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Hybrid High-Order methods for finite deformations of
hyperelastic materials

Mickael Abbas1, Alexandre Ern2, Nicolas Pignet1,2

August 19, 2017

Abstract

We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic
materials undergoing finite deformations. The HHO methods use as discrete unknowns piece-
wise polynomials of order k ≥ 1 on the mesh skeleton, together with cell-based polynomials
that can be eliminated locally by static condensation. The discrete problem is written as
the minimization of the broken nonlinear elastic energy where a local reconstruction of the
displacement gradient is used. Two HHO methods are considered: a stabilized method where
the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is
added to the discrete energy functional, and an unstabilized method which reconstructs a
stable higher-order gradient and circumvents the need for stabilization. Both methods sat-
isfy the principle of virtual work locally with equilibrated tractions. We present a numerical
study of both HHO methods on test cases with known solution and on more challenging three-
dimensional test cases including finite deformations with strong shear layers and cavitating
voids. We assess the computational efficiency of both methods, and we compare our results
to those obtained with an industrial software using conforming finite elements and to results
from the literature. Both methods exhibit robust behavior in the quasi-incompressible regime.

Keywords: Hyperelasticity – Finite deformations – Hybrid High-Order methods
– Quasi-incompressible materials

1 Introduction1

Hybrid-High Order (HHO) methods have been introduced a couple of years ago for linear elasticity2

problems in [18] and for diffusion problems in [19]. A review on diffusion problems can be found3

in [20], and a Péclet-robust analysis for advection-diffusion problems in [16]. Moreover, an open-4

source implementation of HHO methods using generic programming tools is available through the5

Disk++ library described in [10]. Recent developments of HHO methods in computational me-6

chanics include the incompressible Stokes equations (with possibly large irrotational forces) [21],7

the incompressible Navier–Stokes equations [22], Biot’s consolidation problem [4], and nonlinear8

elasticity with small deformations [6]. The goal of the present work is to devise and evaluate nu-9

merically HHO methods for hyperelastic materials undergoing finite deformations. Such problems10
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are particularly challenging since finite deformations induce an additional geometric nonlinearity11

on top of the one present in the stress-strain constitutive relation. Moreover, hyperelastic ma-12

terials are often considered near the incompressible limit, so that robustness in this situation is13

important.14

The discrete unknowns in HHO methods are face-based unknowns that are piecewise polynomi-15

als of some order k ≥ 1 on the mesh skeleton (k ≥ 0 for diffusion equations). Cell-based unknowns16

are also introduced in the discrete formulation. These additional unknowns are instrumental for17

the stability and approximation properties of the method and can be locally eliminated by using18

the well-known static condensation technique. In the present nonlinear context, this elimination is19

performed at each step of the nonlinear iterative solver (typically Newton’s method). Classically,20

the devising of HHO methods hinges on two ideas: (i) a reconstruction operator that typically21

reconstructs locally from the local cell- and face-based unknowns a displacement field or a tensor-22

valued field representing its gradient; (ii) a stabilization operator that enforces in a weak sense on23

each mesh face the consistency between the local face unknowns and the trace of the unknowns24

from the two cells sharing the face in question. A fairly subtle design of the stabilization operator25

has been proposed in [18,19] leading to O(hk+1) energy-error estimates, where h is the mesh-size,26

for linear diffusion and elasticity problems and smooth solutions. HHO methods offer several27

advantages: (i) the construction is dimension-independent; (ii) general meshes (including fairly28

general polytopal mesh cells and non-matching interfaces) are supported; (iii) a local formulation29

using equilibrated fluxes is available, and (iv) HHO methods are computationally attractive owing30

to the static condensation of the cell unknowns and the higher-order convergence rates.31

HHO methods have been bridged to Hybridizable Discontinuous Galerkin (HDG) methods32

in [11]. HDG methods, as originally devised in [12], are formulated in terms of a discrete triple33

which approximates the flux, the primal unknown, and its trace on the mesh skeleton. The HDG34

method is then specified by the discrete spaces for the above triple, and the stabilization operator35

that enters the discrete equations through the so-called numerical flux trace. The difference36

between HHO and HDG methods is twofold: (i) the HHO reconstruction operator replaces the37

discrete HDG flux (a similar rewriting of an HDG method for nonlinear elasticity can be found38

in [29]), and, more importantly, (ii) both HHO and HDG penalize in a least-squares sense the39

difference between the discrete trace unknown and the trace of the discrete primal unknown (with a40

possibly mesh-dependent weight), but HHO uses a nonloncal operator in each mesh cell boundary41

that delivers one-order higher approximation than just penalizing pointwise the difference as in42

HDG.43

Discretization methods for linear and nonlinear elasticity have undergone a vigorous devel-44

opment over the last decade. For discontinuous Galerkin (dG) methods, we mention in particu-45

lar [14, 26, 32] for linear elasticity, and [35, 41] for nonlinear elasticity. HDG methods for linear46

elasticity have been coined in [38] (see also [13] for incompressible Stokes flows), and extensions47

to nonlinear elasticity can be found in [29,34,37]. Other recent developments in the last few years48

include, among others, Gradient Schemes for nonlinear elasticity with small deformations [23],49

the Virtual Element Method (VEM) for linear and nonlinear elasticity with small [3] and finite50

deformations [8,43], the (low-order) hybrid dG method with conforming traces for nonlinear elas-51

ticity [44], the hybridizable weakly conforming Galerkin method with nonconforming traces for52

linear elasticity [30], the Weak Galerkin method for linear elasticity [42], and the discontinuous53

