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Abstract

A methodology for non-invasive estimation of the pressure in internal carotid
arteries is proposed. It uses data assimilation and Ensemble Kalman filters in order
to identify unknown parameters in a mathematical description of the cerebral
network. The approach uses patient specific blood flow rates extracted from Magnetic
Resonance Angiography and Magnetic Resonance Imaging. This construction is
necessary as the simulation of blood flows in complex arterial networks, such as the
circle of Willis, is not straightforward because hemodynamic parameters are unknown
as well as the boundary conditions necessary to close this complex system with many
outlets. For instance, in clinical cases, the values of Windkessel model parameters or
the Young’s modulus and the thickness of the arteries are not available on per-patient
cases. To make the approach computational efficient, a reduced order
zero-dimensional compartment model is used for blood flow dynamics. Using this
simplified model, the proof-of-concept study demonstrates how to use the EnKF as
an optimization tool to find parameters and how to make the inverse hemodynamic
problem tractable. The predicted blood flow rates in the internal carotid arteries and
the predicted systolic and diastolic brachial blood pressures are found to be in good
agreement with the clinical measurements.

Keywords: MRA, MRI, EnKF, reduced order compartment blood model, parameter
estimation, circle of Willis, hemodynamic inverse problems
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1 Introduction

One of the key factors identified to be associated with the formation and the risk of rupture
of a cerebral aneurysm is the blood pressure fluctuations in cerebral arteries1–3. The circle
of Willis (CoW) is a common place for aneurysms4. There have been many researches
done on hemodynamics and the blood flow in the CoW5–7 focusing on the understanding
of factors increasing the risk of stroke and the blood flow distribution in the brain. While
methods and procedures are available for assessing and measuring the pressure in cerebral
arteries, they are mostly based on invasive methods such as using a pressure-sensing catheter.
Hasan et al. 8 used dual-sensor microwires (ComboWire; Volcano Corporation) to measure
systolic, diastolic, and mean pressure inside a cerebral aneurysm. A linear relationship
between changes in radial and aneurysmal pressures was found. ComboWire was also used
by Ferns et al. 9 to get pressure measurements in the internal carotid artery of patients
with an unruptured intracranial aneurysm. Because non-invasive pressure measurements in
cerebral arteries are not available, the systolic-diastolic pressure variation in an aneurysm
cannot be included in the risk of rupture analysis, although this quantity is obviously very
relevant from a biomechanical point of view. Relying on a physical/numerical description
of the cerebral hemodynamics to assess blood pressure non-invasively is thus an appealing
alternative.

The analysis of the cardiovascular system can be carried out using one-dimensional
(1D)10–12 or multi-dimensional modelling (2D or 3D)13 or in a simplified manner using a
lumped model (0D compartment model)14–16. It is possible to numerically solve the
pressure and the blood flow rate wave system, taking place in a network of interconnected
arteries representing all or part of the cardiovascular system. Lumped parameter models
have been extensively developed and used over the years to study the blood circulation
dynamics and for the assessment of hemodynamics (Ursino and Giannessi 14 , Milǐsić and
Quarteroni 15 , Pant et al. 16 , Ellwein et al. 17 , Pant et al. 18 , Quarteroni et al. 19 , Westerhof
et al. 20 , Blanco et al. 21) or to investigate cerebral hemodynamics (Liang et al. 22 , Gao
et al. 23 , Olufsen et al. 24 , Pope et al. 25).

Using imaging data such as Magnetic Resonance Angiography and Magnetic Resonance
Imaging (MRA&MRI), the geometric properties of each blood vessels such as diameter and
length can be acquired. However, the structural properties of the vessels such as the wall
thickness and the Young’s modulus are difficult to identify. Still in patient-specific
simulations, such unknown properties need to be estimated as well as the distal boundary
conditions. These unknown parameters can be estimated using an algorithm based on a
data assimilation technique such as an Unscented Kalman filter (UKF)26,27 or its variant -
reduced order unscented Kalman filter (ROUKF)28,29 or an Ensemble Kalman filter
(EnKF)30,31. The idea of using the Kalman filter tool in data assimilation techniques is to
improve the simulated results of a model through the estimation of the parameter values
used in the numerical model. A general data assimilation technique uses available clinical
observations (possibly corrupted by noise) on a given system such as brachial blood
pressure, carotid flow rate, temporal pressure, aortic flow rate or cross-sectional area. A
predictor-corrector method is applied to the set of uncertain parameters whose values are
corrected taking into account the difference between the clinical observations and the
measurements that are simulated using the blood flow model. The Kalman gain matrices
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are defined in Kalman filter tool to minimize the distance between clinical observations and
measurements taking into account both the uncertainties in the model and in the
measurements. Once the assimilation process is completed and the parameters are
estimated, the interconnected network of arteries becomes a good approximation of patient
specific cardiovascular system on which the morphological data are collected and
hemodynamic observations are made. It is then possible to use the blood flow model to
estimate the hemodynamic variables whose measurement is only possible invasively (e.g. to
access aneurysm pressure). The outcome of data assimilation methods is (based on the
patient-specific measurements) the development of numerical models by estimating
hemodynamic parameters. In the process, model simulation is adapted to the
patient-specific data resulting in reliably simulated measurements (predictions).

Recent works on inverse problems in hemodynamics using a 1D or multi-dimensional
blood flow model include the work of Chabiniok et al. 26 , Lombardi 28 , Moireau et al. 29 , Lal
et al. 30 , DeVault et al. 31 , Bertoglio et al. 32 , Caiazzo et al. 33 , Itu et al. 34 and Dumas
et al. 35 . In Chabiniok et al. 26 , Lombardi 28 , Moireau et al. 29 , Bertoglio et al. 32 and
Caiazzo et al. 33 a ROUKF is used as a tool for data assimilation to estimate hemodynamic
parameters such as elastic properties of arteries, arterial compliance and boundary
condition parameters (Windkessel boundary parameters and reflection coefficients). In Lal
et al. 30 the usefulness of the EnKF in estimating the hemodynamic parameters including
the arterial stiffness and boundary condition parameter (reflection coefficient) is
demonstrated. Using in silico experiments, Lal et al. 30 have extensively assessed the
EnKF-based parameter estimation algorithm. In their approach, they have validated
predicted pressure levels on physical phantoms. DeVault et al. 31 have demonstrated the
use of an EnKF to calibrate the boundary condition parameters of a network with 16
arteries in the CoW using a one-dimensional numerical model for the prediction of cerebral
pressure and flow rate. Itu et al. 34 show the use of Quasi-Newton and Broydens methods
for the estimation of Windkessel boundary parameters. Dumas et al. 35 have proposed a
numerical approach to determine the distribution of the arterial stiffness in a
subject-specific network of arteries. In the proposed approach, the optimal parameters of
the one-dimensional model have been calibrated by solving an inverse problem.

