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Abstract—Information-Centric Networking (ICN) is an emerg-
ing network paradigm based on name-identified data objects and
in-network caching. Therefore, ICN contents are distributed in a
scalable and cost-efficient manner. With the rapid growth of IoT
traffic, ICN is intended to be a suitable architecture to support
IoT networks. In fact, ICN provides unique persistent naming,
in-network caching and multicast communications which reduce
the data producer load and the response latency. Using ICN in
an IoT environment requires a study of caching policies in terms
of cache placement strategies and cache replacement policies.
To this end, we address, in this paper, caching challenges with
the aim to identify which caching policies are suitable for IoT
networks. Simulation findings show that the combination of the
consumer-cache caching strategy and the RR cache replacement
policy is the most convenient in IoT environments in terms of
hop reduction ratio, server hit reduction and response latency.

I. INTRODUCTION

The Internet of Things (IoT) is a quiet revolution that is
changing the world in which we live. The connected world is
becoming a reality. It now appears in various domains; Smart
Home, Wearable, Retail, Smart Cities, Healthcare, Agriculture,
Automotive/Transportation, Industrial Automation and Energy
Management. IoT could be defined as the network of heteroge-
neous resource constrained devices. The term constraints refers
to battery, memory and computing power. Over the past six
years, IoT has been the subject of numerous researches aiming
to improve the data dissemination efficiency. This is due to
the explosive growth of the number of ”things” connected to
the Internet and the advancement in wireless communication
technologies. In fact, recent traffic statistics made by Cisco
show that the annual global IP traffic has surpassed the 1 ZB
(1 zettabyte = 1000 exabytes) threshold in 2016, and will reach
2.3 ZB by 2020 [11].

The Information-Centric Networking (ICN) [14] is a new
paradigm which represents a content-based approach in which
consumer’s requests are satisfied regardless of the content’s
location or the nature of its producer. ICN is a promising
candidate for IoT environment. In fact, this concept provides
unique and location-independent content names, in-network
caching and name-based routing. These features give ICN the
potential to become a key technology for data dissemination
in IoT. Indeed, it leverages easy data access and reduces both
the retrieval delay and the load on the data producer. The
ICN concept promises to eliminate significant communication
overhead caused by the distribution of commonly accessed
contents.

Thanks to the in-networking caching, consumer’s requests
are rarely satisfied by the producer since copies of the content
are stored in different locations. Caching is an important
component in ICN, it significantly reduces the amount traffic
and avoids bottleneck caused by publishing data at a unique lo-
cation. In addition, caches afford the reduction of the required
distance for data retrieval. The cache efficiency depends on
the adopted caching policy namely the caching strategy and
the cache replacement policy. The caching strategy identifies
the location of the cache nodes in the topology and the cache
replacement selects the content to be evicted from the cache
once this latter is full.

In this work, we have studied the impact of the different
well-known caching policies. We have implemented different
caching policies in an ICN-based IoT network using ccnSim
simulator [9]. We note that different combinations of these
approaches have implications on the performance of the net-
work in terms of response latency, the publisher’s load and the
distance to a content. These metrics are adopted as the design
objective for any ICN caching policy.

The rest of the paper is organized as follows. Section 2
gives an overview of ICN and its use under IoT networks.
We detail, in section 3, different caching policies, notably,
caching strategies and cache replacement policies. We evaluate
the different combination of caching policies, in section 4, and
we discuss the results in section 5. We finally conclude the
paper in section 6.

II. INFORMATION-CENTRIC NETWORKING: AN OVERVIEW

In this section, we provide an overview of ICN and we focus
in particular on Named Data Networking (NDN) architecture
as a solution for IoT environment.

