
HAL Id: hal-01575501
https://hal.science/hal-01575501v4

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypocoercivity without confinement
Emeric Bouin, Jean Dolbeault, Stéphane Mischler, Clément Mouhot,

Christian Schmeiser

To cite this version:
Emeric Bouin, Jean Dolbeault, Stéphane Mischler, Clément Mouhot, Christian Schmeiser.
Hypocoercivity without confinement. Pure and Applied Analysis, 2020, 2 (2), pp.203-232.
�10.2140/paa.2020.2.203�. �hal-01575501v4�

https://hal.science/hal-01575501v4
https://hal.archives-ouvertes.fr


HYPOCOERCIVITY WITHOUT CONFINEMENT

by

Emeric Bouin, Jean Dolbeault, Stéphane Mischler,

Clément Mouhot & Christian Schmeiser

Abstract. — In this paper, hypocoercivity methods are applied to linear kinetic equa-
tions with mass conservation and without confinement, in order to prove that the
solutions have an algebraic decay rate in the long-time range, which the same as
the rate of the heat equation. Two alternative approaches are developed: an analy-
sis based on decoupled Fourier modes and a direct approach where, instead of the
Poincaré inequality for the Dirichlet form, Nash’s inequality is employed. The first
approach is also used to provide a simple proof of exponential decay to equilibrium
on the flat torus. The results are obtained on a space with exponential weights and
then extended to larger function spaces by a factorization method. The optimality
of the rates is discussed. Algebraic rates of decay on the whole space are improved
when the initial datum has moment cancellations.

1. Introduction

We consider the Cauchy problem

(1) ∂t f +v ·∇x f = L f , f (0, x, v)= f0(x, v)

for a distribution function f (t , x, v), with position variable x ∈R
d , velocity variable

v ∈R
d , and with time t ≥ 0. Concerning the collision operator L, we shall consider

two cases:

(a) Fokker-Planck collision operator:

L f =∇v ·
[

M ∇v

(
M −1 f

)]
,

(b) Scattering collision operator:

L f =
∫

Rd
σ(·, v ′)

(
f (v ′) M (·)− f (·) M (v ′)

)
d v ′ .
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We shall make the following assumptions on the local equilibrium M (v) and on
the scattering rate σ(v, v ′):

∫

Rd
M (v)d v = 1, ∇v

p
M ∈ L2(Rd ) , M ∈C (Rd ) ,(H1)

M = M (|v |) , 0 < M (v)≤ c1e−c2|v | , ∀v ∈R
d , for some c1, c2 > 0.

1≤σ(v, v ′) ≤σ , ∀v, v ′ ∈R
d , for some σ≥ 1.(H2)

∫

Rd

(
σ(v, v ′)−σ(v ′, v)

)
M (v ′)d v ′ = 0, ∀v ∈R

d .(H3)

Before stating our main results, let us list some preliminary observations.
(i) A typical example of a local equilibrium satisfying (H1) is the Gaussian

(2) M (v)=
e− |v|2

2

(2π)d/2
.

(ii) With σ≡ 1, Case (b) includes the relaxation operator L f = Mρ f − f , also known
as the linear BGK operator, with position density defined by

ρ f (t , x) :=
∫

Rd
f (t , x, v)d v .

(iii) Positivity and exponential decay of the local equilibrium are essential for our
approach. The assumption on the gradient and continuity are technical and only
needed for some of our results. Rotational symmetry is not important, but as-
sumed for computational convenience. However the property

∫

Rd
v M (v)d v = 0,

i.e., zero flux in local equilibrium, is essential.
(iv) Since micro-reversibility (or detailed balance), i.e., symmetry of σ, is not re-
quired, Assumption (H3) is needed for mass conservation, i.e.,

∫

Rd
L f d v = 0,

in Case (b). The boundedness away from zero of σ in (H2) guarantees coercivity
of L relative to its nullspace (such bound can always be written σ≥ 1 by scaling).

Since e tL propagates probability densities, i.e., conserves mass and nonnegativ-
ity, L dissipates convex relative entropies, implying in particular

∫

Rd
L f

f

M
d v ≤ 0.

This suggests to use the L2-space with the measure dγ∞ := γ∞d v , where γ∞(v) =
M (v)−1, as a functional analytic framework (the subscript ∞will make sense later).
We shall need the microscopic coercivity property

(H4) −
∫

Rd
f L f dγ∞ ≥λm

∫

Rd

(
f −M ρ f

)2
dγ∞ ,

with some λm > 0. In Case (a) it is equivalent to the Poincaré inequality with
weight M , ∫

Rd
|∇v h|2 M d v ≥λm

∫

Rd

(
h −

∫

Rd
h M d v

)2

M d v ,

for all h = f /M ∈ H1(M d v). It holds as a consequence of the exponential decay
assumption in (H1) (see, e.g., [29, 2]). For the normalized Gaussian (2) the optimal
constant is known to be λm = 1 (see for instance [4] and references therein). In
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Case (b), (H4) means
1

2

Ï

Rd×Rd
σ(v, v ′) M (v) M (v ′)

(
u(v)−u(v ′)

)2
d v ′d v ≥λm

∫

Rd

(
u −ρu M

)2
M d v ,

for all u = f /M ∈ L2(M d v), and it holds with λm = 1 as a consequence of the lower
bound for σ in Assumption (H2).

Although the transport operator does not contribute to entropy dissipation, its
dispersion in the x-direction in combination with the dissipative properties of the
collision operator yields the desired decay results. In order to perform a mode-

by-mode hypocoercivity analysis, we introduce the Fourier representation with re-
spect to x,

f (t , x, v)=
∫

Rd
f̂ (t ,ξ, v)e+i x·ξdµ(ξ) ,

where dµ(ξ) = (2π)−d dξ and dξ is the Lesbesgue measure on R
d . The normaliza-

tion of dµ(ξ) is chosen such that Plancherel’s formula reads
∥∥ f (t , ·, v)

∥∥
L2(dx) =

∥∥ f̂ (t , ·, v)
∥∥

L2(dµ(ξ))

with a straightforward abuse of notations. The Cauchy problem (1) in Fourier
variables is now decoupled in the ξ-direction:

(3) ∂t f̂ + i (v ·ξ) f̂ = L f̂ , f̂ (0,ξ, v)= f̂0(ξ, v) .

Our main results are devoted to hypocoercivity without confinement: when the
variable x is taken in R

d , we assume that there is no potential preventing the run-
away corresponding to |x| → +∞. So far, hypocoercivity results have been ob-
tained either in the compact case corresponding to a bounded domain in x, for
instance T

d , or in the whole Euclidean space with an external potential V such
that the measure e−V d x admits a Poincaré inequality. Usually other technical as-
sumptions are required on V and there are many variants (for instance one can as-
sume a stronger logarithmic Sobolev inequality instead of a Poincaré inequality),
but the common property is that some growth condition on V is assumed and in
particular the measure e−V d x is bounded. Here we consider the case V ≡ 0, which
is obviously a different regime. By replacing the Poincaré inequality by Nash’s in-
equality or using direct estimates in Fourier variables, we adapt the L2 hypoco-
ercivity methods and prove that an appropriate norm of the solution decays at a
rate which is the rate of the heat equation. This observation is compatible with
diffusion limits, which have been a source of inspiration for building Lyapunov
functionals and establishing the L2 hypocoercivity method of [11]. Before stating
any result, we need some notation to implement the factorization method of [16]
and obtain estimates in large functional spaces.

Let us consider the measures

(4) dγk := γk (v)d v where γk (v) =
(
1+|v |2

)k/2
and k > d ,

such that 1/γk ∈ L1(Rd ). The condition k ∈ (d ,∞] then covers the case of weights
with a growth of the order of |v |k , when k is finite, and we denote k =∞ the case
when the weight γ∞ = M−1 grows at least exponentially fast.

Theorem 1. — Assume (H1)–(H4), x ∈ R
d , and k ∈ (d ,∞]. Then there exists a

constant C > 0 such that solutions f of (1) with initial datum f0 ∈ L2(d x dγk )∩
L2(dγk ; L1(d x)) satisfy, for all t ≥ 0,

∥∥ f (t , ·, ·)
∥∥2

L2(dx dγk ) ≤C

∥∥ f0
∥∥2

L2(dx dγk ) +
∥∥ f0

∥∥2
L2(dγk ; L1(dx))

(1+ t )d/2
.
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For the heat equation improved decay rates can be shown by Fourier tech-
niques, if the modes with slowest decay are eliminated from the initial data. The
following two results are in this spirit.

Theorem 2. — Let the assumptions of Theorem 1 hold, and let
Ï

Rd×Rd
f0 d x d v = 0.

Then there exists C > 0 such that solutions f of (1) with initial datum f0 satisfy, for

all t ≥ 0,

∥∥ f (t , ·, ·)
∥∥2

L2(dx dγk ) ≤C

∥∥ f0
∥∥2

L2(dγk+2 ; L1(dx)) +
∥∥ f0

∥∥2
L2(dγk ; L1(|x|dx)) +

∥∥ f0
∥∥2

L2(dx dγk )

(1+ t )d/2+1
,

with k ∈ (d ,∞).

The case of Theorem 2, but with k = ∞, is covered in Theorem 3 under the
stronger assumption that M is a Gaussian. For the formulation of a result cor-
responding to the cancellation of higher order moments, we introduce the set
Rℓ[X ,V ] of polynomials of order at most ℓ in the variables X , V ∈ R

d (the sum of
the degrees in X and in V is at most ℓ). We also need that the kernel of the collision
operator is spanned by a Gaussian function in order to keep polynomial spaces in-
variant. This means that for any P ∈ Rℓ[X ,V ], one has (L−T) (P M ) ∈ Rℓ[X ,V ]M .
Since the transport operator mixes both variables x and v , one needs moments
with respect to both x and v variables.

Theorem 3. — In Case (a), let M be the normalized Gaussian (2). In Case (b),

we assume that σ ≡ 1. Let k ∈ (d ,∞], ℓ ∈ N and assume that the initial datum

f0 ∈ L1(Rd ×R
d ) is such that

(5)
Ï

Rd×Rd
f0(x, v)P(x, v)d x d v = 0

for all P ∈ Rℓ[X ,V ]. Then there exists a constant ck > 0 such that any solution f

of (1) with initial datum f0 satisfies, for all t ≥ 0,

∥∥ f (t , ·, ·)
∥∥2

L2(dx dγk ) ≤ ck

∥∥ f0
∥∥2

L2(dγk+2; L1(dx)) +
∥∥ f0

∥∥2
L2(dγk ; L1(|x|dx)) +

∥∥ f0
∥∥2

L2(dx dγk )

(1+ t )d/2+1+ℓ .