Petrov–Galerkin method for linear elasticity [7].54

In the present work, we devise and evaluate numerically two HHO methods to approximate55

hyperelastic materials undergoing finite deformations. Following the ideas of [29,41] developed in56

the context of dG and HDG methods, both HHO discrete solutions are formulated as stationary57
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points of a discrete energy functional that is defined from the exact energy functional by replacing58

the displacement gradient in the Piola–Kirchoff tensor by its reconstructed counterpart. In the59

first HHO method, called stabilized HHO (sHHO), a quadratic term associated with the HHO-60

stabilization operator is added to the discrete energy functional. For linear elasticity, one recovers61

the original HHO method from [18] if the displacement gradient is reconstructed locally in the62

tensor-valued polynomial space ∇
X
Pk
d(T ;Rd) where k is the degree of the polynomials attached to63

the mesh skeleton and T is a generic mesh cell (and if the displacement divergence is reconstructed64

specifically in Pk
d(T ;R)); the notation is defined more precisely in the following sections. In the65

present nonlinear context, the gradient is reconstructed in Pk
d(T ;Rd×d) (which is a strict superspace66

of ∇
X
Pk
d(T ;Rd)); the same reconstruction space is considered for HDG in [29] for nonlinear67

elasticity with finite deformations (where the stabilization operator is, however, different), and a68

similar choice with symmetric-valued reconstructions is considered for HHO in [6] for nonlinear69

elasticity with small deformations. The main reason for reconstructing the gradient in a larger70

space stems from the fact that the reconstructed gradient of a test function acts against a discrete71

Piola–Kirchoff tensor which is not in gradient form. For an insightful discussion and a numerical72

example in the context of the Leray–Lions problem, we refer the reader to [17, §4.1]. In nonlinear73

elasticity, the use of stabilization can lead to numerical difficulties since it is not clear beforehand74

how large the stabilization term ought to be; see [39, 40] for a related discussion on dG methods75

and [3, 8] for VEM. Moreover, [29, Section 4] presents an example where spurious solutions can76

appear in an HDG discretization if the stabilization parameter is not large enough.77

Motivated by these difficulties, we also consider a second method called unstabilized HHO78

(uHHO). Inspired by the recent ideas in [28] on stable dG methods without penalty parameters,79

we consider an HHO method where the gradient is reconstructed in a higher-order polynomial80

space, and no stabilization is added to the discrete energy. Focusing for simplicity on matching81

simplicial meshes, the reconstruction space can be either the Raviart–Thomas–Nédélec (RTN)82

space RTNk
d(T ;Rd×d) = Pk

d(T ;Rd×d) ⊕ Pk
d(T ;Rd) ⊗X or the polynomial space Pk+1

d (T ;Rd×d).83

Reconstructing the gradient in the first space is preferable (since the discrete unknowns attached84

to the mesh skeleton live in the space spanned by the normal component of fields from this space),85

but considering the second space makes the implementation simpler since standard polynomial86

bases can be considered. For both choices, we prove, using the ideas in [28], that the reconstructed87

gradient is stable, thereby circumventing the need to introduce and tune any stabilization param-88

eter. The situation is, however, less favorable concerning the approximation properties since the89

reconstruction in Pk+1
d (T ;Rd×d) leads to convergence rates of order O(hk) in the linear case for90

smooth solutions, i.e., the method still converges but at a suboptimal rate in ideal situations. We91

mention that, on general meshes, reconstructions in RTN spaces based on a simplicial submesh92

of each mesh cell have been recently considered in [17]. Another recent approach to stable re-93

construction for dG methods avoiding RTN spaces but still requiring a simplicial submesh can be94

found in [25].95

This paper is organized as follows. In Section 2, we present the nonlinear hyperelasticity model96

problem and we introduce some basic notation. The two HHO methods are presented in Section 3,97

where we also discuss some theoretical and implementation aspects. Section 4 then contains test98

cases with analytical (or computable) solution. We first consider two- and three-dimensional99

traction test cases with manufactured solution to assess the convergence rates delivered by sHHO100

and uHHO in the nonlinear case. Then, we consider the dilatation of a quasi-incompressible101

annulus; in this test case, proposed in [29, Section 5.2], the exact solution can be approximated102

to a very high accuracy by solving a differential equation in the radial coordinate. We also103

compare the computational efficiency of both methods, and we consider a continuous Galerkin (cG)104
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approximation based on H1-conforming finite elements using the industrial software code_aster105

[15]. Section 5 considers three application-driven, three-dimensional examples: the indentation of106

a compressible and quasi-incompressible rectangular block (where we also provide a comparison107

with the industrial software code_aster), a hollow cylinder deforming under compression and108

shear, and a sphere expanding under traction with two cavitating voids. These last two examples109

are particularly challenging, and our results are compared to the HDG solutions reported in [29].110