A. Why ICN for IoT?

In addition to the explosive traffic growth, users expectations
have evolved. In fact, users seek to acquire data by connecting
with different fixed or mobile equipment belonging to het-
erogeneous environments. The rapid traffic growth and users
expectations have raised the need for a novel communication
model. This issue inspired both research community and
industrial so that a few solutions to match the new traffic
pattern have been proposed such as Content Distribution Net-
works (CDNs) and Peer-to-Peer (P2P) overlays. Despite their
advantages, CDN and P2P do not give a radical solution to
deal with the fundamental issues caused by the current Internet



architecture. Indeed, these approaches are overlaid on top of
the current networking architecture. With such fast growth of
content and users simultaneously, the incremental changes or
solutions to the current Internet architecture will hardly resist
to the Internet evolution. Therefore, many efforts have been
given in recent years to develop ”Clean Slate” solutions for the
architecture of the future Internet. The ICN paradigm is the
cornerstone of all proposed solutions. In ICN, thanks to the
naming scheme and in-network caching, requested contents
are addressed by their unique name and can be satisfied by
any cache holding it. As a consequence, caching content will
impact the life time of the IoT devices’ batteries: a request may
be satisfied by an active node while the information producer
remains in its sleep mode. ICN also addresses the security
requirement and targets to secure the contents themselves
rather than securing the channels connecting equipment with
each other. ICN is a promising candidate for IoT environment.
It can natively support IoT scenarios while improving data
dissemination and reducing network complexity.

B. ICN building blocks

Since 2007, many ICN architectures have been proposed.
All of them provide a location-independent naming scheme
and in-network caching, which are the staple key concepts of
ICN. However, each one has its specific design and its own
choice of features. Naming data objects is an important feature
in ICN. Names should be unique, persistent and location-
independent. According to the architecture, names can be
flat or hierarchical, human-readable or not [27]. Once the
contents are identified by their names, they may be stored
in many locations in the topology and then retrieved to satisfy
requests. To this end, ICN provides in-network caching and
specific forwarding strategies. After naming data, the in-
network caching is considered as the second important pillar
in ICN [28]. Any node in an ICN architecture can be a cache
node. The caching decision amounts to the adopted caching
approach. In ICN, there is two routing approach; a name-
based routing and a Name Resolution System (NRS) based
routing [1]. The name-based routing uses the name aggregation
to forward requests, that said, this approach uses hierarchical
namespaces. By against, NRS-based routing has not a naming
scheme restriction. This routing approach uses a third entity
which is responsible for binding the name with its current
location in the network.

C. NDN for IoT

The so-called NDN is considered as the most suitable ICN
architecture for IoT systems [5][3]. NDN uses hierarchical
human readable names and name-based routing approach. It
defines a receiver-driven, pull-based, robust connection-less
communication model. These features are beneficial for the
IoT systems in terms of easy and scalable data access, energy
efficiency, security and mobility support [4]. NDN architecture
is composed of three structures: Content Store(CS), Pending
Interest Table(PIT) and Forwarding Interest Base(FIB). Fig-
ure. 1 sketches the NDN architecture under IoT deployment.

Consumer1 is interested in content /Home/room1/Tmp,
so it sends an Interest packet towards n1. This latter, upon
receiving the Interest, checks its CS to verify if there is a copy
of the asked content in the cache. In the case of a cache hit, the
Data is sent back to Consumer1. In the case of a cache miss,
a PIT check is performed. When the content name is found as
an entry in the PIT, this means that there is a node other than
n1 that already ask for the same information. Then, the Interest
packet is discarded and another entry is added in the PIT with
n1 as the node that sends this request. If there is not a match in
the PIT, the Interest is redirected to the next node as prescribed
by its FIB. This latter stores a forwarding information to the
next hop using a longest prefix match between the name and
FIB entries. If the FIB does not give any information about the
next hop, that said there is a routing problem then the Interest
is deleted.

III. CACHING POLICIES

NDN approach natively supports the in-network caching
using the CS structure. With NDN architecture, cache nodes
belong to the request path and at the response time, nodes
decide to cache or not a copy of the content according
to the used caching strategy. We present, in the following
subsection, different in-network caching strategies proposed
in the literature.