Performing data assimilation with a compartment model (0D) has many advantages: the
parameter estimation procedure is fast as the 0D model only takes a few seconds (depending
on the arterial network) to run, the inverse problem can be run from several initial guesses
of hemodynamic parameters without significant increase in computing cost and time and
the sensitivity analysis is cheap. In Pant et al. 16 an estimation of lumped model parameters
(Windkessel) from uncertain clinical data using the unscented Kalman filter is proposed.
The method is extended to a patient specific parameter estimation of a lumped parameter
model of blood circulation for single-ventricle shunt physiology in Pant et al. 27 . In Ellwein
et al. 17 a compartment model is used to predict arterial and venous blood pressures including
the volume of the heart using 11 compartments representing the systemic circulation. The
model parameters are estimated using a non-linear optimization technique. In Pope et al. 25

estimation and identification of parameters in a lumped cerebrovascular model are presented.
The parameters are estimated using Gauss Newton gradient-based nonlinear optimization
technique.

This work proposes to estimate the pressure variations for an arterial network
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representative of the cerebral circulation using an integrated
observation/simulation/assimilation procedure to exploit available MRA&MRI observation
data by EnKF parameter estimation techniques using reduced order blood flow models. In
the current work, an EnKF-based parameter estimation algorithm is coupled to a 0D
compartment network in order to 1- estimate the model parameters (arterial stiffness and
distal boundary conditions) of a patient (healthy volunteer) specific complex network
including the CoW and 2- assess the blood pressure fluctuations in the whole network once
the parameters have been adapted. Technically demanding and not free of risk, invasive
pressure measurements can hardly be included in proof-of-concept studies for validation
purposes. The accuracy of the predictions is thus assessed by comparing the model
predicted and clinically measured systolic and diastolic pressures (using a cuff-based
oscillometry) at the brachial artery. To the authors knowledge, this configuration to
estimate hemodynamic parameters and predict blood pressure in cerebral arteries is
relatively new with respect to the application of data assimilation to a complex arterial
network including the CoW, the number of arteries (33) in the network, and the coupling
of EnKF to the 0D model.

The outline of the paper is as follows: First, a review of the 0D lumped compartment
model which will be used to represent the cardiovascular network is presented. Next, the
ensemble Kalman data assimilation technique is reviewed and the algorithm for parameter
estimation given. Then, the application of the procedure to the test cases with synthetic and
actual clinical data is shown. The clinical data correspond to the cerebral network, including
the complete circle of Willis (CoW), of a healthy subject.

2 Materials and Methods

2.1 0D Model for Cardiovascular system

The human cardiovascular system can be modelled using an electrical analogy to represent
different mechanical properties of arteries14–16,19. In this model (called compartment
models, 0D models or lumped parameter models), the arterial network is divided into
different compartments comprising a resistor (resistance of blood due to blood viscosity,
R), an inductor (blood inertance L) and a capacitor (compliance of the artery, C).

The four common compartmental configurations in 0D models are L network element,
inverted L network element, T element and π element networks. The use of the four
configurations depends on the prescribed boundary conditions and the detailed analysis of
the configurations can be found in Milǐsić and Quarteroni 15 and Quarteroni et al. 19 . In
the current work, an inverted L network element (Figure 1) is used. In this element, the
upstream pressure Pin and the downstream flow rate qout are used as the boundary conditions.

The spatial variation of parameters (R,L, and C) in lumped parameter models is
neglected in each spatial compartment and thus the parameters are assumed to be uniform.
For a single compartment assuming an incompressible Newtonian fluid, the governing
equations for the 0D model (inverted L network element) relating the variables R,L and
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Figure 1: Single compartment circuit representation

C and representing mass and momentum conservation read:14,15,19

C
dPout
dt

= qin − qout

L
dqin
dt

+Rqin = Pin − Pout
(1)

where Pin, qin and Pout, qout are the blood pressure and flow rate at the inlet and outlet
of the compartment (artery) respectively. The inertance L expresses the inertia within the
vessel and if its effect is ignored, the flow rate is then given by qin = (Pin − Pout)/R.

The parameters R,L and C for each of the compartment representing different arterial
segments are calculated using the following equations16: Hagen-Poiseuille law for resistance,
R = 8µl/πr4, L = ρl/πr2 and C = 3πr3l/2Eh, where E, h, ρ, µ, l and r is the Young’s
modulus, arterial wall thickness, the blood density, the blood viscosity, the length of the
arterial segment and, the radius of the artery respectively.

Each segment of the arterial network including the CoW is represented with a reduced
order 0D model consisting of the three elements R,L, and C (see Figure 2 where each of the
arterial segment is represented by a single compartment). In this way, a distributed lumped
parameter model is developed for the full network in which multiple lumped compartments
are connected in series.

At the bifurcation, boundary conditions are prescribed by enforcing conservation of mass
and continuity of pressure. At the outlet of each terminal compartment, the blood flow
model is coupled to the three-element Windkessel model (WK3-lumped parameter model)7,11

to include the effect of the downstream vasculature. In the WK3 model, the instantaneous
blood pressure and the flow rate are related as follows:

dp(t)

dt
+

p

RDC
= RP

dq(t)

dt
+
q(RP +RD)

RDC
, (2)

where p is the instantaneous pressure at the inlet of the WK3 model, q is the instantaneous
flow rate, RP , and RD are the proximal (characteristic) and distal resistance respectively of
the vascular beds, and C is the compliance. RT = RP + RD represents the total resistance
of a peripheral bed.

Of course, more sophisticated physical models can be considered. But, this is not central
to our discussion. What we want to show in this paper is that this simple model permits to
give reasonable results after inversion.
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2.2 Estimation of hemodynamic parameters using an Ensemble
Kalman Filter

The literature on ensemble Kalman filter algorithms is vast36,37. The reader is referred to
Lal et al. 30 for a detailed mathematical analysis of the EnKF implementation. Below the
algorithm used to estimate the hemodynamic model parameters is summarised.