The outline of this paper goes as follows. In Section 2, we slightly strengthen
the abstract hypocoercivity result of [11] by allowing complex Hilbert spaces and by
providing explicit formulas for the coefficients in the decay rate (Proposition 4). In
Corollary 5, this result is applied for fixed ξ to the Fourier transformed problem (3),
where integrals are computed with respect to the measure dγ∞ in the velocity
variable v . Since the frequency ξ can be considered as a parameter, we shall speak
of a mode-by-mode hypocoercivity result. It provides exponential decay, however
with a rate deteriorating as ξ→ 0.

In Section 3, we state a special case (Proposition 6) of the factorization re-
sult of [16] with explicit constants which corresponds to an enlargement of the
space, and also a shrinking result (Proposition 7) which will be useful in Sec-
tion 6.2. By the enlargement result, the estimate corresponding to the exponential
weight γ∞ is extended in Corollary 8 to larger spaces corresponding to the alge-
braic weights γk with k ∈ (d ,∞). As a straightforward consequence, in Section 4,
we recover an exponential convergence rate in the case of the flat torus Td (Corol-
lary 9), and then give a first proof of the algebraic decay rate of Theorem 1 in the
whole space without confinement.
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In Section 5, an hypocoercivity method, where the Poincaré inequality, or the
so-called macroscopic coercivity condition, is replaced by the Nash inequality, pro-
vides an alternative proof of Theorem 1. Such a direct approach is also applica-
ble to problems with non-constant coefficients like scattering operators with x-
dependent scattering rates σ, or Fokker-Planck operators with x-dependent diffu-
sion constants like ∇v ·

(
D(x) M ∇v (M −1 f )

)
.

The improved algebraic decay rates of Theorem 2 and Theorem 3 are obtained
by direct Fourier estimates in Section 6. As we shall see in the Appendix A, the
rates of Theorem 1 are optimal: the decay rate is the rate of the heat equation
on R

d . Our method is consistent with the diffusion limit and provides estimates
which are asymptotically uniform in this regime: see Appendix B. We also check
that the results of Theorem 2 and Theorem 3 are uniform in the diffusive limit in
Appendix B.

We conclude this introduction by a brief review of the literature: On the whole
Euclidean space, we refer to [31] for recent lecture notes on available techniques
for capturing the large time asymptotics of the heat equation. Some of our results
make a clear link with the heat flow seen as the diffusion limit of the kinetic equa-
tion. We also refer to [21] for recent results on the diffusion limit, or overdamped
limit (see Appendix B).

The mode-by-mode analysis is an extension of the hypocoercivity theory of [11],
which has been inspired by [18], but is also close to the Kawashima compensating
function method: see [24] and [15, Chapter 3, Section 3.9]. We also refer to [12]
where the Kawashima approach is applied to a particular case of the scattering
model (b).

The word hypocoercivity was coined by T. Gallay and widely disseminated in the
context of kinetic theory by C. Villani. In [28, 33, 34], the method deals with large
time properties of the solutions by considering a H1-norm (in x and v variables)
and taking into account cross-terms. This is very well explained in [33, Section 3],
but was already present in earlier works like [19]. Hypocoercivity theory is inspired
by and related to the earlier hypoellipticity theory. The latter has a long history
in the context of the kinetic Fokker-Planck equation. One can refer for instance
to [13, 19] and much earlier to Hörmander’s theory [20]. The seed for such an
approach can even be traced back to Kolmogorov’s computation of Green’s kernel
for the kinetic Fokker-Planck equation in [25], which has been reconsidered in [22]
and successfully applied, for instance, to the study of the Vlasov-Poisson-Fokker-
Planck system in [32, 6].

Linear Boltzmann equations and BGK (Bhatnagar-Gross-Krook, see [5]) mod-
els also have a long history: we refer to [9, 8] for key mathematical properties,
and to [28, 18] for first hypocoercivity results. In this paper we will mostly rely
on [10, 11]. However, among more recent contributions, one has to quote [17, 1, 7]
and also an approach based on the Fisher information which has recently been
implemented in [14, 27].

With the exponential weight γ∞ = M −1, Corollary 9 can be obtained directly by
the method of [11]. In this paper we also obtain a result for weights with poly-
nomial growth in the velocity variable based on [16]. For completeness, let us
mention that recently the exponential growth issue was overcome for the Fokker-
Planck case in [23, 26] by a different method. The improved decay rates estab-
lished in Theorem 2 and in Theorem 3 generalize to kinetic models similar results
known for the heat equation, see for instance [26, Remark 3.2 (7)] or [3].
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2. Mode-by-mode hypocoercivity

Let us consider the evolution equation

(6)
dF

d t
+TF = LF ,

where T and L are respectively a general transport operator and a general linear

collision operator. We shall use the abstract approach of [11]. Although the exten-
sion of the method to Hilbert spaces over complex numbers is rather straightfor-
ward, we carry it out here for completeness. For details on the Cauchy problem or,
e.g., on the domains of the operators, we refer to [11]. Notice that we do not ask
that L is a Hermitian operator but simply assume that L∗A= 0.

Proposition 4. — Let L and T be closed unbounded linear operators on the com-

plex Hilbert space (H ,〈·, ·〉) with dense domains D(L) and D(T ). Assume that T is

anti-Hermitian. Let Π be the orthogonal projection onto the null space of L and

define

A :=
(
1+ (TΠ)∗TΠ

)−1(TΠ)∗

where ∗ denotes the adjoint with respect to 〈·, ·〉. We assume that L∗A = 0 and that

there are positive constants λm , λM , and CM exist, such that, for any F ∈ H , the

following properties hold:

⊲ microscopic coercivity:

(A1) − 〈LF,F 〉 ≥λm ‖(1−Π)F‖2, ∀F ∈D(L) ,

⊲ macroscopic coercivity:

(A2) ‖TΠF‖2 ≥λM ‖ΠF‖2, ∀F ∈D(T ) ,

⊲ parabolic macroscopic dynamics:

(A3) ΠTΠF = 0, ∀F ∈D(T ) ,

⊲ bounded auxiliary operators:

(A4) ‖AT(1−Π)F‖+‖ALF‖≤CM ‖(1−Π)F‖, ∀F ∈D(L)∩D(T ) .

Then L−T generates a C0-semigroup and for any t ≥ 0, we have

(7)
∥∥∥e (L−T) t

∥∥∥
2
≤ 3e−λ t where λ=

λM

3(1+λM )
min

{
1,λm ,

λm λM

(1+λM )C 2
M

}
.

Proof. — For some δ> 0 to be determined later, the Lyapunov functional

H[F ] := 1
2 ‖F‖2 +δ Re〈AF,F 〉

is such that d
dt
H[F ] =−D[F ] if F solves (6), with

D[F ] :=−〈LF,F 〉+δ〈ATΠF,F 〉+δ Re〈AT(1−Π)F,F 〉−δ Re〈TAF,F 〉− δ Re〈ALF,F 〉 .

Note that we have used the fact that Re〈AF,LF 〉 = 0 because of the assumption
L
∗
A = 0, and also that 〈ATΠF,F 〉 is real because ATΠ is self-adjoint by construc-

tion. Since the Hermitian operator ATΠ can be interpreted as the application of
the map z 7→ (1+ z)−1 z to (TΠ)∗TΠ and as a consequence of the spectral theo-
rem [30, Theorem VII.2, p. 225], the conditions (A1) and (A2) imply that

−〈LF,F 〉+δ〈ATΠF,F 〉 ≥λm ‖(1−Π)F‖2 +
δλM

1+λM
‖ΠF‖2 .

As in [11, Lemma 1], if G =AF , i.e., G + (TΠ)∗TΠG = (TΠ)∗F , one has

‖AF‖2 +‖TAF‖2 = 〈G ,G + (TΠ)∗TΠG〉 = 〈G , (TΠ)∗F 〉 = 〈TAF, (1−Π)F 〉
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where we have used A = ΠA and ΠTΠ = 0. Using |〈TAF, (1−Π)F 〉| ≤ ‖TAF‖2 +
1
4 ‖(1−Π)F‖2, one gets

(8) ‖AF‖2 ≤
1

4
‖(1−Π)F‖2 ,

which implies that |Re〈AF,F 〉| ≤ ‖AF‖‖F‖≤ 1
2 ‖F‖2 and provides us with the norm

equivalence of H[F ] and ‖F‖2,

(9)
1

2
(1−δ)‖F‖2 ≤H[F ] ≤

1

2
(1+δ)‖F‖2 .

With X :=‖(1−Π)F‖ and Y := ‖ΠF‖, it follows from (A4) that

D[F ]≥ (λm −δ) X 2 +
δλM

1+λM
Y 2 −δCM X Y .

The choice δ= 1
2 min

{
1,λm , λm λM

(1+λM )C 2
M

}
implies that

D[F ]≥
λm

4
X 2 +

δλM

2(1+λM )
Y 2 ≥

1

4
min

{
λm ,

2δλM

1+λM

}
‖F‖2 ≥

2δλM

3(1+λM )
H[F ] .

With λ defined in (7), using δ≤ 1/2 and (1+δ)/(1−δ) ≤ 3, we get

‖F (t )‖2 ≤
2

1−δ
H[F ](t )≤

1+δ

1−δ
e−λ t ‖F (0)‖2 ≤ 3e−λ t ‖F (0)‖2 .

For any fixed ξ ∈R
d , let us apply Proposition 4 to (3) with F = f̂ and

H = L2 (
dγ∞

)
, ‖F‖2 =

∫

Rd
|F |2 dγ∞ , ΠF = M

∫

Rd
F d v = M ρF , TF = i (v ·ξ)F .

Here we are in a mode-by-mode framework in which the transport operator T is a
simple multiplication operator.