A. In-network caching strategies

We explain in Figure. 2 the most cited caching strategies in
the literature. In this figure, green gateways represent cache
nodes.

Leave Copy Everywhere (LCE) strategy [22], as its name
indicates, stores a copy of requested contents in all the
nodes along the request path. By against, the Leave Copy
Down (LCD) [22] strategy leaves a copy in just one node
which is the gateway on one level down in the reverse path
towards the consumer. The edge-caching strategy [13] also
caches data in one node as with LCD, however, with this
strategy, the cache position is totally the opposite, it is the
last gateway in the reverse path towards the consumer. The
consumer-cache strategy [16] is a variant of the edge-caching.
In fact, since consumers are usually connected to edges, this
strategy proposes to keep a copy of the content in gateways
directly connected to a consumer. Another existing strategy
proposed for ICN architectures is the betweenness-centrality
strategy [7]. This latter depends on the betweenness-centrality
parameter which is calculated for each node in the topology.
It measures the number of times a node belongs to a path
between any two nodes in the topology. The node with the
highest betweenness-centrality parameter stores a copy of the
data. Finally, the ProbCache caching strategy [20] decides to
cache a copy with a probability inversely proportional to the
distance between the consumer and the producer. As a conse-
quence, this strategy privileges caching close to consumers.

We note that strategies presented above are not complex
and do not need costly calculations. Some other studies have
proposed more complex in-network caching strategies for ICN
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with the aim to increase the system performances. These
advanced researches target more outcomes such caching re-
dundancy [25][19], network congestion [6], supporting diverse
traffic types [24], routing of requests to the nearest cache [12].
It is worth-noticing that in-network caching efficiency can

be strictly dependent on the context in which it is used. In
fact, each context has its specificity in terms of traffic volume
and type, the frequency of content generation, consumers’
expectations and the ability of machines to support heavy
computation.

The cache placement is one of the pillars of ICN which
can significantly improve the performances of IoT networks.
It increases the data availability in the network. However,
it is essential to ensure that the in-network caching does
not increase the content redundancy in the network as with
LCE and that there are not unusable caching nodes. On the
other hand, since the cache size is limited, once the cache is
full, some stored content must be deleted to allow caching
new items. To this end, cache replacement policies are used
to choose the data object to be evicted. We present, in the
following subsection, proposed cache replacement policies.

B. Cache replacement policies

Limited cache sizes require the use of content replacement
policies. These policies affect the cache efficiency. In fact,
one of the objectives of the in-network caching was the
requirement for low content delivery delays. So, if finally
cached contents are evicted without satisfying any request
during their lifetime in a cache, this cache is inefficient. As a
consequence, in-network caching efficiency depends not only
on the caching strategies but the replacement policies as well.

Traditional cache replacement policies were designed for
computer architectures and databases [8]. The dominant cache
replacement policy is First In First Out (FIFO). This latter is
the default policy in NDN [9]. With FIFO, the oldest data
object is replaced by the newly arriving content. This policy
has a slightly simpler implementation in comparison to the
other strategies because it is the same used policy to store
contents in the cache.



TABLE I
CACHE REPLACEMENT POLICIES

Category Description Existing Policies Representative
Policy

Recency-based Keeps the recently referenced objects LRU, LRU-threshold, LRU*, LRU-hot,
SLRU, HLRU, LRU-LSC, SB-LRU

LRU

Frequency-based Keeps popular contents LFU, LFU-Aging, LFU-DA, swLFU,
Window-LFU

LFU

Randomized policy A simple random choice to avoid high com-
putation overhead

RR, RAND, HARMONIC RR

Size-based Evicts large contents SIZE, PSS, CSS SIZE

With the appearance of P2P and CDN, cache replacement
policies have begun to be used in web caches [18][26]. Exist-
ing policies in the web can be classified into four categories;
the recency-based policies, the frequency-based policies, the
size-based policies and the randomized policies. The rationale
behind the recency-based category is that recently requested
contents are more likely to be requested again in the near
future. These policies are more efficient in the case of high
temporal locality of request streams. This means that there is
an important number of consumers interested in a common
set of data objects. The most known policy in this category
is the Least Recently Used (LRU). LRU has been adopted in
a considerable number of caching policies [20][10][23][16].
This eviction policy replaces the data object that is not being
used for the longest time. LRU is efficient for line speed
operations because both search and replacement tasks can be
performed in constant time (O(1)).