The EnKF is a suboptimal estimator for problems that involves nonlinear models of
higher order, where an ensemble of states is used to predict the error statistics30. The
unknown hemodynamic parameters x ∈ Rn, are treated as special state variables whose
evolutions are defined using a random walk model, xk+1 = xk + τk, where xk denotes the
state variable at time step tk. τk ∼ N (0,Tk) is a small Gaussian random perturbation with
a variance T. The initial forecast ensemble of parameters xfi

k for i = 1, . . . , qens is assumed to
be available at time tk. fi denotes the initial ith forecast member of an ensemble of size qens

which is used to determine the forecast error covariance matrix in EnKF. The parameter
estimation algorithm uses a set of nobs observations such as blood pressure, blood flow
rates, flow velocity or arterial wall movements to improve a set of given initial estimate of
the hemodynamic parameters, x. A set of output vector, Yk = (yf1k , . . . ,y

fqens
k ) ∈ Rqens×nobs,

is generated at time tk. Each member, yfik , is defined by yfik = H(xfi), where H is the
nonlinear measurement function defined by the blood flow model describing the relation
between measurements and parameters. An ensemble of perturbed observations, yik (for
i = 1, . . . , qens) is generated by adding perturbations to the original observation vector yk ∈
Rnobs:

yik = yk + eik, i = 1, . . . , qens, (3)

where eik ∈ Rnobs is a random vector drawn from the zero mean Gaussian distribution with
a specified variance. The discrepancies between perturbed observations and measurements
are then used to update parameters using:

xai
k = xfi

k + Kk

[
yik − yfi

k

]
, i = 1, . . . , qens, (4)

where ai represents the updated (assimilated) parameters and Kk is the Kalman gain matrix.
The matrix Kk is defined by three error covariance matrices:

Kk = Pf
xyk

(
Pf

yyk
+ Rk

)-1

. (5)

Rk is the diagonal measurement error covariance matrix defined by

Rk = diag

[
1

qens − 1
EET

]
, E =

[
e1
k, . . . , e

qens
k

]
. (6)

The other two error covariance matrices are given by30

Pf
xyk

=
1

qens − 1

qens∑
i=1

[
xfi
k − xf

k

] [
yfi
k − yf

k

]T
; Pf

yyk
=

1

qens − 1

qens∑
i=1

[
yfi
k − yf

k

] [
yfi
k − yf

k

]T
(7)

where xf
k = 1

qens

∑qens
i=1 xfi

k and yf
k = 1

qens

∑qens
i=1 H

(
xfi
k

)
. The ensemble updated parameters

(4) at time t = k is then cycled in time and the parameter estimation using the EnKF can
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be stopped upon reaching some finite convergence criterion. At convergence, the mean of
the ensemble is taken as the best estimate of the parameters. The parameter estimation
algorithm is summarised in Algorithm 130. Henceforth, nobs will refer to the number of
locations on an arterial network where a time series of observations such as pressure values
or blood flow rate is available.

Algorithm 1: Parameter estimation using EnKF30

Input: qens, T, nobs, maximum number of EnKF iteration (jmax), initial estimate of
n unknown parameters (mean xl and variance Pl for l = 1, . . . , n).

1 Initialization: Randomly initialize an ensemble of parameters, xi, for i = 1 . . . , qens

where xi = (x1, x2, . . . , xn) and xl ∼ N (xl, Pl) for l = 1, . . . , n.
2 Let xai = xi

3 for j = 1 to jmax do
4 -Evolution of ensemble: xfi = xai + τ i, τ i ∼ N (0,T) ∀i = 1, . . . , qens

5 -Ensemble propagation: yfi = H(xfi) ∀i = 1, . . . , qens

6 -Perturbation of observations: yi = y + ei, ∀i = 1, . . . , qens

7 -Determine R and K using Eqs. (6) and (5) respectively.

8 -Ensemble update: xai = xfi + K
[
yi − yfi

]
∀i = 1, . . . , qens.

2.3 Test cases

The parameter estimation algorithm was tested using a complex arterial network with 33
arteries (Figure 2) consisting of the aorta, brachial, carotid and vertebral arteries as well as
a complete CoW which was adapted from Alastruey et al. 6 . The objective was to identify
(estimate) a set of model parameters within the physiological range, given measured values
of arterial blood flow rate. The model parameters were limited to material properties and the
terminal parameters (Windkessel parameters). Before the parameter estimation algorithm
was tested with a patient-specific clinical data, a test case using synthetic data was carried
out. This case where synthetic measurements were used in the data assimilation (observation
obtained directly from the numerical model using the known model parameters) is presented
in order to explore the capability of the EnKF algorithm. The test also aimed at finding if
blood flow rates in the internal carotid arteries could be used as observations in the data
assimilation to allow accurate estimates of model parameters. Another objective was to
know for which network locations the pressure fluctuations are satisfactorily predicted.

2.3.1 A test case using synthetic data

We first describe the procedure for generating the synthetic data. The lengths, radii
and the terminal boundary parameters (WK3) of the 33 arteries in Figure 2 were adapted
from Alastruey et al. 6 . Same WK3 boundary conditions for left and right pairs of terminal
compartments were assumed. For instance, the terminal compartments #10 and #13 are
assigned with the same WK3 boundary conditions. The product of Young’s modulus and
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Figure 2: (2a) The network6 of a one-dimensional blood flow model of the upper body
arteries and of the circle of Willis. Thick lines indicate relative thickness of the arteries.
Artery numbers corresponds to those in Table 2. Arrows indicate the direction of flow. (2b)
The equivalent 0D compartment model. Flow rates are assigned the compartment numbers
corresponding to those in Table 2. At the inlet (ascending aorta, compartment #1), specific
value of flow rates, qin, are imposed.

thickness of arteries was assumed to be given by an empirical formula Eh = r(k1 e
k2r+k3)38.

The values of of the three constants were chosen as k1 = 5.0×107 g·cm−1s−2, k2 = −5.0 cm−1

and k3 = 1.0× 105 g·cm−1s−2. The three constants together with the WK3 parameters RPi
,

RDi
and Ci where i = 8, 13, 15, 24, 30, 33 denotes the compartment number were referred as

the target parameters. An inlet flow rate, qin, with period of 1 s was imposed at the proximal
end of ascending aorta. For each cardiac cycle qin in ml/s was defined as6:

qin(t) =

{
485 sin(πt/τ) if t < τ,

0 otherwise
(8)

where τ = 0.3 s. Blood rheological parameters were taken as: ρ = 1050 kg·m−3 and µ
= 0.004 Pa·s. Using the target parameters a forward simulation was executed using the
0D blood flow model. The blood flow rate values in the right internal artery (R-ICA:
compartment #12) and the left internal carotid artery (L-ICA: compartment #11) were
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recorded.
Next, we describe the inverse hemodynamic problem. The 21 (target) parameters

consisting of 6 proximal resistances, 6 distal resistances, 6 compliances and 3 constants
defining the product Eh were estimated using the synthetic observations (blood flow rates
in the two ICA’s). The parameter estimation algorithm was initialised and executed using
the following parameters:

1. Ensemble size: to test the sensitivity of the algorithm, different sizes of the ensemble
(qens = 10 to qens = 35) were chosen.