Corollary 5. — Assume (H1)–(H4), and take ξ ∈ R
d . If f̂ is a solution of (3) such

that f̂0(ξ, ·) ∈ L2(dγ∞), then for any t ≥ 0, we have
∥∥ f̂ (t ,ξ, ·)

∥∥2
L2(dγ∞) ≤ 3e−µξ t

∥∥ f̂0(ξ, ·)
∥∥2

L2(dγ∞) ,

where

(10) µξ :=
Λ |ξ|2

1+|ξ|2
and Λ=

1

3
min

{
1,Θ

}
min

{
1,

λm Θ
2

K +Θκ2

}
,

with

(11) Θ :=
∫

Rd
(v ·e)2 M (v)d v , K :=

∫

Rd
(v ·e)4 M (v)d v , θ :=

4

d

∫

Rd

∣∣∣∇v

p
M

∣∣∣
2

d v ,

for an arbitrary e∈S
d−1, and with κ=

p
θ in Case (a) and κ= 2σ

p
Θ in Case (b).

Proof. — We check that the assumptions of Proposition 4 are satisfied with F = f̂ .
The property L

∗
A = 0 is a consequence of the mass conservation

∫
Rd L f d v = 0

because ΠA = A. Assumption (H4) implies (A1). Concerning the macroscopic
coercivity (A2), since

TΠF = i (v ·ξ)ρF M ,

one has

‖TΠF‖2 = |ρF |2
∫

Rd
|v ·ξ|2 M (v)d v =Θ |ξ|2 |ρF |2 =Θ |ξ|2 ‖ΠF‖2 ,

and thus (A2) holds with λM =Θ |ξ|2. By assumption M (v) depends only on |v |, so
it is unbiased:

∫
Rd v M (v)d v = 0, which means that (A3) holds.
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Let us now prove (A4). Since (TΠ)∗F = −ΠTF = − i (ξ ·
∫
Rd v ′F (v ′)d v ′) M , we

obtain that
(
1+ (TΠ)∗TΠ

)
ρ M =

(
1+

∫

Rd

(
ξ ·v ′)2

M (v ′)d v ′
)
ρ M =

(
1+Θ |ξ|2

)
ρ M

and the operator A, defined in Proposition 4, is given mode-by-mode by

AF =
− i ξ ·

∫
Rd v ′ F (v ′)d v ′

1+Θ |ξ|2
M .

As a consequence, A satisfies the estimate

‖AF‖= ‖A(1−Π)F‖≤
1

1+Θ |ξ|2

∫

Rd

|(1−Π)F |
p

M
|v ·ξ|

p
M d v

≤
‖(1−Π)F‖
1+Θ |ξ|2

(∫

Rd
(v ·ξ)2 M d v

)1/2

=
p
Θ |ξ|

1+Θ |ξ|2
‖(1−Π)F‖ .

In Case (b) the collision operator L is obviously bounded:

‖LF‖ ≤ 2σ ‖(1−Π)F‖
and, as a consequence,

‖ALF‖≤
2σ

p
Θ |ξ|

1+Θ |ξ|2
‖(1−Π)F‖ .

We also notice that L∗A = 0 according to (H3). For estimating AL in Case (a), we
note that ∫

Rd
v LF d v = 2

∫

Rd
∇v

p
M

F
p

M
d v

and obtain as above that

‖ALF‖≤
2

1+Θ |ξ|2

∫

Rd

|(1−Π)F |
p

M

∣∣∣ξ ·∇v

p
M

∣∣∣ d v ≤
p
θ |ξ|

1+Θ |ξ|2
‖(1−Π)F‖ .

For both cases we finally obtain

‖ALF‖≤
κ |ξ|

1+Θ |ξ|2
‖(1−Π)F‖ .

Similarly we can estimate AT(1−Π)F =
∫
Rd (v ′·ξ)2(1−Π)F (v ′)dv ′

1+Θ |ξ|2 M by

‖AT(1−Π)F‖=

∣∣∣
∫
Rd

(
v ′ ·ξ

)2
(1−Π)F (v ′)d v ′

∣∣∣
1+Θ |ξ|2

≤

(∫
Rd

(
v ′ ·ξ

)4
M (v ′)d v ′

)1/2

1+Θ |ξ|2
‖(1−Π)F‖=

p
K |ξ|2

1+Θ |ξ|2
‖(1−Π)F‖ ,

meaning that we have proven (A4) with CM = κ |ξ|+
p

K |ξ|2
1+Θ |ξ|2 .

With the elementary estimates

Θ |ξ|2

1+Θ |ξ|2
≥ min

{
1,Θ

} |ξ|2

1+|ξ|2
and

λM

(1+λM )C 2
M

=
Θ

(
1+Θ |ξ|2

)
(
κ+

p
K |ξ|

)2
≥

Θ
2

K +Θκ2
,

the proof is completed using (7).
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3. Enlarging and shrinking spaces by factorization

Square integrability against the inverse of the local equilibrium M is a rather re-
strictive assumption on the initial datum. In this section it will be relaxed with the
help of the abstract factorization method of [16] in a simple case (factorization of
order 1). Here we state the result and sketch a proof in a special case, for the con-
venience of the reader. We shall then give a result based on similar computations
in the opposite direction: how to establish a rate in a stronger norm, which corre-
spond to a shrinking of the functional space. We will conclude with an application
to the problem studied in Corollary 5. Let us start by enlarging the space.

Proposition 6. — Let B1, B2 be Banach spaces and let B2 be continuously imbed-

ded in B1, i.e., ‖ · ‖1 ≤ c1‖ · ‖2. Let B and A+B be the generators of the strongly

continuous semigroups eB t and e (A+B) t on B1. Assume that there are positive con-

stants c2, c3, c4, λ1 and λ2 such that, for all t ≥ 0,
∥∥∥e (A+B) t

∥∥∥
2→2

≤ c2 e−λ2 t ,
∥∥∥eBt

∥∥∥
1→1

≤ c3 e−λ1 t , ‖A‖1→2 ≤ c4 ,

where ‖ · ‖i→ j denotes the operator norm for linear mappings from Bi to B j . Then

there exists a positive constant C =C (c1,c2,c3,c4) such that, for all t ≥ 0,

∥∥∥e (A+B) t
∥∥∥

1→1
≤

{
C

(
1+|λ1 −λ2|−1

)
e−min{λ1,λ2} t for λ1 6=λ2 ,

C (1+ t )e−λ1 t for λ1 =λ2 .

Proof. — Integrating the identity d
ds

(
e (A+B) s eB (t−s)

)
= e (A+B) s

AeB (t−s) with re-
spect to s ∈ [0, t ] gives

e (A+B) t = eB t +
∫t

0
e (A+B) s

AeB (t−s) d s .

The proof is completed by the straightforward computation

‖e (A+B) t‖1→1 ≤ c3 e−λ1 t +c1

∫t

0
‖e (A+B) s

AeB (t−s)‖1→2 d s

≤ c3 e−λ1 t +c1 c2 c3 c4 e−λ1 t

∫t

0
e (λ1−λ2) s d s .

The second statement of this section is devoted to a result on the shrinking of
the functional space. It is based on a computation which is similar to the one of
the proof of Proposition 6.

Proposition 7. — Let B1, B2 be Banach spaces and let B2 be continuously imbed-

ded in B1, i.e., ‖ · ‖1 ≤ c1‖ · ‖2. Let B and A+B be the generators of the strongly

continuous semigroups eB t and e (A+B) t on B1. Assume that there are positive con-

stants c2, c3, c4, λ1 and λ2 such that, for all t ≥ 0,
∥∥∥e (A+B) t

∥∥∥
1→1

≤ c2 e−λ1 t ,
∥∥∥eBt

∥∥∥
2→2

≤ c3 e−λ2 t , ‖A‖1→2 ≤ c4 ,

where ‖ · ‖i→ j denotes the operator norm for linear mappings from Bi to B j . Then

there exists a positive constant C =C (c1,c2,c3,c4) such that, for all t ≥ 0,

∥∥∥e (A+B) t
∥∥∥

2→2
≤

{
C

(
1+|λ2 −λ1|−1

)
e−min{λ2,λ1} t for λ2 6=λ1 ,

C (1+ t )e−λ1 t for λ1 =λ2 .
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Proof. — Integrating the identity d
ds

(
eB (t−s)e (A+B) s

)
= eB (t−s)

Ae (A+B) s with re-
spect to s ∈ [0, t ] gives

e (A+B) t = eB t +
∫t

0
eB (t−s)

Ae (A+B) s d s .

The proof is completed by the straightforward computation

‖e (A+B) t‖2→2 ≤ c3 e−λ2 t +
∫t

0
‖eB (t−s)

Ae (A+B) s‖2→2 d s

≤ c3 e−λ2 t +c1

∫t

0
‖eB (t−s)

Ae (A+B) s‖1→2 d s

≤ c3 e−λ2 t +c1

∫t

0
‖eB (t−s)‖2→2‖A‖1→2 ‖e (A+B) s‖1→1 d s

≤ c3 e−λ2 t +c1 c2 c3 c4 e−λ2 t

∫t

0
e (λ2−λ1) s d s .

We will use Proposition 7 in Section 6.2. Coming back to the problem studied in
Corollary 5, Proposition 6 applies to (3) with the spaces B1 = L2(dγk ), k ∈ (d ,∞),
and B2 = L2(dγ∞) corresponding to the weights defined by (4). The exponential
growth of γ∞ guarantees that B2 is continuously imbedded in B1.

Corollary 8. — Assume (H1)–(H4), k ∈ (d ,∞], and ξ ∈ R
d . Then there exists a

constant C > 0, such that solutions f̂ of (3) with initial datum f̂0(ξ, ·) ∈ L2(dγk )
satisfy, with µξ given by (10),

∥∥ f̂ (t ,ξ, ·)
∥∥2

L2(dγk ) ≤C e−µξ t
∥∥ f̂0(ξ, ·)

∥∥2
L2(dγk ) ∀ t ≥ 0.

Proof. — In Case (a), let us define A and B by AF = N χR F and BF =− i (v ·ξ)F +
LF −AF , where N and R are two positive constants, χ is a smooth function such
that 1B1 ≤ χ≤ 1B2 , and χR := χ(·/R). Here Br is the centered ball of radius r . It has
been established in [26, Lemma 3.8] that if k > d , then the inequality

∫

Rd
(L−A)(F )F dγk ≤−λ1

∫

Rd
F 2 dγk

holds for some λ1 > 0. Moreover, λ1 can be chosen arbitrarily large for R and N

large enough. The boundedness of A : B1 →B2 follows from the compactness of
the support of χ and Proposition 6 applies with λ2 = µξ/2 ≤ 1/4, where µξ is given
by (10).