Frequency-based policies are based on objects popularity.
The rationale behind this category is to keep popular objects
in the cache to satisfy a high number of requests. For instance,
this category is efficient with web pages that provide news or
new films. The least frequently used (LFU) policy is the simple
variant in this category. With LFU, the cache node keeps track
of the number of times a data object satisfies a request. LFU
purges the item with the lowest content frequency. However,
unlike LRU, the implementation of LFU is computationally
expensive since it cannot be implemented in such a way that
both search and replacement tasks can be executed in constant
time. The drawback of LFU policy is that popular contents
which become unpopular remain in the cache for a long time.

The randomized policies are specifically designed for a
cache with complex data structures. The RR policy is the sim-
plest one. It is a Random Replacement policy which replaces
a randomly chosen cached item. Obviously, this strategy is not
complex in terms of search and replacement tasks.

Finally, the size-based category depends on object size as
the primary factor. This category comes with the logic to evict
large object in order to provide room for many small objects.
This category works well with web sites that maintain more
text file than multimedia. The basic policy in this category is
SIZE.

We conclude that FIFO, LRU, RR and Size replacement
policies can perform both operations in constant time, the
complexity of LFU replacement operation is O(c) and grows
linearly with the cache size c. We summarize in Table. I

different categories of cache replacement. LRU, LFU, FIFO,
RR and SIZE are already used on the web since a long
time. Some other strategies are recently proposed in the
context of ICN. In [17], authors proposed a Universal Caching
(UC) strategy designed for ICN. UC makes the replacement
decision depending on a parameter assigned to any incoming
content. This parameter includes the distance from the source,
reachability of the router and the frequency of the content
access. Al-Turjman et al. in [2] introduced the Least-Value
First (LVF) cache replacement policy which takes into account
the delay for retrieving content as well as the popularity and
age of content experienced by a node.

It is worth noting that both content replacement policies
and caching strategies are important to evaluate the in-network
caching performance and may complement each other. For
this reason, we evaluate in the next section the performance
of some combination of caching policies. In this work, we
implemented and tested the existing caching policies in an
NDN-based IoT environment.

IV. PERFORMANCE EVALUATION

This section details a performance evaluation of our dif-
ferent caching policies for information-centric IoT networks.
For this purpose, we use the ccnSim simulator [9]. It is a
C++ framework under the OMNeT++ discrete-event simulator
which implements the routine to simulate an NDN network.
Every NDN node implements the three system elements men-
tioned in section I, in the form of layers. A core layer which
is responsible for PIT management and the communication
with other layers. A cache layer since CS acts according to
a caching strategy and a replacement strategy. And finally,
a strategy layer which takes the decision about interest for-
warding. CcnSim uses by default the shortest path forwarding
strategy. In the following, we describe adopted metrics, the
simulation scenario and the obtained results.

A. Simulation scenario

Analyzing the request popularity distribution in different
geographical locations, S. K. Fayazbakhsh et al. deduced,
in [13], that the web distribution, used by all works on ICN,
behaves as a Zipfian distribution. Virtually, all the ICN studies
use the Zipf distribution. However, under IoT, we do not refer
to this distribution since it is designed for web-based contents
and Internet applications. In our case, INTEREST packets are
uniformly distributed.