2 The nonlinear elasticity problem111

We are interested in finding the static equilibrium configuration of an elastic continuum body112

that occupies the domain Ω0 in the reference configuration and that undergoes finite deformations113

under the action of a body force f in Ω0, a traction force t on the Neumann boundary Γn, and a114

prescribed displacement ud on the Dirichlet boundary Γd. Here, Ω0 ⊂ Rd, d ∈ {2, 3}, is a bounded115

connected polytopal domain with unit outward normal N and with Lipschitz boundary Γ := ∂Ω116

decomposed in the two relatively open subsets Γn and Γd such that Γn ∪ Γd = Γ, Γn ∩ Γd = ∅,117

and Γd has positive Hausdorff-measure (so as to prevent rigid-body motions). In what follows, we118

write v for scalar-valued fields„ v or V for vector-valued fields, V for second-order tensor-valued119

fields, and V for fourth-order tensor-valued fields.120

As is customary for elasticity problems with finite deformations, we adopt the Lagrangian
description (cf, e.g, the textbooks [5, 9]). Due to the deformation, a point X ∈ Ω0 is mapped to
a point x = X + u(X) in the equilibrium configuration, where u : Ω0 → Rd is the displacement
mapping. The continuum problem consists in finding a displacement mapping u : Ω0 → Rd

satisfying by the following equations:

−DivX(P ) = f in Ω0, (1a)

u = ud on Γd, (1b)
P N = t on Γn, (1c)

where P := P (X,F (u)) is the first Piola–Kirchhoff stress tensor and F (u) = I + ∇
X
u is the121

deformation gradient. The deformation gradient takes values in Rd×d
+ which is the set of d × d122

matrices with positive determinant. The governing equations (1) are stated in Lagrangian form;123

in particular, the gradient and divergence operators are taken with respect to the coordinate X124

of the reference configuration (we use the subscript X to indicate it).125

We restrict ourselves to bodies consisting of homogeneous hyperelastic materials for which126

there exists a strain energy density Ψ(F ) defined by a function Ψ : Rd×d
+ → R. We assume that127

the first Piola–Kirchhoff stress tensor is defined as P = ∂F Ψ so that the associated elastic modulus128

is given by A = ∂2
F F Ψ. We denote by V the set of all kinematically admissible displacements129

which satisfy the Dirichlet condition (1c), and we define the energy functional E : V → R such130

that131

E(v) =

∫
Ω0

Ψ(F (v)) dΩ0 −
∫

Ω0

f ·v dΩ0 −
∫

Γn

t·v dΓ. (2)

The static equilibrium problem (1) consists of seeking the stationary points of the energy functional132

E which satisfy the following weak form of the Euler–Lagrange equations:133

0 = DE(u)[δv] =

∫
Ω0

P (F (u)) : ∇
X

(δv) dΩ0 −
∫

Ω0

f ·δv dΩ0 −
∫

Γn

t·δv dΓ. (3)
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for all virtual displacements δv satisfying a zero boundary condition on Γd. We assume that134

the strain energy density function Ψ is polyconvex (cf e.g [1]) so that local minimizers of the135

energy functional exist. In the present work, we will mainly consider hyperelastic materials of136

Neohookean type extended to the compressible range such that137

Ψ(F ) =
µ

2

(
F : F − d

)
− µ ln J +

λ

2
Θ(J)2, (4)

where J ∈ R>0 is the determinant of F , µ and λ are material constants, and Θ : R>0 → R138

is a smooth function such that Θ(J) = 0 ⇔ J = 1 and Θ′(1) 6= 0.The function Θ represents139

the volumetric deformation energy, and the potential Ψ defined by (4) satisfies the principle of140

material frame indifference [9]. For further insight into the physical meaning, we refer the reader141

to [36, Chap.7]. For later use, it is convenient to derive directly from (4) the first Piola–Kirchhoff142

stress tensor143

P (F ) = µ(F − F−T ) + λJΘ(J)Θ′(J)F−T , (5)

where we have used that ∂F J = JF−T , as well as the elastic modulus

A(F ) =µ(I ⊗ I + F−T⊗F−1)− λJΘ(J)Θ′(J)F−T⊗F−1

+ λ
[
JΘ(J)(JΘ′′(J) + Θ′(J)) + (JΘ′(J))2

]
F−T ⊗ F−T . (6)

where ⊗, ⊗ and ⊗ are defined such that {◦ ⊗ •}ijkl = {◦}ij{•}kl, {◦⊗•}ijkl = {◦}il{•}jk and144

{◦⊗•}ijkl = {◦}ik{•}jl, for all 1 ≤ i, j, k, l ≤ d.145

3 The Hybrid High-Order method146

In this section, we present the unstabilized and stabilized HHO methods to be considered in our147

numerical tests.148

3.1 Discrete setting149

Let (T h)h>0 be a shape-regular sequence of affine simplicial meshes with no hanging nodes of the150

domain Ω0. A generic mesh cell in T h is denoted T ∈ T h, its diameter hT , and its unit outward151

normal nT . It is customary to define the global mesh-size as h = maxT∈T h hT . The mesh faces152

are collected in the set Fh, and a generic mesh face is denoted F ∈ Fh. The set Fh is further153

partitioned into the subset Fh
i which is the collection of mesh interfaces and the subset Fh

b which154

is the collection of mesh faces located at the boundary Γ. We assume that the mesh is compatible155

with the partition of the boundary Γ into Γd and Γn, and we further split the set Fh
b into the156

disjoint subsets Fh
b,d and Fh

b,n with obvious notation. For all T ∈ T h, F∂T is the collection of the157

mesh faces that are subsets of ∂T .158

Let k ≥ 1 be a fixed polynomial degree. In each mesh cell T ∈ T h, the local HHO unknowns are159

a pair (vT ,v∂T ), where the cell unknown vT ∈ Pk
d(T ;Rd) is a vector-valued d-variable polynomial160

of degree at most k in the mesh cell T , and v∂T ∈ Pk
d−1(F∂T ;Rd) =

Ś

F∈F∂T
Pk
d−1(F ;Rd) is a161

piecewise, vector-valued polynomial of degree at most k on each face F ∈ F∂T . We write more162

concisely that163

(vT ,v∂T ) ∈ Uk
T := Pk

d(T ;Rd)× Pk
d−1(F∂T ;Rd). (7)