In Case (b), we consider A and B such that

AF (v) = M (v)
∫

Rd
σ(v, v ′)F (v ′)d v ′ ,

BF (v) = −
[

i (v ·ξ) +
∫

Rd
σ(v, v ′) M (v ′)d v ′

]
F (v) .

The boundedness of A : B1 →B2 follows from (H2) and

‖AF‖L2(dγ∞) ≤σ‖F‖L1(dv) ≤σ

(∫

Rd
γ−1

k d v

)1/2

‖F‖L2(dγk ) .

Proposition 6 applies with λ2 =
µξ

2 ≤ 1
4 andλ1 = 1 because

∫
Rd σ(v, v ′) M (v ′)d v ′ ≥ 1.
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4. Asymptotic behavior based on mode-by-mode estimates

In this section we consider (1) and use the estimates of Corollary 5 with weight
γ∞ = 1/M and Corollary 8 for weights with O(|v |k ) growth to get decay rates with
respect to t . We shall consider two cases for the spatial variable x. In Section 4.1,
we assume that x ∈ T

d , where T
d is the flat d-dimensional torus (represented

by [0,2π)d with periodic boundary conditions) and prove an exponential conver-
gence rate. In Section 4.2, we assume that x ∈ R

d and establish algebraic decay
rates.

4.1. Exponential convergence to equilibrium in T
d . — In the periodic case x ∈

T
d there is a unique non-zero normalized equilibrium given by

f∞(x, v)= ρ∞ M (v) with ρ∞ =
1

|Td |

Ï

Td×Rd
f0 d x d v .

Corollary 9. — Assume (H1)–(H4) and k ∈ (d ,∞]. Then there exists a constant

C > 0, such that the solution f of (1) on T
d ×R

d with initial datum f0 ∈ L2(d x dγk)
satisfies, with Λ given by (10),

∥∥ f (t , ·, ·)− f∞
∥∥

L2(dx dγk ) ≤C
∥∥ f0 − f∞

∥∥
L2(dx dγk ) e−Λ t

4 ∀ t ≥ 0.

Proof. — We represent the flat torus T
d by [0,2π)d with periodic boundary con-

ditions, and the Fourier variable is denoted ξ ∈ Z
d . For ξ = 0, the microscopic

coercivity (see Section 2) implies
∥∥ f̂ (t ,0, ·)− f̂∞(0, ·)

∥∥
L2(dγ∞) ≤

∥∥ f̂0(0, ·)− f̂∞(0, ·)
∥∥

L2(dγ∞) e−t .

For all other modes, f̂∞(ξ, ·) = 0 for any ξ 6= 0 (that is, for any ξ such that |ξ| ≥ 1).
We can use Corollary 5 with µξ ≥Λ/2, with the notations of (10). An application of
Parseval’s identity then proves the result for k =∞, and C =

p
3. If k is finite, the

result with the weight γk follows from Corollary 8.

Note that the latter result can also alternatively be proved by directly applying
Proposition 4 to (1), as in [11].

4.2. Algebraic decay rates in R
d . — With the result of Corollary 5 and Corollary 8

we obtain a first proof of Theorem 1 as follows. Let C > 0 be a generic constant
which is going to change from line to line. Plancherel’s formula implies

∥∥ f (t , ·, ·)
∥∥2

L2(dx dγk ) ≤C

∫

Rd

(∫

Rd
e−µξ t

∣∣ f̂0
∣∣2

dξ

)
dγk .

We know that
∫
|ξ|≤1 e−µξ t dξ≤

∫
Rd e−Λ

2 |ξ|2 t dξ=
( 2π
Λ t

)d/2 and thus, for all v ∈R
d ,

∫

|ξ|≤1
e−µξ t

∣∣ f̂0
∣∣2

dξ≤C
∥∥ f0(·, v)

∥∥2
L1(dx)

∫

Rd
e− Λ

2 |ξ|2 t dξ≤C
∥∥ f0(·, v)

∥∥2
L1(dx) t−

d
2 .

Using the fact that µξ ≥Λ/2 when |ξ| ≥ 1 and Plancherel’s formula, we know that,
for all v ∈R

d , ∫

|ξ|>1
e−µξ t

∣∣ f̂0
∣∣2

dξ≤C e−Λ

2 t
∥∥ f0(·, v)

∥∥2
L2(dx) ,

which completes a first proof of Theorem 1.
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5. Hypocoercivity and the Nash inequality

In view of the proof of Theorem 1 in Section 4.2 and of the rate, it is natural to
wonder if the hypocoercivity can be controlled by the use of Nash’s inequality. Here
we temporarily abandon the Fourier variable ξ and consider the direct variable
x ∈ R

d : throughout this section, the transport operator on the position space is
defined as

T f = v ·∇x f .

We rely on the abstract setting of Section 2, applied to (1) with the scalar product
〈·, ·〉 on L2(d x dγ∞) and the induced norm ‖ ·‖. Notice that this norm includes the
x variable, which was not the case in the mode-by-mode analysis of Section 2. It is
then easy to check that (TΠ) f = MTρ f = v ·∇xρ f M , (TΠ)∗ f =−∇x ·

(∫
Rd v f d v

)
M

and (TΠ)∗(TΠ) f =−Θ∆xρ f M so that

g =A f =
(
1+ (TΠ)∗TΠ

)−1(TΠ)∗ f ⇐⇒ g = u M

where u−Θ∆u =−∇x ·
(∫

Rd v f d v
)
. Since M is unbiased, A f =A(1−Π) f . For some

δ> 0 to be chosen later, we redefine the entropy by H[ f ] := 1
2 ‖ f ‖2 +δ〈A f , f 〉.

Proof of Theorem 1. — If f solves (1), the time derivative of H[ f (t , ·, ·)] is given by

(12)
d

d t
H[ f ] =−D[ f ]

where, as in the proof of Proposition 4,

D[ f ] :=−〈L f , f 〉+δ〈ATΠ f , f 〉+δ Re〈AT(1−Π) f , f 〉−δ Re〈TA f , f 〉−δ Re〈ALf , f 〉 .

Here we use the fact that 〈A f ,L f 〉 = 0. The first term in D[ f ] satisfies the micro-
scopic coercivity condition

−〈L f , f 〉 ≥λm ‖(1−Π) f ‖2 .

The second term in (12) is computed as follows. Solving g =ATΠ f is equivalent to
solving (1+ (TΠ)∗TΠ) g = (TΠ)∗TΠ f , i.e.,

(13) v f − Θ∆x v f =−Θ∆xρ f ,

where g = v f M . Hence

〈ATΠ f , f 〉 =
∫

Rd
v f ρ f d x .

A direct application of the hypocoercivity approach of [11] to the whole space
problem fails by lack of a macroscopic coercivity condition. Although the second
term in (12) is not coercive, we observe that the last three terms in (12) can still be
dominated by the first two for δ> 0, small enough, as follows.
1) As in [11], we use the adjoint operators to compute

〈AT(1−Π) f , f 〉 =−〈(1−Π) f ,TA∗ f 〉 .

We observe that

A
∗ f =TΠ

(
1+ (TΠ)∗TΠ

)−1
f =T

(
1+ (TΠ)∗TΠ

)−1
Π f = M Tu f = v M ·∇x u f

where u f is the solution in H1(d x) of

(14) u f − Θ∆x u f =ρ f .

With K defined by (11), we obtain that
∥∥TA∗ f

∥∥2 ≤K
∥∥∇2

x u f

∥∥2
L2(dx) = K

∥∥∆x u f

∥∥2
L2(dx) .
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On the other hand, we observe that v f = −Θ∆u f solves (13). Hence by multiply-
ing (14) by v f =−Θ∆u f and integrating by parts, we know that

(15) Θ
∥∥∇x u f

∥∥2
L2(dx) + Θ

2
∥∥∆x u f

∥∥2
L2(dx) =

∫

Rd
v f ρ f d x = 〈ATΠ f , f 〉 .

Notice that a central feature of our method is the fact that quantities of interest
involving the operator A can be computed by solving an elliptic equation (for in-
stance (13) in case of ATΠ f or (14) in case of A∗ f ). Altogether we obtain that

|〈AT(1−Π) f , f 〉| ≤ ‖(1−Π) f ‖‖TA∗ f ‖≤
p

K

Θ
‖(1−Π) f ‖〈ATΠ f , f 〉1/2 .

2) By (8), we have
∣∣〈TA f , f 〉

∣∣=
∣∣〈TA(1−Π) f , (1−Π) f 〉

∣∣≤‖(1−Π) f ‖2 .

3) It remains to estimate the last term on the right hand side of (12). Let us consider
the solution u f of (14). If we multiply (13) by u f and integrate, we observe that

Θ
∥∥∇x u f

∥∥2
L2(dx) =

∫

Rd
u f v f d x ≤

∫

Rd
u f v f d x +

∫

Rd
|v f |2 d x =

∫

Rd
v f ρ f d x

because v f =−Θ∆u f , so that

‖A∗ f ‖2 =Θ
∥∥∇x u f

∥∥2
L2(dx) ≤ 〈ATΠ f , f 〉 .

In Case (a), we compute

〈AL f , f 〉 = 〈L(1−Π) f ,A∗ f 〉 =
Ï

Rd×Rd
∇x u f ·

∇v M

M
(1−Π) f d x d v .

It follows from the Cauchy-Schwarz inequality that
∫

Rd
|∇v M | |(1−Π) f |dγ∞ ≤‖∇v M‖L2(dγ∞)‖(1−Π) f ‖L2(dγ∞)

=
p

d θ‖(1−Π) f ‖L2(dγ∞)

and

|〈AL f , f 〉| ≤
∥∥∇x u f

∥∥
L2(dx)

(∫

Rd

(
1

d

∫

Rd
|∇v M | |(1−Π) f |dγ

)2

d x

) 1
2

.

Altogether, we obtain that

|〈AL f , f 〉| ≤

√
θ

Θ
‖(1−Π) f ‖〈ATΠf , f 〉

1
2 .

In Case (b), we use (H2) to get that

|〈AL f , f 〉| ≤ ‖L f ‖‖A∗ f ‖ ≤ 2σ‖(1−Π) f ‖‖A∗ f ‖≤ 2σ‖(1−Π) f ‖〈ATΠf , f 〉
1
2 .