TABLE II
SYSTEM PARAMETERS

Parameter Meaning Values
C Cache size 4 chunks
| F | Producers 4000 sensors
F File size 1 chunk
Cons Consumers 25 consumers
λ Arrival rate 1
R Replicas 1
FS Forwarding strategy SPR
transmission delay Transmission Delay [2; 78]ms
simulation time Simulation Time 200s

In [21], D. Rossi and G. Rossini show that in existing studies
the ratio of the cache size C over the catalogue size F | F |,
C

F |F | ∈
[
10−5; 10−1

]
. In our simulation, we set C

F |F | = 10−3.
We choose the cache size C = 4 chunks, the file number
| F |= 4000 files and the file size F = 1 chunk. We set
λ = 1. We consider a topology following the Transit-Stub
model with N = 260 nodes. The topology consists of 2 transit
domains with on average 10 transit nodes connected each one
to 2 stub domains with on average 6 stub nodes. Figure. 3
presents our TS topology. The 4000 sensors are connected
to 40 Gateways. We consider 25 consumers and we suppose
that all consumers are already connected at the beginning
of the simulation. We generate the topology with GT-ITM1

(Georgia Tech Internetwork Topology Models). Concerning
the transmission delay, they are set by GT-ITM. Values are
in the range of [2; 78]ms.

Our simulations were carried out with a real IoT data
extracted from ADREAM [15] building in LAAS-CNRS lab-
oratory which is a smart building.

B. Performance metrics

In our performance evaluation, we measure the hop reduc-
tion ratio, the server hit reduction ratio and the response
latency.

The Hop Reduction Ratio α represents how faster, in term
of hops, a content is fetched from a cache than from the server.
It is analytically represented by equation Eq. 1. Each client i
sends R requests. For each request r from i the hop reduction
ratio is calculated. It is the ratio of the path length from the
client to the cache that satisfies the request hir over the path
length from the client to the server Hir. The hop reduction
ratio of a simulation is the average over N clients of averages
over R requests per client of hir

Hir
.

α = 1−
∑N

i=1

∑R
r=1

hir
Hir

R

N
(1)

The Server hit Reduction Ratio β expresses the alleviation
of the server load. It is the ratio of the number of requests
satisfied by the server serverhit over the totality of requests,
which represent requests satisfied by the server and by caches
(see Eq. 2).

1http://www.cc.gatech.edu/projects/gtitm/

β = 1−
∑N

i=1 serverhiti∑N
i=1 totalReqi

(2)

The Response Latency Tir is the duration between the
delivery of a content request r from a client i and the
response, knowing that the transmission delays between nodes
are randomly set. In equation Eq. 3, we calculate γ the average
of the response latency over N clients that send R requests.

γ =

∑N
i=1

∑R
r=1 Tir

R

N
(ms) (3)

C. Simulation Results

Experiments have been run with different caching poli-
cies. We use different combinations of caching strategies
and cache replacement policies. In our scenario, all contents
have the same size. In addition, in IoT networks, contents
are generally small since they represent sensors’ values. So,
we will not consider the SIZE cache replacement policy.
CcnSim is distributed with native support of LRU policy. We
have enhanced it to support RR, LFU and FIFO. As caching
strategies, it already provides LCE, LCD and ProbCache. We
have implemented Btw, edge-caching and consumer-caching
strategies. We remind that these simulations have been carried
out to evaluate the server hit reduction ratio, the hop reduction
ratio and the response latency.

Figure. 4 plots the system performances. We respectively
plot in Figure. 4a, Figure. 4c and Figure. 4d, the server
hit reduction ratio, the hop reduction ratio and the response
latency. We remark that different caching strategies have the
same behavior vis-a-vis the cache replacement policies. We
first analyze caching strategies independently of used cache
replacement policies.