2. Initialisation: the 21 target parameters were randomly perturbed with increments of
either ±60% of the target values. These perturbed values were taken as the initial
estimates. A larger perturbation (random increments of ±100% of the target values)
was also tried. It was noted that the results were similar than with 60%. To restrict the
assimilated parameters to positive values, all parameters were redefined as x = xref2

θ.
xref is the reference or initial guess of the parameter to be estimated and θ is the actual
value used in the EnKF during the assimilation step. To initiate each assimilation
cycle, an initial ensemble of parameters xi for i = 1, . . . , qens was generated using the
first-guess (initial estimate) value of the parameters xref and θ. For each ith member
of the ensemble, xi = (x1, . . . , x21), where xl = xrefl2

θl and θl were random realizations
from an N (0, σ2

θ) distribution for l = 1, . . . , 21 and σθ = 0.5. With each xi the blood
flow model was integrated for 10 cardiac cycles, and then the first assimilation was
performed.

3. Number of observation: time series of blood flow rates were taken as observation at
two locations (nobs = 2) i.e. R-ICA and L-ICA, at every 0.02 s (50 per cardiac cycle).

4. Observation perturbation level: the observations yk were perturbed by a random
variable drawn from the observation error pdf ∼ N (0, σ2

p) where σp represents the
standard deviation. For the synthetic case, σp was taken as 10% of the flow rate
values of the R-ICA and L-ICA. For each ith member of an ensemble the perturbed
observations were defined as yik = yk + eik, where eik is a random number whose
specific realization is obtained from a Gaussian distribution with mean zero and
standard deviation σp.

5. Evolution of parameters: The evolution of each member of the estimated parameter
ensemble was resembled by a random walk model. In the assimilation step, θk+1 was
defined as θk+1 = θk+τk where τk∼ N (0, σ2

τ ) is a small Gaussian random perturbation.
The updated parameters were allowed to vary continuously by choosing an arbitrary
small value for τk. Letting σ2

τ < κσ2
θ , it was noted that for 0 < κ < 0.05, improves the

convergence rate of the estimation algorithm. Following this, in the rest of the paper
we take τk ∼ N (0, 0.001). This is an empirical construction and the idea motivating it
comes from stochastic gradient methods with the aim of improving the search capacity
of the algorithm by the introduction of small random perturbation to the descent
direction. The final results are insensitive to the presence of this perturbation. The
aim was to obtain an estimate of xi by taking the limit as τ i → 0.
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Figure 3 shows the time evolution of estimated parameters resulting from the EnKF for
the six different ensemble size (qens = 10 to qens = 35). For all cases, the filter converged in
about 30 cardiac cycles and the estimated parameters converged to different values
(non-unique). Parameter estimation using the EnKF method is found in this study to be
very sensitive to the random realization of the initial ensemble and to the ensemble size.
These results also indicate the increased difficulties when several parameters are estimated
simultaneously.

Figure 4 shows the comparison between the target (blood flow waveform in the R-ICA and
L-ICA) and blood flow model simulations (predictions) based on 21 estimated parameters
using the six different ensemble size. There is a good agreement between the target and
predicted flow rate waveform for the cases with qens ≥ 25. These results shows the interplay
among influential parameters so that combinations of parameters with different errors can
still result in a good fit of the model solution to the observations, rendering the solution to
the parameter estimation problem non-unique.

In order to better compare the precision of the six cases, the percentage norm of the
analysis error in the converged model solution relative to the norm of the target flow rate
were calculated as:

‖ qa − qtar ‖
‖ qtar ‖

× 100% (9)

where qa denotes the converged solution (blood flow rate) when the model is simulated with
the parameters estimated using different ensemble size, qtar is the blood flow rate simulated
using target parameters, and ‖ · ‖ is the L2 norm. The analysis errors provide us with
information on the closeness of different cases and also they give the difference between the
predicted and the observed data. The percentage norm of the analysis error with the six
cases are shown in the Figure 5. It is seen that the error decreases with the increase in the
ensemble size. From this figure, the error does not decrease much after qens = 30.

Finally, the predicted pressure fluctuations in the arteries were compared with the
reference systolic blood pressure (SBP) and diastolic blood pressure (DBP). Here,
‘reference’ is defined as the pressure values (SBP and DBP) obtained by simulating the
model with the target parameters. The predictions (with the six cases) and the reference
pressure values are shown in Figure 6. The error in the predicted pressure values are the
lowest (<6%) for the cases with qens ≥ 30 as shown in Table 1. Pulse pressure (PP)
(SBP−DBP) is likely to be the clinical measure of importance. The error in PP (see Table
1) are also the lowest (<6%) for the cases with qens ≥ 30. The results show that the use of
two flow rate measurements (as observations in data assimilation) at a relatively proximal
locations (ICA’s) in the network can lead to a set of model parameters for reliable
prediction (with an error of less than 10%) of pressure fluctuations in the cerebral arteries.
Also, from the error analysis, as shown in the Figure 6 and the Table 1, an ensemble of size
qens= 30 seemed to be good enough to estimate 21 model parameters for the prediction of
cerebral arterial pressure with an error of less than 10%.

2.3.2 A test case with patient specific PC-MRA&MRI-based blood flow rates

The patient-specific data used in the current study have been acquired at the Department
of Neuroradiology at the Centre Hospitalier Régional Universitaire (CHRU), Montpellier,
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Figure 3: Estimated parameters with synthetic flow measurements using different ensemble
size (qens = 10 to qens = 35). The solid coloured line shows the estimated value over time
(divided by the corresponding target values), so that 1 (horizontal black lines) corresponds
to the target parameters.
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and L-ICA (left) to the target (synthetic flow rate waveforms). The model simulations
(predictions) were based on the 21 estimated parameters using the six different ensemble
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Figure 6: The predicted pressure fluctuations in the arteries compared with the reference
systolic blood pressure and diastolic blood pressure. The predictions were based on 21
estimated parameters using the six different ensemble size. ‘Reference’ pressure values were
obtained by simulating the model with the target parameters and are shown in solid black
lines. The names of the arteries are written using acronyms which correspond to those in
Table 2.