In both cases, (a) and (b), the estimate can be written as

|〈ALf , f 〉| ≤ 2σ‖(1−Π) f ‖〈ATΠ f , f 〉
1
2

with the convention that σ= 1
2

p
θ/Θ in Case (a).

Summarizing, we know that

−
d

d t
H[ f ] ≥ (λm −δ) X 2 +δY 2 +2δbX Y

with X := ‖(1−Π) f ‖, Y := 〈ATΠ f , f 〉1/2 and b := K
2Θ +2σ. The largest a > 0 such

that
(λm −δ) X 2 +δY 2 +2δbX Y ≥ a

(
X 2 +2Y 2)
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holds for any X , Y ∈R is given by the conditions

(16) a<λm −δ , 2a<δ , δ2
b

2 − (λm −δ−a)(δ−2a) ≤ 0

and it is easy to check that there exists a positive solution if δ> 0 is small enough.
To fulfill the additional constraint δ< 1, we can for instance choose

δ=
4 min{1,λm}

8b2 +5
and a=

δ

4
.

Altogether we obtain that

−
d

d t
H[ f ] ≥ a

(
‖(1−Π) f ‖2 +2〈ATΠ f , f 〉

)
.

Using (14) and (15), we control ‖Π f ‖2 =‖ρ f ‖2
L2(dx)

by 〈ATΠ f , f 〉 according to

∥∥Π f
∥∥2 =

∥∥u f

∥∥2
L2(dx) +2Θ

∥∥∇x u f

∥∥2
L2(dx) +Θ

2
∥∥∆x u f

∥∥2
L2(dx)

≤
∥∥u f

∥∥2
L2(dx) +2〈ATΠ f , f 〉 .

We observe that, for any t ≥ 0,
∥∥u f (t , ·)

∥∥
L1(dx) =

∥∥ρ f (t , ·)
∥∥

L1(dx) =
∥∥ f0

∥∥
L1(dx dv) ,

∥∥∇x u f

∥∥2
L2(dx) ≤

1

Θ
〈ATΠ f , f 〉 .

According to [29], we recall the Nash inequality

(17) ‖u‖2
L2(dx) ≤CNash‖u‖

4
d+2

L1(dx)
‖∇u‖

2d
d+2

L2(dx)

for any function u ∈ L1 ∩H1(Rd ). We use (17) with u =u f to get

‖Π f ‖2 ≤Φ
−1(2〈ATΠ f , f 〉

)
with Φ

−1(y) := y +
( y

c

) d
d+2 ∀ y ≥ 0

where c= 2ΘC
−1− 2

d

Nash ‖ f0‖
− 4

d

L1(dx dv)
. The function Φ : [0,∞) → [0,∞) satisfiesΦ(0) = 0

and 0 <Φ
′ < 1, so that

‖(1−Π) f ‖2 +2〈ATΠ f , f 〉 ≥Φ(‖ f ‖2) ≥Φ
( 2

1+δH[ f ]
)

where the last inequality holds as a consequence of (9). From

z =Φ
−1(y)= y +

( y

c

) d
d+2 ≤ y

2
d+2
0 y

d
d+2 +

( y

c

) d
d+2 =

(
y

2
d+2
0 +c

− d
d+2

)
y

d
d+2 ,

as long as y ≤ y0, for y0 to be chosen later, we have

y =Φ(z) ≥
(
Φ(z0)

2
d+2 +c

− d
d+2

)− d+2
d

z1+ 2
d ,

as long as z ≤ z0 := Φ
−1(y0). Since d

dt
H[ f ] ≤ 0, we have 2

1+δH[ f ] ≤ 2
1+δH[ f0]. We

thus apply the previous inequalities with z0 = 2
1+δH[ f0] together with the fact that

Φ(z0) ≥ z0 ≥ 1−δ
1+δ ‖ f0‖2 and that c is proportional to ‖ f0‖−4/d

L1(dx dv)
, to get

Φ
( 2

1+δH[ f ]
)
&

(
‖ f0‖

4
d+2

L2(dx dγ∞) +‖ f0‖
4

d+2

L1(dx dv)

)− d+2
d

H[ f ]1+ 2
d .

We deduce the entropy decay inequality

(18) −
d

d t
H[ f ]&

(
‖ f0‖

4
d+2

L2(dx dγ∞) +‖ f0‖
4

d+2

L1(dx dv)

)− d+2
d

H[ f ]1+ 2
d .

A simple integration from 0 to t shows that

H[ f ].
[
H[ f0]−

2
d +

(
‖ f0‖

4
d+2

L2(dx dγ∞)+‖ f0‖
4

d+2

L1(dx dv)

)− d+2
d

t
]− d

2
.
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The result of Theorem 1 then follows from elementary considerations.

Using moments instead of the mass, it is possible to state an improved Nash

inequality: there exists a positive constant C⋆ such that

‖u‖2
L2(dx) ≤C⋆‖x u‖

4
d+4

L1(dx)
‖∇u‖

d+2
d+4

L2(dx)

for any u ∈ H1(d x)∩L1 ((1+|x|)d x) such that
∫
Rd u d x = 0. The proof follows from

a minor modification of Nash’s original proof (attributed by Nash himself to Stein)
in [29] and uses Fourier variables. As a consequence, any solution of the heat
equation with zero average decays in L2(d x) like O

(
t−1−d/2

)
as t →+∞. It is the

topic of the following section to use Fourier variables in the spirit of Nash’s proof
to get improved rates of decay at the level of the kinetic equation.

6. Algebraic decay rates in R
d by Fourier estimates and improvements

We prove Theorem 2 in Section 6.1 and Theorem 3 in Section 6.2.

6.1. Improved decay rates. — Let us prove Theorem 2 by Fourier methods in-
spired by the proof of Nash’s inequality.

• Step 1: Decay of the average in space by a factorization argument. — We define

(19) f•(t , v) :=
∫

Rd
f (t , x, v)d x

and observe that f• solves
∂t f• = L f• .

As a consequence, we have that 0 =
∫
Rd f•(t , v)d v . From the microscopic coercivity

property (H4), we deduce that
∥∥ f•(t , ·)

∥∥2
L2(dγ∞) =

∫

Rd

∣∣∣ f•(t ,v)
M

∣∣∣
2

M d v ≤
∥∥ f•(0, ·)

∥∥2
L2(dγ∞) e−λm t ∀ t ≥ 0.

With k ∈ (d ,∞), Proposition 6 applies like in the proof of Corollary 8 or in [26].
We observe that

∥∥ f•(0, ·)
∥∥

L2(|v |2 dγk ) ≤
∥∥ f0

∥∥
L2(|v |2 dγk ; L1(dx)). For some positive con-

stants C and λ, we get that

(20)
∥∥ f•(t , ·)

∥∥2
L2(|v |2 dγk ) ≤C

∥∥ f0
∥∥2

L2(|v |2 dγk ; L1(dx)) e−λ t , ∀ t ≥ 0.

• Step 2: Improved decay of f . — Let us define g (t , x, v) := f (t , x, v)− f•(t , v)ϕ(x),
where ϕ is a given positive function satisfying

∫

Rd
ϕ(x)d x = 1, e.g. ϕ(x) := (2π)−d/2 e−|x|2/2 , ∀x ∈R

d .

Since ∂t f• = L f•, the Fourier transform ĝ (t ,ξ, v) of g (t , x, v) solves

∂t ĝ +Tĝ = Lĝ − f•Tϕ̂ ,

where Tϕ̂= i (v ·ξ)ϕ̂. Using Duhamel’s formula

ĝ = e (L−T) t ĝ0 −
∫t

0
e (L−T) (t−s) f•(s, v)Tϕ̂(ξ)d s ,
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Corollary 5, and Proposition 6, for some generic constant C > 0 which will change
from line to line, we get

(21)
∥∥ĝ (t ,ξ, ·)

∥∥
L2(dγk ) ≤C e− 1

2 µξ t
∥∥ĝ0(ξ, ·)

∥∥
L2(dγk )

+C

∫t

0
e−

µξ
2 (t−s)

∥∥ f•(s, ·)
∥∥

L2(|v |2 dγk ) |ξ| |ϕ̂(ξ)|d s .

The key observation is ĝ0(0, v) = 0, so that ĝ0(ξ, v)=
∫|ξ|

0
ξ
|ξ| ·∇ξ ĝ0

(
η

ξ
|ξ| , v

)
dη yields

|ĝ0(ξ, v)| ≤ |ξ|
∥∥∇ξ ĝ0(·, v)

∥∥
L∞(dξ) ≤ |ξ|

∥∥g0(·, v)
∥∥

L1(|x|dx) ∀(ξ, v) ∈R
d ×R

d .

We know from (10) that µξ =Λ |ξ|2/(1+|ξ|2). The first term of the r.h.s. of (21) can
therefore be estimated for any t ≥ 1 by

(∫

|ξ|≤1

∫

Rd

∣∣∣e (L−T) t ĝ0

∣∣∣
2

dγk dξ

)1/2

≤
(∫

Rd
|ξ|2 e−Λ

2 |ξ|2 t dξ

)1/2 ∥∥g0
∥∥

L2(dγk ; L1(|x|dx))

≤
C

(1+ t )1+ d
2

∥∥g0
∥∥

L2(dγk ; L1(|x|dx)) ,

which is the leading order term as t →∞, and we have that
∫

|ξ|>1
e−µξ t

∥∥ĝ0(ξ, ·)
∥∥2

L2(dγk ) dξ≤C e−Λ

2 t
∥∥g0

∥∥2
L2(dx dγk )

for any t ≥ 0, using the fact that µξ ≥Λ/2 when |ξ| ≥ 1 and Plancherel’s formula.
Using (20), the second term of the r.h.s. of (21) is estimated by

∫

Rd

(∫t

0
e−

µξ
2 (t−s)

∥∥ f•(s, ·)
∥∥

L2(|v |2 dγk ) |ξ| |ϕ̂(ξ)|d s

)2

dξ

≤C
∥∥ f0

∥∥2
L2(|v |2 dγk ; L1(dx))

∫

Rd
|ξ|2 |ϕ̂(ξ)|2

(∫t

0
e−

µξ
2 (t−s) e− λ

2 s d s

)2

dξ .