The degrees of freedom are illustrated in Figure 1, where a dot indicates one degree of freedom164

(and is not necessarily computed as a point evaluation). More generally, the polynomial degree165
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Figure 1: Face (black) and cell (gray) degrees of freedom in Uk
T for k = 1 and k = 2 in the two

dimensional case.

k of the face unknowns being fixed, HHO methods can be devised using cell unknowns that are166

polynomials of degree l ∈ {k − 1, k, k + 1}, see [11]; these variants are not further considered167

herein. We equip the space Uk
T with the following local discrete strain semi-norm:168

|(vT ,v∂T )|21,T := ‖∇
X
vT ‖2L2(T )

+ ‖γ
1
2
∂T (vT − v∂T )‖2

L2(∂T )
, (8)

with the piecewise constant function γ∂T such that γ∂T |F = h−1
F for all F ∈ F∂T where hF is the169

diameter of F . We notice that |(vT ,v∂T )|1,T = 0 implies that both functions vT and v∂T are170

constant and take the same constant value.171

3.2 Local gradient reconstruction172

A crucial ingredient in the devising of the HHO method is a local gradient reconstruction in each173

mesh cell T ∈ T h. This reconstruction is materialized by an operator G
T

: Uk
T → R(T ;Rd×d),174

where R(T ;Rd×d) is some linear space composed of Rd×d-valued polynomials in T . For all175

(vT ,v∂T ) ∈ Uk
T , the reconstructed gradient G

T
(vT ,v∂T ) ∈ R(T ;Rd×d) is obtained by solving the176

following local problem: For all τ ∈ R(T ;Rd×d),177

(G
T

(vT ,v∂T ), τ )L2(T ) = (∇
X
vT , τ )L2(T ) + (v∂T − vT , τ nT )L2(∂T ). (9)

Solving this problem entails inverting the mass matrix associated with a chosen basis of the178

polynomial spaceR(T ;Rd×d). In the present work, we consider three choices for the reconstruction179

space R(T ;Rd×d). The choice R(T ;Rd×d) := Pk
d(T ;Rd×d) is considered in the context of the180

stabilized HHO method which is further described in Section 3.4. The other two choices are181

R(T ;Rd×d) = RTNk
d(T ;Rd×d) with the Raviart–Thomas–Nédélec (RTN) space RTNk

d(T ;Rd×d) =182

Pk
d(T ;Rd×d) ⊕ Pk

d(T ;Rd) ⊗X, or R(T ;Rd×d) = Pk+1
d (T ;Rd×d). These choices are considered in183

the context of the unstabilized HHO method which is further described in Section 3.3.184

Lemma 1 (Boundedness and stability) The gradient reconstruction operator defined by (9)185

enjoys the following properties: (i) Boundedness: There is α], uniform w.r.t. h, so that, for all186

T ∈ T h,187

‖G
T

(vT ,v∂T )‖L2(T ) ≤ α]|(vT ,v∂T )|1,T , ∀(vT ,v∂T ) ∈ Uk
T . (10)

(ii) Stability: Provided RTNk
d(T ;Rd×d) ⊆ R(T ;Rd×d), there is α[ > 0, uniform w.r.t. h, so that,188

for all T ∈ T h,189

‖G
T

(vT ,v∂T )‖L2(T ) ≥ α[|(vT ,v∂T )|1,T , ∀(vT ,v∂T ) ∈ Uk
T (11)
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Proof. The boundedness property (10) follows by applying the Cauchy–Schwarz inequality to the

right-hand side of (9) and a discrete trace inequality so as to bound ‖τ nT ‖L2(∂T ) by h
− 1

2
T ‖τ‖L2(T ).

The proof of the stability property (11) is inspired from [28]; we sketch it for completeness.
Let (vT ,v∂T ) ∈ Uk

T . We need to find a partner τ ∈ R(T ;Rd×d) so that (i) |(vT ,v∂T )|21,T ≤
c(G

T
(vT ,v∂T ), τ )L2(T ) and (ii) ‖τ‖L2(T ) ≤ c|(vT ,v∂T )|1,T for some constant c uniform w.r.t. h.

Owing to our assumption RTNk
d(T ;Rd×d) ⊆ R(T ;Rd×d), we can build τ ∈ RTNk

d(T ;Rd×d), and
we do so by prescribing its canonical degrees of freedom in T as follows:

(τ ,φ)L2(T ) = (∇
X
vT ,φ)L2(T ), ∀φ ∈ Pk−1

d (T ;Rd×d),

(τ nT ,ϕ)L2(∂T ) = (γ∂T (v∂T − vT ),ϕ)L2(∂T ), ∀ϕ ∈ Pk
d−1(F∂T ;Rd).