Table 1: The maximum percentage error in (i) the predicted pressure fluctuations (diastolic
and systolic) and (ii) the pulse pressure (PP) in the arteries. The predictions were based on
21 estimated parameters using the six different ensemble size.

Case Error in the predicted pressure values Error in the pulse
pressure

diastolic systolic

qens = 10 <26% <8% <18%
qens = 15 <13% <5% <18%
qens = 20 <13% <8% <25%
qens = 25 <11% <10% <10%
qens = 30 <6% <5% <6%
qens = 35 <6% <5% <6%

France.
Arterial systolic and diastolic blood pressures at rest of the patient were measured

before and after image acquisition using a brachial automatic sphygmomanometer (Maglife,
Schiller Medical). The systolic and diastolic values were 125 mmHg and 72 mmHg in the
right brachial artery and 115 mmHg and 72 mmHg in the left brachial artery. 2D
phase-contrast imaging was performed on a Siemens 3T Skyra MR Scanner. The ascending
aorta and the internal carotid arteries (right and left ICA’s) were considered for the
analysis of blood flow rates. More precisely, 2D Fast cine PC-MRI pulse sequence (one
5mm slice perpendicular to the arteries) with retrospective peripheral gating, and 32
frames covering the entire cardiac cycle were acquired. The imaging parameters for ICA’s
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were a velocity encoding sensitivity (Venc) of 80 cm·s−1, a repetition time (TR) of 28.86 ms,
an echo time (TE) of 8.79 ms, a flip angle of 15o, and a voxel size of
0.53 mm×0.53 mm×5.0 mm.

Figure 7 shows one pair of the acquired images (magnitude and phase contrast image) for
ICA’s. For the flow rate analysis, the Bio Flow Image software (http://www.tidam.fr/)
was employed. For each of the arteries, a region of interest (ROI) was segmented with
its lumen size defined by thresholding. For the ascending aorta, the imaging parameters
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Figure 7: PC-MRI of the patient-specific internal carotid arteries (right and left) showing
the blood flow through one of the selected slices. On the left is the magnitude image and
in the centre is the phase contrast image with Venc setting of 80 cm·s−1. The instantaneous
blood flow rate values, q(t) are acquired at each time frame and is plotted against time for
one cardiac cycle as shown on the right.

were: Venc = 200 cm·s−1, TR = 28.72 ms, TE = 8.79 ms, flip angle 15o and a voxel size
0.57 mm×0.57 mm×5.0 mm. Figure 8 shows one pair of the magnitude and phase contrast
image acquired for the ascending aorta. The corresponding blood flow rate is also shown in
the same figure.

A 3D Time of Flight magnetic resonance angiography (3D-TOF-MRA) of the circle of
Willis was obtained with the parameters: acquired voxel 0.31×0.31×0.55 mm, 28 slices,
TR=21.0 ms, TE=3.49 ms and flip angle of 28o.

The 3D model (and morphology) of the circle of Willis (see Figure 9) was determined
through segmentation of the TOF MRA using RadiAnt DICOM Viewer software (http:
//www.radiantviewer.com/). The geometric measurements of lengths and radii of CoW’s
blood vessel were measured from MRA and are shown in Table 2. The carotid vascular tree
could not be obtained because this acquisition requires the injection of contrast agent which
is impossible to achieve on healthy volunteers. The missing geometry of other arteries of the
full network (Figure 2b) was obtained from average data reported in the literature6,7.
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Figure 8: PC-MRI of the patient-specific ascending aorta showing the blood flow through
one of the selected slices. On the left is the magnitude image and in the centre is the phase
contrast image with Venc setting of 200 cm·s−1. The instantaneous blood flow rate values,
q(t) were acquired at each time frame and is plotted against time for one cardiac cycle as
shown on the right.
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Figure 9: A TOF MRI scan (left) and the resulting segmented 3D model of the complete
circle of Willis (right) for patient-specific case. The numbers on segmented model correspond
to the ID’s of the arterial segments in Table 2.

The inverse hemodynamic problem was set up as follows: using data assimilation, arterial
stiffness and WK3 model boundary parameters were sought for the network as shown in
Figure 2b. The acquired flow rate waveform for the right internal carotid (R-ICA) was used
as observations during EnKF assimilation steps in the parameter estimation problem. The
flow rate waveforms for the left internal carotid (L-ICA) was used in a posteriori validation
process. For the forward simulation during the data assimilation the 0D compartment model
was employed. At the inlet (ascending aorta, compartment #1 in Figure 2b), specific values
of flow rates, qin, were imposed as measured by PC-MRI (see Figure 8). Blood rheological
parameters were taken as: ρ = 1050 kg·m−3 and µ = 0.004 Pa·s. Although not detailed in
the paper for sake of conciseness, several assimilation scenarii were tested to investigate the
robustness of the whole procedure.

The results shown in the remaining of the paper were obtained under the following
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Table 2: Geometric parameters corresponding to arterial segments (and compartments) in
Figures 2 and 9 measured from MRI. The missing geometry (marked with an asterisk) of
larger arteries was adopted from the average data in the literature6,7. R indicates right; L
left.

id Name l(cm) r(cm) id Name l(cm) r(cm)

1 Ascending aorta (AA) 4.00∗ 1.200∗ 18 L.internal carotid II 0.50 0.200
2 Brachiocephalic 2.00∗ 1.120∗ 19 L.post. comm. artery (PCoA) 1.20 0.075
3 Aortic arch II 3.40∗ 0.620∗ 20 R.post. comm. artery (PCoA) 1.20 0.075
4 Aortic arch II 3.90∗ 1.070∗ 21 R.internal carotid II 0.50 0.200
5 L.common carotid (L.CC) 20.8∗ 0.250∗ 22 Basilar (BAS) 2.70 0.150
6 R.common carotid (R.CC) 17.7∗ 0.250∗ 23 L.middle cerebral artery (MCA) 11.9 0.143
7 R.subclavian 3.40∗ 0.423∗ 24 R.middle cerebral artery (MCA) 11.9 0.143
8 Thoracic aorta 15.6∗ 0.999∗ 25 L.anterior cerebral artery A1 (ACA, A1) 1.20 0.117
9 L.subclavian 3.40∗ 0.423∗ 26 R.anterior cerebral artery A1 (ACA, A1) 1.20 0.117
10 L.external carotid (L.ECA) 17.7∗ 0.150∗ 27 L.post. cerebral artery P1 (PCA, P1) 0.56 0.110
11 L.internal carotid I (L.ICA) 17.7∗ 0.200 28 R.post. cerebral artery P1 (PCA, P1) 0.56 0.110
12 R.internal carotid I (R.ICA) 17.7∗ 0.200 29 L.anterior cerebral artery A2 (ACA, A2) 10.3 0.120
13 R.external carotid (R.ECA) 17.7∗ 0.150∗ 30 R.anterior cerebral artery A2 (ACA, A2) 10.3 0.120
14 R.vertebral (R.VA) 14.8∗ 0.136∗ 31 Anterior comm. artery (ACoA) 0.30 0.074
15 R.brachial (R.BRA) 42.2∗ 0.403∗ 32 L.post. cerebral artery P2 (PCA, P2) 8.50 0.100
16 L.brachial (L.BRA) 42.2∗ 0.403∗ 33 R.post. cerebral artery P2 (PCA, P2) 8.50 0.100
17 L.vertebral (L.VA) 14.8∗ 0.136∗