On the one hand, we use the Cauchy-Schwarz inequality to get

∫

|ξ|≤1
|ξ|2 |ϕ̂(ξ)|2

(∫t

0
e−

µξ
2 (t−s)e− λ

2 s d s

)2

dξ

≤
∥∥ϕ

∥∥2
L1(dx)

∫

|ξ|≤1
|ξ|2

(∫t

0
e−µξ (t−s) e− λ

2 s d s

)(∫t

0
e− λ

2 s d s

)
dξ

≤
2

λ

∥∥ϕ
∥∥2

L1(dx)

∫t

0

(∫

|ξ|≤1
|ξ|2e−Λ

2 |ξ|2 (t−s) dξ

)
e− λ

2 s d s ≤C1 t−
d
2 −1 +C2 e− λ

4 t ,

where the last inequality is obtained by splitting the integral in s on (0, t /2) and
(t /2, t ). On the other hand, using µξ ≥Λ/2 when |ξ| ≥ 1, we obtain

∫

|ξ|≥1
|ξ|2 |ϕ̂(ξ)|2

(∫t

0
e−

µξ
2 (t−s) e− λ

2 s d s

)2

dξ≤ t 2 e−min{Λ/2,λ} t
∥∥∇ϕ

∥∥2
L2(dx) .

By collecting all terms, we deduce that
∥∥g (t , ·, ·)

∥∥2
L2(dx dγk ) is bounded by

C
(∥∥g0

∥∥2
L2(dγk ; L1(|x|dx)) +

∥∥ f0
∥∥2

L2((|v |2 dγk ;L1(dx))

)
(1+ t )−

(
1+ d

2

)
,

for some constant C > 0. Recalling that f = g + f•ϕ, the proof of Theorem 2 is
completed using (20).
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6.2. Improved decay rates with higher order cancellations. — We prove Theo-
rem 3, which means that from now on we assume in Case (a) that M is a normal-
ized Gaussian (2), and in Case (b) that σ≡ 1. Moreover, the initial data satisfies (5),
that is, Ï

Rd×Rd
f0 P d x d v = 0 ∀P ∈Rℓ[X ,V ] .

For any P ∈Rℓ[X ], let

P [ f ](t , v) :=
∫

Rd
P(x) f (t , x, v)d x ,

so that
∫
Rd P [ f ](0, v)d v = 0.

In this section we use the notation .k to express inequalities up to a constant
which depends on k .

• Step 1: Conservation of zero moments. — For a solution f of (1) we compute

d

d t

Ï

Rd×Rd
f (t , x, v)P(x, v)d x d v

=−
Ï

Rd×Rd
(v ·∇x f )P d x d v +

Ï

Rd×Rd
(L f )P d x d v

=
Ï

Rd×Rd
(v ·∇x P) f d x d v +

Ï

Rd×Rd
(L f )P d x d v .

In Case (a) of a Fokker-Planck operator, we may write
Ï

Rd×Rd
(L f )P d x d v =

Ï

Rd×Rd

1

M
∇v · (M ∇v P) f d x d v

=
Ï

Rd×Rd
(∆v P −v ·∇v P) f d x d v .

By definition of Rℓ[X ,V ], it turns out that ∆v P −v ·∇v P ∈Rℓ[X ,V ]. For the scatter-
ing operator of Case (b), one has

Ï

Rd×Rd
(L f )P d x d v

=
Ï

Rd×Rd

(∫

Rd

(
M (v) f (t , x, v ′)−M (v ′) f (t , x, v)

)
d v ′

)
P(x, v)d x d v

=
Ñ

Rd×Rd×Rd

(
M (v) f (t , x, v ′)−M (v ′) f (t , x, v)

)
P(x, v)d x d v d v ′

=
Ï

Rd×Rd

(∫

Rd
M (v)P(x, v)d v

)
f (t , x, v ′)d x d v ′−

Ï

Rd×Rd
f (x, v)P(x, v)d x d v .

One can check that
∫
Rd M (v)P(x, v)d v ∈ Rℓ[X ]. Since also v · ∇x P ∈ Rℓ[X ,V ],

the evolution of moments of order lower or equal than ℓ is equivalent to a linear
ODE of the form Ẏ (t ) = Q Y (t ), where Q is a matrix resulting from the previous
computations. Consequently, if Y (0) = 0 initially, it remains null for all times.

• Step 2: Decay of polynomial averages in space.— We claim that for any j ≤ ℓ,
there exists λ> 0 such that, for any P ∈R j [X ] and q ∈N,

(21)
∥∥P [ f ](t , ·)

∥∥
L2(dγk+q ) . j ,q ‖ f0‖L2(dγk+q+2 j ; L1((1+|x| j )dx)) (1+ t ) j e−λ t ∀ t ≥ 0.

Let us prove it by induction.

1. The case j = 0. Notice that j = 0 means that P is a real number and P [ f ] = f•
as defined in (19), up to a multiplication by a constant. Since

∫
Rd f•(t , v)d v = 0

for any t ≥ 0, one has ∂t f• = L f•, thus we deduce from the microscopic coercivity
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property as above that

‖ f•(t , ·)‖L2(dγ∞) ≤‖ f•(0, ·)‖L2(dγ∞) e−λm t ∀ t ≥ 0.

We also obtain that

(22) ‖ f•(t , ·)‖L2(dγk+q ) .q ‖ f0‖L2(dγk+q ; L1(dx)) e−λ t ∀ t ≥ 0,

but this requires some comments. The case k ∈ (d ,∞) is covered by Corollary 8.
The case k =∞ in (22) is given by the following lemma.

Lemma 10. — Under the assumptions of Theorem 3, one has

‖ f•(t , ·)‖L2((1+|v |q )dγ∞) .q ‖ f0‖L2((1+|v |q )dγ∞; L1(dx)) e−λ t ∀ t ≥ 0.

Proof. — We rely on Proposition 7 with the Banach spaces B1 = L
2(dγ∞) and

B2 = L
2
(
(1+ |v |q )dγ∞

)
. In Case (a), let us define A and B by AF = N χR F and

BF = LF −AF . In Case (b), we consider A and B such that

AF (v) = M (v)
∫

Rd
F (v ′)d v ′ ,

BF (v) = −
∫

Rd
M (v ′)d v ′F (v) .

The semi-group generated by A+B is exponentially decreasing in B1 by the mi-
croscopic coercivity property, as above. The semi-group generated by B is ex-
ponentially decreasing in B2. In Case (b), it is straightforward. In Case (a),
F (t )= eBt F0 is such that

1

2

d

d t

∫

Rd
|F |2

(
1+|v |q

)
dγ∞ =

∫

Rd
(BF )F

(
1+|v |q

)
dγ∞

=
∫

Rd
∇v

(
M ∇v

(
F
M

))
F

(
1+|v |q

)
dγ∞−

∫

Rd
NχR (v) |F |2

(
1+|v |q

)
dγ∞

=−
∫

Rd

∣∣∇v

(
F
M

)∣∣2 (
1+|v |q

)
M d v −

∫

Rd
q |v |q−2 v ·∇v

(
F
M

)
F
M M d v

−
∫

Rd
NχR (v) |F |2

(
1+|v |q

) d v

M

≤
∫

Rd

{
q

2
∇v ·(|v |q−2 v M)

(1+|v |q )M −NχR (v)
}
|F |2

(
1+|v |q

) d v

M
≤−

λ

2

∫

Rd
|F |2

(
1+|v |q

)
dγ∞

for some λ> 0, by choosing N and R large enough.
The operator A : B1 → B2 is bounded. This is straightforward in Case (a) and

follows from the boundedness of
∫
Rd M (v)

(
1+|v |q

)
dγ∞ in Case (b). Proposition 7

applies which concludes the proof.

2. Induction. Let us assume that (21) is true for some j ≥ 0, consider P ∈ R j+1[X ]
and observe that P [ f ] solves

∂t P [ f ] = LP [ f ]−
∫

Rd
(v ·∇x P) f d x .

Since ∇x P ∈R j [X ], the induction hypothesis at step j (applied with q replaced by
q +2) gives
∥∥v ·

∫
Rd (∇x P) [ f ]d x

∥∥
L2(dγk+q ) .

∥∥∫
Rd (∇x P) [ f ]d x

∥∥
L2(dγk+q+2)

. j ,q ‖ f0‖L2(dγk+q+2( j+1) ; L1((1+|x| j )dx)) (1+ t ) j e−λ t .
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By Duhamel’s formula, we have

P [ f ](t , v)= eLt P [ f ](0, v)−
∫t

0
eL(t−s)

(
v ·

∫

Rd
(∇x P) [ fs ]d x

)
d s .

Note that
∫
Rd v ·

∫
Rd (∇x P) [ f ]d x d v =

Î
Rd×Rd (v ·∇x P) [ f ]d x d v = 0 for all t ≥ 0

since v ·∇x P ∈Rℓ[X ,V ]. As a consequence, the decay of the semi-group associated
with L can be estimated by

∥∥∥∥eL(t−s)
(

v ·
∫

Rd
(∇x P) [ fs ]d x

)∥∥∥∥
L2(dγ∞)

≤
∥∥∥∥v ·

∫

Rd
(∇x P) [ fs ]d x

∥∥∥∥
L2(dγ∞)

e−λm (t−s) .

As in the case j = 0, we deduce from Corollary 8 that
∥∥∥∥eL(t−s)

(
v ·

∫

Rd
(∇x P) [ fs ]d x

)∥∥∥∥
L2((1+|v |q )dγk )

≤
∥∥∥∥v ·

∫

Rd
(∇x P) [ fs ]d x

∥∥∥∥
L2(dγk+q )

e−λ (t−s)

.q,k ‖ f0‖L2(dγk+q+2( j+1) ; L1((1+|x| j )dx)) (1+ s) j e−λ t .

Moreover, since
Î

Rd×Rd f0(x, v)P(x)d x d v = 0, for the same reasons we also have
that ∥∥∥eLt P [ f ](0, ·)

∥∥∥
L2(dγk+q )

≤
∥∥P [ f0]

∥∥
L2((1+|v |q )dγk ) e−λ t

for some λ> 0. We deduce from Duhamel’s formula that

‖P [ f ]‖L2(dγk+q )

.
∥∥∥eLt P [ f ](0, ·)

∥∥∥
L2(dγk+q )

+
∫t

0

∥∥e−L(t−s)
(
v ·

∫
Rd ∇x P [ fs ]d x

)∥∥
L2(dγk+q ) d s

.k ‖ f0‖L2(dγk+q ; L1((1+|x| j+1)dx)) e−λ t

+
∫t

0
(1+ s) j e−λ t ‖ f0‖L2(dγk+q+2( j+1) ; L1((1+|x| j )dx)) d s

.k ‖ f0‖L2(dγk+q+2( j+1) ; L1((1+|x| j+1)dx)) (1+ t ) j+1e−λ t ,

which proves the induction.