With this choice, the above property (i) holds true since (G
T

(vT ,v∂T ), τ )L2(T ) = |(vT ,v∂T )|21,T ,190

whereas (ii) can be shown by using the classical stability of RTN functions in terms of their191

canonical degrees of freedom. �192

Remark 2 (General meshes) The above stability proof exploits the properties of the RTN func-193

tions on simplicial meshes. If the meshes contain hanging nodes or cells with more general shapes,194

one possibility considered in the recent work [17] is to reconstruct the gradient using piecewise RTN195

functions on a simplicial submesh of the mesh cell T ∈ T h. Another construction has been recently196

devised in [25] for dG methods using a high-order lifting of the jumps on a simplicial submesh.197

3.3 The unstabilized HHO method198

Let us set Pk
d(T h;Rd) :=

Ś

T∈T h Pk
d(T ;Rd) and Pk

d−1(Fh;Rd) :=
Ś

F∈Fh Pk
d−1(F ;Rd). The global199

space of discrete HHO unknowns is defined as200

Uk
h := Pk

d(T h;Rd)× Pk
d−1(Fh;Rd). (12)

For an element vh ∈ Uk
h, we use the notation vh = (vT h ,vFh). For any mesh cell T ∈ T h,

we denote by (vT ,v∂T ) ∈ Uk
T the local components of vh attached to the mesh cell T and the

faces composing its boundary, and for any mesh face F ∈ Fh, we denote by vF the component
attached to the face F . The Dirichlet boundary condition on the displacement field can be enforced
explicitly on the discrete unknowns attached to the boundary faces in Fh

b,d. We set

Uk
h,d :=

{
(vT h ,vFh) ∈ Uk

h | vF = Πk
F (ud), ∀F ∈ Fh

b,d

}
, (13a)

Uk
h,0 :=

{
(vT h ,vFh) ∈ Uk

h | vF = 0, ∀F ∈ Fh
b,d

}
, (13b)

where Πk
F denotes the L2-orthogonal projector onto Pk

d−1(F ;Rd).201

The discrete counterpart of the energy functional E defined by (2) is the discrete energy202

functional Eu
h : Uk

h → R is defined by203

Eu
h (vT h ,vFh) =

∑
T∈T h

{∫
T

Ψ(F
T

(vT ,v∂T )) dT −
∫
T
f ·vT dT

}
−

∑
F∈Fh

b,n

∫
F
t·vF dF, (14)

for all (vT h ,vFh) ∈ Uk
h,d, with the local deformation gradient operator F

T
: Uk

T → R(T ;Rd×d)204

such that F
T

(vT ,v∂T ) := I + G
T

(vT ,v∂T ) where the local gradient reconstruction space is205

R(T ;Rd×d) = RTNk
d(T ;Rd×d) or R(T ;Rd×d) = Pk+1

d (T ;Rd×d).206
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The discrete problem consists in seeking for the stationary points of the discrete energy func-207

tional Eu
h . This leads to the following discrete equations: Find (uT h ,uFh) ∈ Uk

h,d such that208 ∑
T∈T h

(P (F
T

(uT ,u∂T )),G
T

(δvT , δv∂T ))L2(T ) =
∑
T∈T h

(f , δvT )L2(T ) +
∑

F∈Fh
b,n

(t, δvF )L2(F ), (15)

for any generic virtual displacement (δvT h , δvFh) ∈ Uk
h,0. The discrete problem (15) expresses209

the principle of virtual work at the global level. As is often the case with discrete formulations210

based on face-based discrete unknowns, it is possible to devise a local principle of virtual work in211

terms of face-based discrete tractions that comply with the law of action and reaction. This has212

been shown in [11] for HHO methods applied to the diffusion equation, and the argument extends213

immediately to the present context. Let T ∈ T h be a mesh cell and let F ∈ F∂T be one of its214

faces. Let nTF denote the restriction to F of the unit outward normal vector nT . Let us define215

the discrete traction216

T T,F = Πk
F (ΠR

T
(P (F

T
(uT ,u∂T )))·nTF ), (16)

where ΠR
T
denotes the L2-orthogonal projector onto R(T ;Rd×d). (Note that the projector Πk

F is217

not needed if R(T ;Rd×d) = RTNk
d(T ;Rd×d) since the normal component on ∂T of functions in218

RTNk
d(T ;Rd×d) is in Pk

d−1(∂T ;Rd).)219

Lemma 3 (Equilibrated tractions) The following local principle of virtual work holds for all220

T ∈ T h: For all δvT ∈ Pk
d(T ;Rd),221

(P (F
T

(uT ,u∂T )),∇
X
δvT )L2(T ) −

∑
F∈F∂T

(T T,F , δvT )L2(F ) = (f , δvT )L2(T ), (17)

where the discrete tractions T T,F ∈ Pk
d−1(F ;Rd) defined by (16) satisfy the following law of action

and reaction for all F ∈ Fh
i ∪ Fh

b,n:

T T−,F + T T+,F = 0, if F ∈ Fh
i with ∂T− ∩ ∂T+ = F , (18a)

T T,F = Πk
F (t), if F ∈ Fh

b,n with ∂T ∩ Γn = F . (18b)

Proof. We follow the ideas in [11]. The local principle of virtual work (17) follows by considering
the virtual displacement ((δvT δT,T ′)T ′∈T h , (0)F∈Fh) ∈ Uk

h,0 in (15), with the Kronecker delta such
that δT,T ′ = 1 if T = T ′ and δT,T ′ = 0 otherwise, and observing that, owing to (9), we have

(f , δvT )L2(T ) = (P (F
T

(uT ,u∂T )),G
T

(δvT ,0))L2(T )

= (ΠR
T
P (F

T
(uT ,u∂T )),G

T
(δvT ,0))L2(T )

= (ΠR
T

(P (F
T

(uT ,u∂T ))),∇
X
δvT )L2(T )

−
∑

F∈F∂T

(ΠR
T

(P (F
T

(uT ,u∂T )))nTF , δvT )L2(F )

= (P (F
T

(uT ,u∂T )),∇
X
δvT )L2(T ) −

∑
F∈F∂T

(T T,F , δvT )L2(F ).