assumptions on the unknown model parameters:
The patient-specific characterisation of the 0D blood flow model represented by Equation
(2.1) is achieved through the model parameters R,L,C and the WK3 boundary condition
parameters. The parameters R,L and C require the measurements of the length and the
radius of each arterial segment in the network, and these are measured from MRA. In
addition, the parameter C depends on the arterial stiffness that is determined by the Young’s
modulus (E) and the wall thickness (h). E cannot be determined directly using imaging
techniques and need further computations (or estimation). C is linear in Eh and this is the
unknown quantity to recover by data assimilation. The product of Young’s modulus and
thickness of arteries was assumed to be given by an empirical formula Eh = r(k1 e

k2r +k3)38

where the known radius (r) came from MRA. An estimation of the product Eh was found
by seeking an estimation of the unknown constants with their initial guesses as k1 = 2.0 ×
107 g·cm−1s−2, k2 = −22.0 cm−1 and k3 = 8.0 × 105 g·cm−1s−2. The same assumption on
WK3 boundary conditions for left and right pairs of terminal compartments as in section
2.3.1 was taken here, and the parameters RPi

, RDi
and Ci where i = 8, 13, 15, 24, 30, 33

denotes the compartment number were also considered as unknown model parameters. Thus,
the same 21 parameters as in the section 2.3.1 are estimated. Furthermore, for arteries with
r < 0.2 cm, the inertial effect was ignored39 in the 0D compartment model during the forward
simulation.

As in the section 2.3.1, the parameter estimation algorithm was initialised and executed
using the following parameters:

1. Ensemble size: from the findings of the synthetic case, qens= 30 appears to be a suitable
choice for the ensemble size.

2. Initialisation: The initial estimates for proximal resistances and compliances were taken
from Alastruey et al. 6 . The initial guesses for RD are chosen such that the ratio
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RP/(RP +RD) = 0.2, i.e RD = 4RP
40. The rest of the procedure for reparametrization

introducing θ and generation of the initial ensemble was as described in the section
2.3.1.

3. Number of observation: time series of blood flow rates from R-ICA (nobs= 1) were
taken as observations at every 0.04175 s (20 EnKF iterations per cardiac cycle).

4. Observation perturbation level: it has been reported that the blood flow rates measured
by 3T phase contrast MRI is accurate within 10 - 15% of the true flow rates41–43. Also,
using in vitro phantom studies, Tang et al. 44 demonstrated that the error in volume
flow rate measurements obtained with phase-contrast methods would be < 10% if the
ratio between the voxel length and vessel radius was less than 0.5. For the current case,
σp was taken as 10% of the flow rate values of the R-ICA. The perturbed observations
for the ith member of the ensemble were defined as yik = yk + eik, where eik is a random
number whose specific realization is obtained from a Gaussian distribution with mean
zero and standard deviation σp.

5. Evolution of parameters: the procedure was the same as described in the section 2.3.1.

The parameter estimation algorithm was executed for 60 s (approximately 72 cardiac
cycles). The above scenario for the parameter estimation was referred as scenario A. The
results from this scenario were obtained by assimilating 21 parameters and running a physical
model based on Ordinary Differential Equations like Eqs. (1)-(2).

A parameter estimation sensitivity analysis was performed using two more scenarii.
The objective of this section was to analyse the relative sensitivity of the estimated
parameters with respect to the observation location and their numbers nobs. It is recalled
that the previous scenario (scenario A), uses nobs = 1 and estimates 21 parameters using
the flow rate waveform for the R-ICA as observations. To see the impact of a change in the
target observations, the acquired flow rate waveform for the left internal carotid (L-ICA)
was considered as the target during EnKF assimilation steps while the a posteriori
validation process considers the flow rate waveforms in the right internal carotid (R-ICA).
This was called scenario B. Also, to see the impact of a change in the number of
observations, both available observations were considered as target which means nobs = 2.
This was called scenario C. All other parameters and settings were same as for the scenario
A. Table 3 provides a summary of the three scenarii.

Table 3: Main characteristics of the three scenarii considered.

Scenario Location of observation(s) Quantity used for a poseriori assessment

A R-ICA
flow rate waveform
for the L-ICA

B L-ICA
flow rate waveform
for the R-ICA

C
R-ICA and
L-ICA

-

brachial artery pressure:
• right: systolic 125 mmHg

diastolic 72 mmHg
• left: systolic 115 mmHg

diastolic 72 mmHg
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3 Results

Figure 10 shows the time evolution of estimated parameters with the three scenarii: scenario
A (in blue), scenario B (in red), and scenario C (in black). With all scenarii, the filter
converged in about 72 cardiac cycles and the estimated parameters converged to different
values for the three scenarii. The final estimates of the 21 parameters with their associated
uncertainties using the three scenarii are summarised in Table 4. What is important to
note, however, is that the three scenarii lead to very similar results in terms of flowrate.
This is illustrated in Figure 11 which shows the comparison between the observed (clinically
measured blood flow rates using MRI) and blood flow model simulations (predictions) based
on 21 estimated parameters using the three scenarii. Note that the red curve in Figure
11a and the blue curve in Figure 11b correspond to the a posteriori validation blood flow
waveforms with the scenario A and scenario B respectively. From the results, the comparison
between the assimilated 0D model and in vivo data (MRI) is fair. It is observed that
secondary peaks in the flow rate waveforms are reproduced with the model. Also, the 0D
compartment blood flow model and the EnKF parameter estimation algorithm are seen to
be compatible with nobs of more than 1. With all the three scenarii, the model simulated
waveforms have an error of less than 5% in the diastolic and systolic flow rate.