• Step 3: Improved decay of f .— Let us choose some t0 > 0. In order to estimate
‖ f (t , ·, ·)‖2

L2(dx dγk ) = ‖e (L−T)t f0‖2
L2(dx dγk ), we compute its evolution on (0,2 t0) and

split the interval on (0, t0) and (t0,2 t0) using the semi-group property
∥∥∥e (L−T) (2 t0) f0

∥∥∥
2

L2(dx dγk )
=

∥∥∥e (L−T) t0

(
e (L−T) t0 f0

)∥∥∥
2

L2(dx dγk )
.

Up to the end of this section, T= v ·∇x denotes the transport operator in position
and velocity variables. We decompose ft0 = e (L−T) t0 f0 into

ft0 =
(

∑

|α|≤ℓ

1

α!
X α[ ft0 ]∂αϕ

)
+ g0 with g0 := ft0 −

∑

|α|≤ℓ

1

α!
X α[ ft0 ]∂αϕ

where α= (α1,α2, . . .αi . . .αd ) ∈N
d is a multi-index such that |α| =

∑d
i=1αi ≤ ℓ and

ϕ is given by

ϕ(x) := (2π)−d/2 e−|x|2/2 ∀x ∈R
d .

Here we use the notation ∂αϕ = ∂
α1
x1
∂
α2
x2

. . .∂αd
xd
ϕ and X α =

∏n
i X

αi

i
. According

to (21), we know that
∥∥X α[ ft0 ]

∥∥
L2(dγk ) . j ‖ f0‖L2(dγk+2 j ; L1((1+|x| j )dx)) (1+ t0) j e−λ t0 ,
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so that, by considering the evolution of the first term on (t0,2 t0), we obtain
(23)∥∥∥∥∥e (L−T) t0

(
∑

|α|≤ℓ

1

α!
X α[ ft0 ]∂αϕ

)∥∥∥∥∥
L2(dx dγk )

.
∑

|α|≤ℓ

∥∥X α[ ft0 ]
∥∥

L2(dγk )

∥∥∂αϕ
∥∥

L2(dx) . e− λ
2 t0 .

Next, let us consider the second term and define, on t + t0 ∈ (t0,2 t0), the function

g := ft+t0 −
∑

|α|≤ℓ

1

α!
X α[ ft+t0]∂αϕ .

With initial datum g0, it solves on(0, t0) the equation

∂t g = ∂t ft+t0 −
∑

|α|≤ℓ

1

α!
∂t

(
X α[ ft+t0 ]

)
∂αϕ

= (L−T)( ft+t0 )−L

(
∑

|α|≤ℓ

1

α!
X α[ ft+t0]∂αϕ

)

+
∑

|α|≤ℓ

1

α!

(∫

Rd
(v ·∇x xα) ft+t0 d x

)
∂αϕ

= (L−T)(g )−T

(
∑

|α|≤ℓ

1

α!
X α[ ft+t0]∂αϕ

)
+

∑

|α|≤ℓ

1

α!

(∫

Rd
(v ·∇x xα) ft+t0 d x

)
∂αϕ

= (L−T)(g )+v ·
∑

|α|≤ℓ

1

α!

(
∇x X α[ f ]∂αϕ−X α[ ft+t0]∇x (∂αϕ)

)

where α! =
∏d

i=1αi ! is associated with the multi-index α= (αi )d
i=1 and

∇x X α[ f ] =
(
∂xi

X α[ f ]
)d

i=1 :=
(∫

Rd
∂xi

xα f d x

)d

i=1
=

(∫

Rd
αi xα∧i f d x

)d

i=1
,

Here the notation α∧i denotes the multi-index (α1,α2 . . .αi−1,αi − 1,αi+1 . . .αd )
with the convention that X α∧i ≡ 0 if αi = 0. We also define the opposite trans-
formation α∨i := (α1,α2 . . .αi−1,αi +1,αi+1 . . .αd ) so that ∂xi

(∂αϕ) = ∂α∨i ϕ. Let us
consider the last term and start with the case d = 1. In that case,

v ·
∑

|α|≤ℓ

1

α!

(
∇x X α[ f ]∂αϕ−X α[ ft+t0 ]∇x (∂αϕ)

)

= v1

ℓ∑
α1=0

1

α1!

((∫

R

(
α1 xα1−1) ft+t0 d x

)
∂x

α1
1 ϕ−

(∫

R

xα1 ft+t0 d x

)
∂x

α1+1
1 ϕ

)

=−
v1

ℓ!

(∫

R

xℓ ft+t0 d x

)
∂xℓ+1

1 ϕ

because it is a telescoping sum. We adopt the convention that α! = 1 if αi ≤ 0 for
some i = 1,2. . . d . The same property holds in higher dimensions:

∑

|α|≤ℓ

1

α!

(
∂xi

X α[ f ]∂αϕ−X α[ ft+t0]∂xi
(∂αϕ)

)

=
∑

|α|≤ℓ

(
1

α∧i !
X α∧i [ f ]∂αϕ−

1

α!
X α[ ft+t0 ]∂α∨i ϕ

)
=−

∑

|α|=ℓ

1

α!
X α[ ft+t0 ]∂xi

(∂αϕ) .

We deduce that

∂t g = (L−T)(g )−v ·
∑

|α|=ℓ

1

α!
X α[ ft+t0]∇x (∂αϕ) .
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Duhamel’s formula in Fourier variables gives

ĝ (t0,ξ, v)= e (L−T) t0 ĝ0 −
∫t0

0
e (L−T) (t0−s)

(
v ·

∑

|α|=ℓ

1

α!
X α[ fs+t0 ] á∇x (∂αϕ)

)
d s

up to a straightforward abuse of notations. Hence
∥∥ĝ (t0,ξ, ·)

∥∥
L2(dγk) . e− 1

2 µξ t0
∥∥ĝ0(ξ, ·)

∥∥
L2(dγk )

+
∫t0

0
e−

µξ
2 (t0−s)

∑

|α|=ℓ

1

α!

∥∥X α[ fs+t0 ]
∥∥

L2(|v |2 dγk ) | á∇x (∂αϕ)|d s .

Recall that (21) gives
∥∥X α[ fs+t0 ]

∥∥
L2(|v |2 dγk ) .ℓ ‖ f0‖L2(dγk+2ℓ+2 ; L1((1+|x|ℓ)dx)) e− λ

2 s .

On the other hand we use | á∇x (∂αϕ)| ≤ |ξ|ℓ+1|ϕ̂| and observe that

|ĝ0(ξ, v)|. |ξ|ℓ+1
∥∥g0(·, v)

∥∥
L1(|x|ℓ dx) ∀(ξ, v) ∈R

d ×R
d .

Collecting terms, we have that
∥∥ĝ (t0,ξ, ·)

∥∥
L2(dγk)

. e− 1
2 µξ t0 |ξ|ℓ+1 1|ξ|<1

∥∥g0(·, v)
∥∥

L2(dγk ; L1(|x|ℓ dx)) +e− 1
2 µξ t0 1|ξ|≥1

∥∥ĝ0(ξ, ·)
∥∥

L2(dγk )

+|ξ|ℓ+1|ϕ̂(ξ)|‖ f0‖L2(dγk+2ℓ+2 ; L1((1+|x|ℓ)dx))

∫t0

0
e−

µξ
2 (t0−s) e− λ

2 s d s .

We know from (10) that µξ = Λ |ξ|2/(1 + |ξ|2) so that µξ ≥ Λ

2 |ξ|2 if |ξ| < 1 and
µξ ≥Λ/2 if |ξ| ≥ 1. Hence, for any t0 ≥ 1,

∥∥∥e− 1
2 µξ t0 |ξ|ℓ+1 1|ξ|<1

∥∥∥
L2(dξ)

≤
(∫

Rd
e−Λ

2 |ξ|2 t0 |ξ|2(ℓ+1) dξ

)1/2

. t
− (1+ℓ+ d

2 )
0 ,

∫

|ξ|≥1
e−µξ t0

∥∥ĝ0(ξ, ·)
∥∥2

L2(dγk ) dξ. e−Λ

2 t0
∥∥g0

∥∥2
L2(dx dγk )

by Plancherel’s formula. We conclude by observing that
∫

|ξ|≤1
|ξ|ℓ+1 |ϕ̂(ξ)|

∫t0

0
e−

µξ
2 (t0−s)e− λ

2 s d s dξ

≤
∥∥ϕ

∥∥
L1(dx)

∫t0

0

(∫

|ξ|≤1
|ξ|ℓ+1e− Λ

2 |ξ|2 (t0−s) dξ

)
e− λ

2 s d s . t
− (1+ℓ+ d

2 )
0 ,

∫

|ξ|≥1
|ξ|ℓ+1 |ϕ̂(ξ)|

∫t0

0
e−

µξ
2 (t0−s) e− λ

2 s d s dξ. ‖|ξ|ℓ+1 ϕ̂(ξ)‖L1(dξ) t0 e− 1
4 min{Λ,2λ} t0 .

Altogether, we obtain that
∥∥g (t0, ·, ·)

∥∥2
L2(dx dγk ) =

∥∥ĝ (t0, ·, ·)
∥∥2

L2(dξdγk ) . t
− (1+ℓ+ d

2 )
0 .

The decay result of Theorem 3 is then obtained by writing

∥∥ f2t0

∥∥2
L2(dx dγk ) .