The LCE strategy stores copies everywhere, which make
content available at every node. However, caches fill up
quickly and consequently, contents are rapidly evicted from
the cache which increases the number of evictions and leads to
cache misses. This explains the fact that this strategy performs
the worst results in this scenario. To better understand the
server hit reduction ratio results, we plot in Figure. 4b the
average number of evictions for each caching strategy. We
notice that the increase in the number of evictions diminishes
the cache efficiency. The LCE strategy has the highest number
of evictions as it was expected. Figure. 4b shows that the
closer the cache nodes are to the producer the higher the
number of evictions is. This is because nodes close to the
producers belong to many request paths by against nodes close
to consumers belongs only to request paths starting from this
consumer. Since the LCD strategy selects the cache nodes at
one level down from the producer, it has a high number of
evictions. With ProbCache, contents can be cached on more
than one node within the request path probably near to the
consumer. However, with Btw, there is one cache node in
each request path and generally in the middle of the path.
ProbCache and Btw have a very close number of evictions.
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This latter is slightly lower under Btw. Finally, the edge-
caching and Consumer-cache have almost the same number
of evictions.

With LCE caching strategy, the server hit reduction ratio
(Figure. 4a) is from 0.32 to 0.56. This value means that only
56% of requests are satisfied from cache nodes. The hop
reduction ratio (Figure. 4c) for this strategy is between 0.44
and 0.67. Which means that paths are reduced by 67% in term
of number of hops. Concerning the third metric, which is the
response latency (Figure. 4d), it is about 120ms to 221ms.

The caching strategy LCD decides to cache contents at
the node on one level down from the response source (Pro-
ducer/cache node). After a certain number of requests, it tends
to LCE and all path nodes become caches. For this reason,
LCD results, are not so good as LCE. Figure. 4c shows that
LCD records from 53% to 69% of hop reduction, and requests
take about 144ms to 187ms of response latency (Figure. 4d).
Its server hit reduction is about 0.50 to 0.68.

Concerning ProbCache and Btw, cache nodes are selected
in the middle of the request path and probably more close to
consumers, in the case of ProbCache. Simulation results of
these two strategies are medium comparing to other caching
strategies. The hop reduction ratio using ProbCache and Btw
is respectively about 0.56 to 0.73 and 0.60 to 0.75. The same
for response latency, ProbCache and Btw reports respectively
about 108ms to 176ms and 106ms to 168ms. Figure. 4a shows
between 0.65 and 0.81 of server hit reduction under ProbCache
and from 0.68 to 0.82 for Btw.

Results in [13] showed that the edge nodes are the best
placement for cache nodes. Our findings confirm this con-
clusion. In fact, edge-caching reports good results. Under this
strategy, we measured from 0.77 to 0.89 in server hit reduction,
between 0.67 and 0.80 of hop reduction ratio, and 102ms to
145ms as response latency.

We detail now the results of consumer-cache strategy. This
latter stores copies in nodes attached to consumers which
allow these consumers to easily reach requested contents. This
strategy is a variant of the edge-caching strategy. Consumer-
cache has the best simulation results because requests are, in
most cases, satisfied by the first hop node. We report for this
strategy from 0.84 to 0.92 of server hit reduction. The hop
reduction ratio is about 0.76 to 0.89, this implies that requests
only cross 11% of hops on the path towards the producer.
Finally, with this strategy, the response latency varies from
93ms to 121ms.

We analyze now the cache replacement policies results. Fig-
ure. 4 shows that RR outperforms other policies. To understand
this point, it is worth noticing that these findings are strictly
dependent on the request distribution. In fact, in the web, with
a Zipfian distribution, requests privilege popular contents. As
a consequence, it is more advantageous to keep in cache nodes
the most requested contents. In this sense LRU and LFU were
designed. These policies may perform better results in the web
environment. By against, in an IoT environment, requests are
uniformly distributed and all sensors have close probabilities
of being solicited. In other words, contents are randomly
requested. This explains why, in our scenario, the RR policy
outperforms LRU and LFU. The FIFO policy aims to keep
each content as long as possible in the cache node regardless
of the frequency with which each content is requested and
the evicted item is not uniformly selected. This policy may
be suitable for closed queue-based request distribution. In our
scenario, FIFO presents the worst results.