Table 5 summarizes the cardiac cycle-averaged (mean) and maximum (peak) volumetric
flow rates measured in the ICA’s using MRI and simulated values using the model with
estimated parameters. All mean, peak (systolic), and diastolic flow rates measurements and
model outputs (for the three scenarii) differ by less than 6%. Additionally, the mean and
peak values are compared with and found to be within the reported range in Ford et al. 45 .
Furthermore, it is observed that errors (see Table 5) in peak and mean values of the blood
flow rate in the ICA’s are least with the scenario C when compared with the MRI data.

The systolic blood pressure (SBP) and diastolic blood pressure (DBP) in major arteries
constituting the circle of Willis, vertebral arteries, and some larger arteries are predicted
using the scenarii A, B and C. The predicted pressure values (SBP and DBP) are shown
in Figure 12. With all the scenarii the predicted pressures in the arteries constituting the
CoW are within the physiological values of a healthy patient46. With the scenario B, slightly
higher SBP is predicted in all the arteries. Despite these little differences, one can, however,
conclude that the three scenarii give nearly the same pressure level predictions in the different
arteries.

4 Discussion

The objective of the test case is to identify a set of model parameters from measured values
(observations) of flow rate. Towards this end, a 0D compartment model is found to be much
faster than a classical 1D PDE-based blood flow model yet providing very similar results in
terms of blood pressure and flow rate signals (not shown). In determining the Kalman gain,
the EnKF uses estimates that are based on the ensemble size and the ensemble members.
After a synthetic case analysis, we have noticed that an ensemble size of 30 is suitable for
our problem involving 21 uncertain variables. The in vivo inversion shows good agreement
between the measured flow rate from MRI and the outcome of the assimilated compartment
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Figure 10: The patient-specific fitting. Time evolution of estimated parameters with the
three scenarii: scenario A (in blue), scenario B (in red), and scenario C (in black). The
shaded areas represent the standard deviation around the ensemble mean values (solid lines).
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Table 4: Estimated parameters (with associated errors) for the patient specific fitting with
the three scenarii: the scenarii A, B and C. The values of constants k1, k2, and k3 are in
×107 g·cm−1s−2, cm−1, and ×105 g·cm−1s−2 respectively. The proximal (RP ) and distal (RD)
resistances are in ×109 Pa·s·m−3 and the compliance (C) are in ×10−10 m3·Pa−1.

Parameter Initial guess Final EnKF estimate ± error

scenario A scenario B scenario C

k1 2.00 4.99 ± 0.36 5.70 ± 0.96 3.53 ± 0.19
k2 -22.0 -8.47 ± 0.32 -9.62 ± 0.60 -5.00 ± 0.27
k3 8.5 6.60 ± 0.20 10.52 ± 0.41 4.44 ± 0.25
RP8 0.02 0.031 ± 0.002 0.03 ± 0.002 0.028 ± 0.001
RP13 1.67 0.62 ± 0.05 0.62 ± 0.08 1.43 ± 0.13
RP15 0.13 0.15 ± 0.01 0.29 ± 0.02 0.24 ± 0.02
RP24 2.61 3.71 ± 0.26 2.15 ± 0.16 1.64 ± 0.13
RP30 3.70 1.23 ± 0.07 1.51 ± 0.12 6.81 ± 0.44
RP33 4.8 2.04 ± 0.22 2.98 ± 0.49 1.84 ± 0.15
RD8 0.08 0.46 ± 0.04 0.28 ± 0.001 0.31 ± 0.001
RD13 6.68 10.44 ± 1.40 9.23 ± 0.20 16.19 ± 0.22
RD15 0.52 0.71 ±0.09 1.48 ± 0.016 1.00 ± 0.01
RD24 10.44 20.42 ± 2.13 9.48 ± 0.08 1.69 ± 0.02
RD30 14.80 2.33 ± 0.33 2.40 ± 0.03 11.03 ± 0.08
RD33 19.32 1.70 ± 0.15 2.13 ± 0.04 4.53 ± 0.04
C8 38.78 31.90 ± 2.47 58.78 ± 6.86 46.44 ± 2.54
C13 1.27 1.73 ± 0.36 3.00 ± 0.65 3.86 ± 0.47
C15 2.58 2.00 ± 0.18 0.82 ± 0.10 1.88 ± 0.18
C24 1.16 0.04 ± 0.004 0.06 ± 0.006 0.17 ± 0.03
C30 0.82 0.49 ± 0.03 0.48 ± 0.04 2.12 ± 0.17
C33 0.62 0.37 ± 0.04 0.65 ± 0.07 0.66 ± 0.05

Table 5: Sensitivity analysis: comparison of the cardiac cycle-averaged (mean) and maximum
(peak) volumetric flow rates of model simulated values with scenarii A, B and C to measured
values using MRI in the ICA’s. The percentage difference between the model results and
the MRI data are stated in bold in parenthesis. The model results are also compared with
the reported values in Ford et al. 45 .

ICA Maximum (peak) flow rate (ml/s) Mean flow rate (ml/s)

MRI Model Ford
et al. 45

MRI Model Ford
et al. 45

scenario
A

scenario
B

scenario
C

scenario
A

scenario
B

scenario
C

Right 6.18
(±0.90)

6.05
(±0.89)
(2.12%)

6.03
(±0.91)
(2.5%)

6.07
(±0.90)
(1.8%)

7.76
(±1.55)

4.31
(±0.90)

4.33
(±0.89)
(0.46%)

4.25
(±0.91)
(1.4%)

4.32
(±0.90)
(0.23%)

4.62
(±0.93)

Left 5.94
(±0.82)

5.70
(±0.82)
(4.12%)

5.61
(±0.80)
(5.71%)

5.73
(±0.83)
(3.6%)

7.35
(±1.72)
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(±0.82)

4.18
(±0.82)
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4.18
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4.18
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(1.2%)

4.53
(±1.00)
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Figure 11: (11a) Comparison of the model simulated blood flow rate waveform with the
three scenarii: scenario A (in blue), scenario B (in red - as a posteriori validation), and
scenario C (in black) to the target (MRI data in green) in the R-ICA. The dotted black
line is the model simulation based on the initial estimate of parameters. The shaded
areas represent the standard deviation around the ensemble mean values. (11b) shows the
corresponding comparison of the blood flow in the L-ICA using scenario A (in blue as a
posteriori validation), scenario B (in red), and scenario C (in black).

model. The predicted SBP and DBP in the arteries are all within the physiological values
of a healthy patient.