∥∥g (t0, ·, ·)
∥∥2

L2(dx dγk )+

∥∥∥∥∥e (L−T) t0

(
∑

|α|≤ℓ

1

α!
X α[ ft0 ]∂αϕ

)∥∥∥∥∥
L2(dx dγk )

and using (23) for any t0 ≥ 1, with t = 2 t0. For t ≤ 2, the estimate of Theorem 3 is
straightforward by Corollary 8, which concludes the proof.
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Appendix A

An explicit computation of Green’s function for the kinetic Fokker-Planck

equation and consequences

In the whole space case, when M is the normalized Gaussian function, let us
consider the kinetic Fokker-Planck equation of Case (a)

(24) ∂t f +v ·∇x f =∇v · (v f +∇v f )

on (0,∞)×R
d ×R

d ∋ (t , x, v). The characteristics associated with the equations

d x

d t
= v ,

d v

d t
=−v

suggest to change variables and consider the distribution function g such that

f (t , x, v)= ed t g
(
t , x +

(
1−e t

)
v,e t v

)
∀(t , x, v)∈ (0,∞)×R

d ×R
d .

The kinetic Fokker-Planck equation is changed into a heat equation in both vari-
ables x and v with t dependent coefficients, which can be written as

(25) ∂t g =∇· Ḋ∇g

where ∇g = (∇v g ,∇x g ) and Ḋ is the t -derivative of the bloc-matrix

D = 1
2

(
a Id b Id
b Id cId

)

with a= e2t −1, b = 2e t −1− e2t , and c = e2t −4e t +2 t +3. Here Id is the identity
matrix on R

d . We observe that Ḋ is degenerate: it is nonnegative but its lowest
eigenvalue is 0. However, the change of variables allows the computation of a
Green function.

Lemma 11. — The Green function of (25) is given for any (t , x, v)∈ (0,∞)×R
d ×R

d

by

G(t , x, v)=
1

(
2π (ac−b2)

)d/2
exp

(
−
a |x|2 −2bx ·v +c |v |2

2(ac−b2)

)
.

The method is standard and goes back to [25] (also see [22, 20] and [32, 6]).

Proof. — By a Fourier transformation in x and v , with associated variables ξ

and η, we find that

logC − logĜ(t ,ξ,η) = (η,ξ) ·D(η,ξ) = 1
2

(
a |η|2 +2bη ·ξ+c |ξ|2

)

= 1
2 a

∣∣η+ b

a
ξ
∣∣2 + 1

2 A |ξ|2 , A= c− b
2

a

for some constant C > 0 which is determined by the mass normalization condition
‖G(t , · , ·)‖L1(Rd×Rd ) = 1. Let us take the inverse Fourier transform with respect to η,

(2π)−d

∫

Rd
e i v ·ηĜ(t ,ξ,η)dη=

C

(2πa)d/2
e− |v|2

2a −i
b

a
v ·ξ e− 1

2 A |ξ|2

=
C

(2πa)d
e− |v|2

2a e
− 1

2 A

∣∣∣ξ+i
b

aA
v
∣∣∣

2
− b

2

2a2A
|v |2

,

and then the inverse Fourier transform with respect to ξ, so that we obtain

G(t , x, v) =
C

(2πa)
d
2 (2πA)

d
2

e−
(

1+ b
2

aA

)
|v|2
2a e− |x|2

2A e
b

aA
x·v =

C

(4π2 aA)
d
2

e
− 1

2A

∣∣∣x−b

a
v
∣∣∣

2

e− |v|2
2a .

It is easy to check that C = 1.
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Let us consider a solution g of (25) with initial datum g0 ∈ L1(Rd ×R
d ). From the

representation
g (t , ·, ·) =G(t , ·, ·)∗x,v g0 ,

we obtain the estimate
∥∥g (t , ·, ·)

∥∥
L∞(Rd×Rd ) ≤ ‖G(t , ·, ·)‖L∞(Rd×Rd )

∥∥g0
∥∥

L1(Rd×Rd )

=

∥∥g0
∥∥

L1(Rd×Rd )
(
8π2

)d/2
t−

d
2 e−d t

(
1+O

(
t−1))

as t →∞. As a consequence, we obtain that the solution of (24) with a nonnegative
initial datum f0 satisfies

∥∥ f (t , ·, ·)
∥∥

L∞(Rd×Rd ) =

∥∥ f0
∥∥

L1(Rd×Rd )
(
8π2 t

)d/2

(
1+o(1)

)
as t →∞ .

Using the simple Hölder interpolation inequality
∥∥ f

∥∥
Lp (Rd×Rd ) ≤

∥∥ f
∥∥1/p

L1(Rd×Rd )

∥∥ f
∥∥1−1/p

L∞(Rd×Rd )
,

we obtain the following decay result.

Corollary 12. — If f is a solution of (24) with a nonnegative initial datum f0 ∈
L1(Rd ×R

d ), then for any p ∈ (1,∞] we have the decay estimate

∥∥ f (t , ·, ·)
∥∥

Lp (Rd×Rd ) ≤

∥∥ f0
∥∥

L1(Rd×Rd )

(
8π2 t

) d
2

(
1− 1

p

)
(
1+o(1)

)
as t →∞ .

By taking f0(x, v)=G(1, x, v), it is moreover straightforward to check that this esti-
mate is optimal. With p = 2, this also proves that the decay rate obtained in The-
orem 1 for the Fokker-Planck operator, i.e., Case (a), is the optimal one because,
again with f0(x, v) =G(1, x, v), we observe that

∥∥ f (t , ·, ·)
∥∥2

L2(dx dγk ) = e d t ‖G(t , ·, ·)‖2
L2(dx dv) =O

(
t−d/2

)
as t →+∞ .

Appendix B

Consistency with the decay rates of the heat equation

In the whole space case, the abstract approach of [11] is inspired by the diffusion
limit of (1). We consider the scaled equation

(26) ε
dF

d t
+TF =

1

ε
LF ,

which formally corresponds to a parabolic rescaling given by t 7→ ε2 t and x 7→ εx,
and investigate the limit as ε→ 0+. Let us check that the rates are asymptotically
independent of ε and consistent with those of the heat equation.

B.1. Mode-by-mode hypocoercivity. — It is straightforward to check that in the
estimate (7) for λ, the gap constant λm has to be replaced by λm/ε while, with the
notations of Proposition 4, CM can be replaced by CM /ε for ε< 1. In the asymptotic
regime as ε→ 0+, we obtain that

ε
d

d t
H[F ] ≤−D[F ]≤−

λM

3(1+λM )

λm λM ε

(1+λM )C 2
M

D[F ]
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which proves that the estimate of Proposition 4 becomes

λ≥
λm λ2

M

3(1+λM )2 C 2
M

.

We observe that this rate is independent of ε.

B.2. Decay rates based on Nash’s inequality in the whole space case. — In the
proof of Theorem 1, σ has to be replaced by σ/ε and in the limit as ε→ 0+, we get
that b ∼ 4σ/ε and (16) is satisfied with 4a = δ ∼ λm

8σ2 ε. Hence (18) asymptotically
becomes, as ε→ 0+,

−
d

d t
H[ f ] ≥

λm

4σ2
c

(
2

1+δH[ f ]
)1+ 2

d
,

which again gives a rate of decay which is independent of ε. The algebraic decay
rate in Theorem 1 is the one of the heat equation on R

d and it is independent of ε
in the limit as ε→ 0+.

B.3. Decay rates in the whole space case for distribution functions with moment

cancellations. — The improved rate of Theorem 2 is consistent with a parabolic
rescaling: if f solves (1), then f ε(t , x, v)= ε−d f

(
ε−2 t ,ε−1 x, v

)
solves (26). With the

notations of Section 6.1, let g ε = f ε− f ε
• ϕ(·/ε), with ϕε = ε−d ϕ(·/ε). The Fourier

transform of g ε solves

ε2∂t ĝ ε+εTĝ ε = Lĝ ε−ε f ε
• Tϕ̂

ε .

The decay rate λ in (20) becomes λ/ε2 and the decay rate of the semi-group gener-
ated by L−εT is, with the notations of Corollary 5, µεξ. Moreover, Λ in (10) is given
by Λ= 1

3 min
{
1,Θ

}
for any ε> 0, small enough. Duhamel’s formula (21) has to be

replaced by

∥∥ĝ ε(t ,ξ, ·)
∥∥

L2(dγk ) ≤C e
−

µεξ

2ε2 t ∥∥ĝ ε
0 (ξ, ·)

∥∥
L2(dγk )

+C

∫t

0
e
−

µεξ

2ε2 (t−s) ∥∥ f ε
• (s, ·)

∥∥
L2(|v |2 dγk ) |εξ| |ϕ̂(εξ)|d s .

Using limε→0+
µεξ

ε2 = limε→0+
Λ|ξ|2

1+ε2|ξ|2 = Λ|ξ|2, a computation similar to the one of
Section 6.1 shows that the first term of the r.h.s. is estimated by

∫

Rd
e
−

µεξ

ε2 t ∥∥ĝ ε
0 (ξ, ·)

∥∥2
L2(dγk ) dξ

=
∫

|ξ|≤ 1
ε

e
−

µεξ

ε2 t ∥∥ĝ ε
0 (ξ, ·)

∥∥2
L2(dγk ) dξ+

∫

|ξ|> 1
ε

e
−

µεξ

ε2 t ∥∥ĝ ε
0 (ξ, ·)

∥∥2
L2(dγk ) dξ

≤
∥∥g ε

0

∥∥2
L2(dγk ; L1(|x|dx))

∫

Rd
|ξ|2 e−Λ

2 |ξ|2 t dξ+
∥∥g ε

0

∥∥2
L2(dx dγk ) e

−Λ

2
t

ε2 ,

while the square of the second term is bounded by

∥∥ f ε
• (t = 0, ·)

∥∥2
L2(|v |2 dγk )

∫

Rd
|εξ|2 |ϕ̂(εξ)|2

(∫ε−2 t

0
e− 1

2 µεξ(ε−2t−s) e− 1
2 λ s d s

)2

dξ

≤
∥∥ f0

∥∥2
L2(|v |2 dγk ; L1(dx))

(
C1

εd+1

t
d
2 +1

+
C2

ε3
e
−min{ Λ2 ,λ} t

ε2

)
.

By collecting all terms and using Plancherel’s formula, we conclude that the rate of
convergence of Theorem 2 applied to the solution of (26) is independent of ε. We
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also notice that the scaled spatial density ρ f ε =
∫
Rd f ε d v satisfies

∥∥ρ f ε(t , ·)
∥∥2

L2(dx) ≤
C0

(1+ t )1+ d
2

∀ t ≥ 0

for some positive constant C0 which depends on f0 but is independent of ε. This
is the decay of the heat equation with an initial datum of zero average.

Similar estimates can be obtained in the framework of Theorem 3.
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