Similarly, the balance properties (18) follow by considering, for all F ∈ Fh
i ∪ Fh

b,n, the virtual222

displacement ((0)T∈T h , (δvF δF,F ′)F ′∈Fh) ∈ Uk
h,0 in (15) (with obvious notation for the face-based223

Kronecker delta), and observing that both δvF and T T±,F are in Pk
d−1(F ;Rd). �224
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Finally, we discuss the choice of the gradient reconstruction space where one can set ei-225

ther R(T ;Rd×d) = RTNk
d(T ;Rd×d) or R(T ;Rd×d) = Pk+1

d (T ;Rd×d). The first choice rests on226

firmer theoretical foundations, but the price to pay is that one needs the RTN basis functions227

which are often not available in nonlinear elasticity codes. The key property with R(T ;Rd×d) =228

RTNk
d(T ;Rd×d) is that the normal component on ∂T of functions in RTNk

d(T ;Rd×d) is in the229

space Pk
d−1(∂T ;Rd) used for the face-based HHO unknowns (the normal components of such func-230

tions actually span Pk
d−1(∂T ;Rd)). Proceeding as in [18] then leads to the following important231

commuting property:232

G
T

(IT,∂T (v)) = ΠR
T

(∇
X
v), ∀v ∈ H1(T ;Rd), (19)

with the reduction operator IT,∂T : H1(T ;Rd) → Uk
T such that IT,∂T (v) = (Πk

T (v),Πk
∂T (v)),233

where Πk
T is the L2-orthogonal projector onto Pk

d(T ;Rd) and Πk
∂T is the L2-orthogonal projector234

onto Pk
d−1(F∂T ;Rd). Proceeding as in [18, Thm. 8] and using the approximation properties of the235

RTN finite elements, one can show that for the linear elasticity problem and smooth solutions, the236

energy error (
∑

T∈T h ‖∇X
u −G

T
(uT ,u∂T )‖2

L2(T )
)
1
2 converges as hk+1|u|Hk+2(Ω0). Considering237

instead the choice R(T ;Rd×d) = Pk+1
d (T ;Rd×d) leads to a larger space for the local gradient238

reconstruction (for d = 3, the local space is of dimension 45 (k = 1) and 108 (k = 2) for RTN239

functions and of dimension 90 (k = 1) and 180 (k = 2) for Rd×d-valued polynomials of order240

(k + 1)), which is the price to pay to exploit simple polynomial bases. Furthermore, the above241

property on the normal component of functions in R(T ;Rd×d) no longer holds. Therefore, one no242

longer has (19); however, one can infer from (9) the weaker property243

G
T

(ĨT,∂T (v)) = ∇
X

(Πk
T (v)), ∀v ∈ H1(T ;Rd), (20)

with the reduction operator ĨT,∂T : H1(T ;Rd) → Uk
T such that ĨT,∂T (v) = (Πk

T (v),Πk
T (v)|∂T ).244

Proceeding as in [18, Thm. 8], one can show that for the linear elasticity problem and smooth245

solutions, the energy error (
∑

T∈T h ‖∇X
u − G

T
(uT ,u∂T )‖2

L2(T )
)
1
2 converges as hk|u|Hk+1(Ω0).246

This convergence rate will be confirmed by the experiments reported in Section 4.1. Finally,247

regardless of the choice of R(T ;Rd×d), testing (9) with a function τ = qI ∈ Pk
d(T ;Rd×d) with q248

arbitrary in Pk
d(T ;R), one can show that249

Πk
T (tr(G

T
(IT,∂T (v))) = Πk

T (∇·v), ∀v ∈ H1(T ;Rd). (21)

The presence of the projector Πk
T on the left-hand side indicates that tr(G

T
(IT,∂T (v))) may be250

affected by a high-order perturbation hampering the argument of [18, Prop. 3] to prove robustness251

in the quasi-incompressible limit for linear elasticity. Nevertheless, we observe absence of locking252

in the numerical experiments performed in Sections 4.2 and 5.253

3.4 The stabilized HHO method254

The discrete unknowns in the stabilized HHO method are exactly the same as those in the255

unstabilized HHO method. The only difference is in the form of the discrete elastic energy.256

In the stabilized HHO method, the gradient is reconstructed locally in the polynomial space257