The lack of clinically measured pressure in the brain prevents from validating the
predicted cerebral pressure results. The clinical procedure to acquire pressure data in the
cerebral arteries is mostly invasive in nature and requires inserting a pressure-sensing
catheter from the femoral or radial arteries, e.g Hasan et al. 8 and Ferns et al. 9 . In clinical
practice, the blood pressure in the brachial artery is usually measured at the upper arm. In
this study, the accuracy of the model is assessed by comparing the predicted pressure
results to the clinically measured SBP and DBP in the brachial artery. The following
predicted values were obtained in the right brachial artery with the three scenarii (mmHg):
(125.3±1.7, 70.9±1.7) with scenario A, (126.1±1.7, 70.6±1.7) with scenario B and
(124.7±1.6, 71.3±1.6) with scenario C. In the left brachial artery, the final predicted values
were (126.6±1.7, 70.9±1.7), (127.8±1.9, 70.4±1.9) and (125.7±1.6, 71.0±1.6) with the
scenarii A, B and C respectively. It is recalled that the clinically measured pressure values
in the right and the left brachial arteries are (125, 72) and (115, 72) respectively. The
agreement between the predicted and measured pressure values is thus rather good. Note
that the computed values obtained from the initial values of the 21 assimilated parameters
are (139, 87) and (138, 87) in the right and left brachial arteries respectively. This shows
the very positive impact of the data assimilation process in the derivation of a patient
specific model. From this, and in absence of direct pressure measurements in the cerebral
arteries, it is reasonable to believe that the predicted pressure in the upper region of the

21



AA CC VA BRA BAS ICA ECA PCA,P1 PCA,P2 PCoA MCA ACA,A1 ACA,A2 ACoA
50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140
p
(m

m
H
g
)

Predicted pressure range (diastolic to systolic)

 

 

scenario A scenario B scenario C

Figure 12: The systolic and diastolic blood pressures in the major arteries constituting the
circle of Willis, vertebral arteries, and larger arteries as predicted using the three scenarii.
The names of the arteries are written using acronyms which correspond to those in Table 2.
The data represent means ± standard deviation.

network is also in fair agreement with its actual value. This is also supported by the fact
that flow rate and pressure are physically linked through the model and that the computed
flow rate matches well the observations.

One of the limitations could be the choice of the formula relating Young’s modulus,
thickness, and radius for the cerebral arteries. This work assumes the same relation for both
large and cerebral arteries. The other factor might be the adaptation of missing data from
the literature, such as the geometrical parameters of the arteries. The parameter estimation
algorithm is only tested with a compartment model (reduced oder ODE) and not with a 1D
blood flow model. This is because the observed computational cost of the PDE-based model
for this configuration made it non feasible on standard computers.

Concerning the limitations and possible improvements, one could mention that the
approach assumes zero pressure loss at bifurcations. Improvement in the results can also be
brought with the use of different configurations of the 0D compartment numerical model.
Westerhof et al. 20 demonstrated that the error made by lumping can be reduced (mostly
for higher frequencies) by using the symmetrical network configuration (π element
network) instead of using the inverse L -type network. Future work includes studying the
sensitivity of the predicted pressure to change in the model assumptions. One should
however keep in mind that switching from L to π-type would increase the size of
optimization problem by 3/2 as there are 3 unknown parameters in each segment with π
instead of 2 for L 19. Also, this study should be seen as a proof of concept as solely one
clinical case has been considered. More extensive tests are definitely necessary before
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definite and final conclusions can be drawn.

5 Conclusion

A total of 21 parameters is estimated in a model of the circulation system of the circle of
Willis, using clinical data (flow transients) from three points in the network (one as input
of the model, another to define the cost function to be optimised, and the last to assess the
quality of the fitting), and an advanced Kalman filtering approach (EnKF) to optimise the
parameters.

To ease up the computational complexity and cost, a reduced order compartment model is
coupled with the data assimilation algorithm, leading to an affordable CPU time of less than
3 hours for the most complex case on a standard computer. A relatively good-patient specific
fitting is achieved even in the presence of partial geometrical parameters with values filled
from the literature. The study demonstrates how to use the EnKF as an optimization tool
to find parameters, and how to simplify the model and the number of variables to make the
inverse hemodynamic problem tractable. The methodology seems to have a large potential
in assessing patient-specific pressure waveforms at non-accessible (or difficult) locations in
the cerebral arterial tree.
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4. AWJ Hoksbergen, B Fülesdi, DA Legemate, and L Csiba. Collateral configuration of
the circle of willis transcranial color-coded duplex ultrasonography and comparison with
postmortem anatomy. Stroke, 31(6):1346–1351, 2000.

5. G Mulder, ACB Bogaerds, P Rongen, and FN van de Vosse. The influence of contrast
agent injection on physiological flow in the circle of willis. Medical engineering & physics,
33(2):195–203, 2011.
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16. Sanjay Pant, Benoit Fabrèges, J-F Gerbeau, and IE Vignon-Clementel. A methodological
paradigm for patient-specific multi-scale cfd simulations: from clinical measurements to
parameter estimates for individual analysis. International journal for numerical methods
in biomedical engineering, 30(12):1614–1648, 2014.

17. Laura M Ellwein, Hien T Tran, Cheryl Zapata, Vera Novak, and Mette S Olufsen.
Sensitivity analysis and model assessment: mathematical models for arterial blood flow
and blood pressure. Cardiovascular Engineering, 8(2):94–108, 2008.

18. Sanjay Pant, Chiara Corsini, Catriona Baker, Tain-Yen Hsia, Giancarlo Pennati, Irene E
Vignon-Clementel, Modeling of Congenital Hearts Alliance (MOCHA) Investigators,
et al. Data assimilation and modelling of patient-specific single-ventricle physiology
with and without valve regurgitation. Journal of biomechanics, 49(11):2162–2173, 2016.

19. Alfio Quarteroni, Stefania Ragni, and Alessandro Veneziani. Coupling between lumped
and distributed models for blood flow problems. Computing and Visualization in Science,
4(2):111–124, 2001.

20. Nicolaas Westerhof, Frederik Bosman, Cornelis J De Vries, and Abraham Noordergraaf.
Analog studies of the human systemic arterial tree. Journal of biomechanics, 2(2):
121IN1135IN3137IN5139–134136138143, 1969.
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