strategies are
considered as the power function type depending on the sign
of the characteristic speeds.

For i = 1, . . . ,m,

wi(1, t) = w∗i
m

∏
j=1

(
w j(0, t)

w∗j

)gi j n

∏
j=m+1

(
w j(1, t)

w∗j

)gi j

, (34)

and for i = m+1, . . . ,n,

wi(0, t) = w∗i
m

∏
j=1

(
w j(0, t)

w∗j

)gi j n

∏
j=m+1

(
w j(1, t)

w∗j

)gi j

, (35)

with feedback gains gi j ∈ R, for all i, j = 1, . . . ,n.
Consequently, for the nominal system (33), we have the

corresponding boundary condition as
[

ξ−(1, t)
ξ +(0, t)

]
= G

[
ξ−(0, t)
ξ +(1, t)

]
, (36)

where matrix G = (gi j) ∈ Rn×n.
The boundary feedback control (34)-(35) is now tested

with some numerical simulations to illustrate our theory.
We consider a 2×2 model with two characteristic speeds

λ1 = −3, λ2 = 5, and the model entries as given as c1 =
c2 = 2, m11 =−4, m12 = 1, m21 = 3, m22 =−2. In this case,
the steady-state is obtained by (w∗1,w

∗
2) = (1.2,2.8). Firstly,

a non-dissipative condition matrix is considered as

G =
[

0.2 0.2
0 1.02

]
, (37)

in which ρ(G) = 1.02 > 1. Using (25)-(26), the upper and
lower bounds of µ are computed as µm = −0.1102 and
µg =−0.0198. Solving conditions (27)-(30) of Proposition 3,
we obtain µ = −0.0892 < 0, b = (2.6180,3.4319)> and

θ = (0.8516,2.7451)>. Then, Theorem 2 can guarantee the
local exponential stability of steady-state (1.2,2.8) of the
hyperbolic system (31), (34), and (35).

To numerically compute the solutions of system (31), (34),
and (35), let us discretize them using a two-step variant of the
Lax-Wendroff method in [15]. We select the following initial
deviations w0(x) from the steady-state (w∗1,w

∗
2) = (1.2,2.8)

as {
w1(x,0) = 0.2sin(5πx)+w∗1,
w2(x,0) = 0.2sin(5πx)+w∗2.

Figs. 1 and 2 show the time evolution of components w1 and
w2, respectively. It is observed that w1, w2 both converge to
their steady-state w∗1 = 1.2, w∗2 = 2.8 as time increases, as
expected from Theorem 2.

Fig. 1. The time evolution of the first component w1 of the solution of (31),
(34), and (35) with the feedback gains given by (37) and the steady-state
(w∗1,w

∗
2) = (1.2,2.8).

Fig. 2. The time evolution of the second component w2 of the solution of
(31), (34), and (35) with the feedback gains given by (37) and the steady-
state (w∗1,w

∗
2) = (1.2,2.8).

In the other simulation, we consider a hyperbolic system
with a marginally stable relaxation matrix and a dissipative
boundary condition matrix. In this case, the model entries are
c1 =−2, c2 = 2, m11 =−1, m12 = 1, m21 = 0, and m22 = 0,
then λmax(M) = 0 and (w∗1,w

∗
2) = (2,1) is a steady-state of

system (31). Recalling (25), and since µm = 0, we can choose
a boundary condition matrix as

G =
[

0.2 0.4
0.6 0.2

]
. (38)



Fig. 3. The time evolution of the first component w1 of the solution of (31),
(34), and (35) with the feedback gains given by (38) and the steady-state
(w∗1,w

∗
2) = (2,1).

Fig. 4. The time evolution of the second component w2 of the solution of
(31), (34), and (35) with the feedback gains given by (38) and the steady-
state (w∗1,w

∗
2) = (2,1).

Then, calculating (26), µg = 1.6094. Solving (27)-(30) of
Proposition 3, µ = 0.1912 > 0, b = (0.6768,0.7232)>, θ =
(1.2084,1.0082)>. Hence (w∗1,w

∗
2) = (2,1) is locally ex-

ponentially stable. The time evolutions of both converging
components are depicted in Figs. 3 and 4, respectively.

The above two simulations show an interesting result that
the nonlinear relaxation might be beneficial (as µ < 0) to the
boundary feedback control of the semi-linear hyperbolic sys-
tems, by a stable matrix structure, and the strictly contractive
boundary condition is not necessarily required.

VI. CONCLUSION

This paper is concerned with a class of semi-linear hyper-
bolic PDEs. The global existence of the classical solution is
given and the sufficient conditions are derived for the local
exponential stability as the boundary condition matrix and
the relaxation matrix have the stable structures. The boundary
feedback control is applied to stabilize a class of hyperbolic
Lotka-Volterra model.

Future work will be devoted to the study of hyperbolic
balance laws with a general relaxation, in which the sums-
of-square programming method in [11] can be used for the
numerical computation.
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