R(T ;Rd×d) = Pk
d(T ;Rd×d) for all T ∈ T h. Since the norm ‖G

T
(vT ,v∂T )‖L2(T ) does not control258

the semi-norm |(vT ,v∂T )|T for all (vT ,v∂T ) ∈ Uk
T (as can be seen from a simple counting ar-259

gument based on the dimension of the involved spaces), we need to augment the discrete elastic260
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energy by a stabilization semi-norm. This semi-norm is based on the usual stabilization operator261

for HHO methods Sk
∂T : Uk

T → Pk
d−1(F∂T ;Rd) such that, for all (vT ,v∂T ) ∈ Uk

T ,262

Sk
∂T (vT ,v∂T ) = Πk

∂T

(
v∂T −Dk+1

T (vT ,v∂T )|∂T − (vT −Πk
T (Dk+1

T (vT ,v∂T )))|∂T
)
, (22)

with the local displacement reconstruction operator Dk+1
T : Uk

T → Pk+1
d (T ;Rd) such that, for263

all (vT ,v∂T ) ∈ Uk
T , D

k+1
T (vT ,v∂T ) ∈ Pk+1

d (T ;Rd) is obtained by solving the following Neumann264

problem in T : For all w ∈ Pk+1
d (T ;Rd),265

(∇
X
Dk+1

T (vT ,v∂T ),∇
X
w)L2(T ) = (∇

X
vT ,∇X

w)L2(T ) + (v∂T − vT ,∇X
wnT )L2(∂T ), (23)

and additionally enforcing that
∫
T D

k+1
T (vT ,v∂T )dT =

∫
vT dT . Comparing with (9), one readily266

sees that ∇
X
Dk+1

T (vT ,v∂T ) is the L2-orthogonal projection of G
T

(vT ,v∂T ) onto the subspace267

∇
X
Pk+1
d (T ;Rd) ( Pk

d(T ;Rd×d) = R(T ;Rd×d). Following [18, Lemma 4], it is straightforward to268

establish the following stability and boundedness properties (the proof is omitted for brevity).269

Lemma 4 (Boundedness and stability) Let the gradient reconstruction operator be defined270

by (9) with R(T ;Rd×d) = Pk
d(T ;Rd×d). Let the stabilization operator be defined by (22). Then,271

there exist real numbers 0 < α[ < α], uniform w.r.t. h, such that272

α[|(vT ,v∂T )|1,T ≤
(
‖G

T
(vT ,v∂T )‖2

L2(T )
+ ‖γ

1
2
∂TS

k
∂T (vT ,v∂T )‖L2(∂T )

) 1
2

≤ α]|(vT ,v∂T )|1,T ,

(24)
for all T ∈ T h and all (vT ,v∂T ) ∈ Uk

T , with γ∂T defined below (8).273

Remark 5 (HDG-type stabilization) In general, HDG methods are presented with the stabi-274

lization operator S̃
k
∂T (vT ,v∂T ) = v∂T−vT in the equal-order case, or S̃

k
∂T (vT ,v∂T ) = Πk

∂T (v∂T−275

vT ) if the cell unknowns are taken to be polynomials of order (k+1) (see [31]). The definition (22),276

introduced in [18], enjoys, even in the equal-order case, the high-order approximation property277

‖γ
1
2
∂TS

k
∂T (IT,∂T (v))‖L2(∂T ) ≤ chk+1

T |v|Hk+2(T ) with the reduction operator IT,∂T : H1(T ;Rd) →278

Uk
T defined below (19) and c uniform w.r.t. h.279

In the stabilized HHO method, the discrete energy functional Es
h : Uk

h → R is defined as

Es
h(vT h ,vFh) =

∑
T∈T h

{∫
T

Ψ(F
T

(vT ,v∂T ))−
∫
T
f ·vT dT

}
−

∑
F∈Fh

b,n

∫
F
t·vF dF

+
∑
T∈T h

β(γ∂TS
k
∂T (vT ,v∂T ),Sk

∂T (vT ,v∂T ))L2(∂T ), (25)

with a user-dependent weight of the form β = β0µ with typically β0 ≥ 1 (in the original HHO
method for linear elasticity [18], the choice β0 = 2 is considered). The discrete problem consists
in seeking the stationary points of the discrete energy functional: Find (uT h ,uFh) ∈ Uk

h,d such

10



that ∑
T∈T h

(P (F
T

(uT ,u∂T )),G
T

(δvT , δv∂T ))L2(T )

+
∑
T∈T h

β(γ∂TS
k
∂T (uT ,u∂T ),Sk

∂T (δvT , δv∂T ))L2(∂T )

=
∑
T∈T h

(f , δvT )L2(T ) +
∑

F∈Fh
b,n

(t, δvF )L2(F ), (26)

for all (δvT h , δvFh) ∈ Uk
h,0. As for the unstabilized HHO method , the discrete problem (26)280

expresses the principle of virtual work at the global level, and following [11], it is possible to281

devise a local principle of virtual work in terms of face-based discrete tractions that comply282

with the law of action and reaction. Let T ∈ T h be a mesh cell and let F ∈ F∂T be one283

of its faces. Let nTF denote the restriction to F of the unit outward normal vector nT . Let284

Ŝ
k
∂T : Pk

d−1(∂T ;Rd)→ Pk
d−1(∂T ;Rd) be defined such that285

Ŝ
k
∂T (θ) = Πk

∂T

(
θ − (I −Πk

T )Dk+1
T (0,θ)

)
. (27)

Comparing (22) with (27), we observe that Sk
∂T (vT ,v∂T ) = Ŝ

k
∂T (v∂T−vT ) for all (vT ,v∂T ) ∈ Uk

T .286

Let Ŝ
k∗
∂T : Pk

d−1(∂T ;Rd) → Pk
d−1(∂T ;Rd) be the adjoint operator of Sk

∂T with respect to the287

L2(∂T ;Rd)-inner product. We observe that the stabilization-related term in (26) can be rewritten288

as289

(γ∂TS
k
∂T (uT ,u∂T ),Sk

∂T (δvT , δv∂T ))L2(∂T ) = (Ŝ
k∗
∂T (γ∂T Ŝ

k
∂T (u∂T − uT )), δv∂T − δvT ))L2(∂T ).