Figure. 4a reports from 0.56 to 0.92 of server hit reduction
with RR policy. Under LRU policy, from 43% to 89% of
requests are satisfied by cache nodes. This figure portrays
between 0.38 and 0.87 of server hit reduction using LFU.
Finally, with FIFO policy, results are almost from 0.32 to
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0.84. Figure. 4c gives the same performance results. RR policy
outperforms other replacement policies with 0.67 to 0.89 for
hop reduction ratio. This ratio is about 0.58 to 0.83 and
between 0.53 and 0.80 under LRU and LFU respectively. With
FIFO policy, requests only cross from 24% to 56% of the
path towards the producer. The response latency, depicted in
Figure. 4d, is the lowest with RR policy. It is about 93ms to
120ms. With LRU and LFU, it respectively varies from 108ms
to 170ms and from 113ms to 185ms. The FIFO policy reports
the longest response latency with 121ms to 221ms.

V. DISCUSSION

In addition to caching policies, the caching efficiency also
depends on the application and consumers expectations. In
fact, the notion of content’s popularity makes sense in the
web but not in an IoT network. This comes down to the
nature of the content; some contents in the web as videos,
pictures, weather, news, etc. may be more popular than others.
For instance, a new film or news that everyone is talking
about. Popular contents are more solicited by consumers, as a
consequence, many copies of this data will be available in the
network and it will be easier to reach this information. In this
case, caches are not quickly filled because if a popular content
already exists in the cache, just an update of this version
is performed. By against, in an IoT environment, all sensors
have the same probability of being solicited, so cache nodes
store copies of different contents and become full faster. In

addition, the request frequency is more important in IoT than
in the web since in IoT there are many monitoring applications
that periodically request for sensor’s values. We conclude that
caching policies in the IoT scenario is more complicated.

Based on our findings, we conclude that, in an IoT scenario,
the couple consumer-cache caching strategy and RR cache
replacement policy performs the best results. We can also
remark that when the number of evictions, under a specific
caching strategy is not very important, the choice of the used
cache replacement policy does not significantly impact the
results. In fact, with the consumer-cache caching strategy and
the edge-caching strategy, the number of evictions is very low
(Figure. 4b), as a consequence, the cache replacement policy
is not frequently used. We then report a minor difference using
different cache replacement policies with these two strategies.
However, under LCE strategy, which has a very high number
of evictions, we can obviously notice the influence of the cache
replacement policy choice on the system performance results.

To recapitulate, in an IoT environment:
• the choice of caching strategies is a compromise between

data availability and the caching cost. For instance, with
LCE we have a very high availability, nevertheless, it
performs the worst results. However, with consumer-
cache strategy, although the number of cache nodes is
much fewer than LCE, it has best results. This is due to
the fact that consumer-cache makes content more close
to consumers.



• the cache replacement policies are highly dependent on
the content distribution. The RR policy is recognized for
uniform distribution, while for Zipfian distribution, LRU
outperforms other cache replacement policies.

• an ideal caching policy should minimize the number of
cache evictions. For that, it is necessary to avoid caching
in nodes with high traffic as the backbone or in transit
domains, otherwise, caches will fill up very quickly. In
addition, it is important to keep in the cache only useful
copies and this depends, as we said in the previous item,
on the content distribution.

VI. CONCLUSION

In this paper, we focused on the advantage of ICN paradigm
in IoT scenarios. Since the number of connected things
increases significantly year after year, it is important to
pay particular attention to its evolution. As a few other
researches, we admit that ICN has the potential to become
a key technology for data dissemination in IoT networks.
The in-network caching assumes an important role in the
ICN efficiency. To this end, we have proposed in this work,
a comparative study of different caching policies, with the
purpose to appoint the most suitable combination of caching
strategy and cache replacement policy for IoT networks. To
evaluate the performance of each caching policy, we calculated
the server hit reduction ratio, the hop reduction ratio and the
response latency. Results showed that the combination of the
consumer-cache strategy and the RR policy exhibits superior
performance.
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