(28)
Finally, let us define the discrete traction290

T T,F = Πk
T

(P (F
T

(uT ,u∂T )))·nTF + βŜ
k∗
∂T (γ∂T Ŝ

k
∂T (u∂T − uT )). (29)

Lemma 6 (Equilibrated tractions) The following local principle of virtual work holds for all291

T ∈ T h: For all δvT ∈ Pk
d(T ;Rd),292

(P (F
T

(uT ,u∂T )),∇
X
δvT )L2(T ) −

∑
F∈F∂T

(T T,F , δvT )L2(F ) = (f , δvT )L2(T ), (30)

where the discrete tractions T T,F ∈ Pk
d−1(F ;Rd) defined by (29) satisfy the following law of action

and reaction for all F ∈ Fh
i ∪ Fh

b,n:

T T−,F + T T+,F = 0, if F ∈ Fh
i with ∂T− ∩ ∂T+ = F , (31a)

T T,F = Πk
F (t), if F ∈ Fh

b,n with ∂T ∩ Γn = F . (31b)

Proof. Proceed as in the proof of Lemma 3; see also [11]. �293

Finally, let us briefly comment on the commuting properties of the reconstructed gradient in294

Pk
d(T ;Rd×d). Proceeding as above, one obtains295

G
T

(IT,∂T (v)) = Πk
T

(∇
X
v), ∀v ∈ H1(T ;Rd), (32)

11



where the reduction operator IT,∂T : H1(T ;Rd) → Uk
T is defined below (19). Proceeding as296

in [18, Thm. 8], one can show that for the linear elasticity problem and smooth solutions, the energy297

error (
∑

T∈T h ‖∇X
u−G

T
(uT ,u∂T )‖2

L2(T )
)
1
2 converges as hk+1|u|Hk+2(Ω0). This convergence rate298

will be confirmed by the experiments reported in Section 4.1. Moreover, taking the trace in (32),299

we infer that (compare with (21))300

tr(G
T

(IT,∂T (v)) = Πk
T (∇·v), ∀v ∈ H1(T ;Rd), (33)

which is the key commuting property used in [18] to prove robustness for quasi-incompressible301

linear elasticity. This absence of locking is confirmed in the numerical experiments performed in302

Sections 4.2 and 5 in the nonlinear regime. We refer the reader to [6] for a detailed mathematical303

analysis of symmetric-valued gradients reconstructed in Pk
d(T ;Rd×d

sym).304

Remark 7 (Choice of β0) For the HHO method applied to linear elasticity, a natural choice305

for the stabilization parameter is β0 = 2 [18]. To our knowledge, there is no general theory306

on the choice of β0 in the case of finite deformations of hyperelastic materials. Following ideas307

developed in [39,40] for dG and in [3] for VEM, one can consider to take (possibly in an adaptive308

fashion) the largest eigenvalue (in absolute value) of the elastic modulus A. This choice introduces309

additional nonlinearities to be handled by Newton’s method, and may require some relaxation.310

Another possibility discussed in [8] for VEM methods is based on the trace of the Hessian of the311

isochoric part of the strain-energy density Ψ. Such an approach bears similarities with the classic312

selective integration for FEM, and for the Neohookean materials considered herein, this choice313

implies to take β0 = 1. Finally, let us mention that [29, Section 4] presents an example where314

spurious solutions can appear if the stabilization parameter is not large enough; however, too large315

values of the parameter can also deteriorate the conditioning number of the stiffness matrix and316

can cause numerical instabilities in Newton’s method.317

3.5 Nonlinear solver and static condensation318

Both nonlinear problems (15) and (26) are solved using Newton’s method. Let n ≥ 0 be the index
of the Newton’s step. Given an initial discrete displacement (uT h ,uFh)0 ∈ Uk

h,d, one computes at
each Newton’s step the incremental displacement (δuT h , δuFh)n ∈ Uk

h,0 and updates the discrete
displacement as (uT h ,uFh)n+1 = (uT h ,uFh)n + (δuT h , δuFh)n. The linear system of equations
to be solved is∑

T∈T h

(A(F
T

(uT ,u∂T )n) : G
T

(δuT , δu∂T )n,G
T

(δvT , δv∂T ))L2(T )

+
∑
T∈T h

β(γ∂TS
k
∂T (δuT , δu∂T )n,Sk

∂T (δvT , δv∂T ))L2(∂T ) = −Rh((uT h ,uFh)n, (δvT h , δvFh)),

(34)
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for all (δvT , δv∂T ) ∈ Uk
h,0, with the residual term

Rh((uT h ,uFh)n, (δvT h , δvFh))

=
∑
T∈T h

(P (F
T

(uT ,u∂T )n),G
T

(δvT , δv∂T ))L2(T )

−
∑
T∈T h

(f , δvT )L2(T ) −
∑

F∈Fh
b,n

(t, δvF )L2(F )

+
∑
T∈T h

β(γ∂TS
k
∂T (uT ,u∂T )n,Sk

∂T (δvT , δv∂T ))L2(∂T ), (35)

where β = 0 in the unstabilized case and β = β0µ in the stabilized case, the gradient being319

reconstructed in the corresponding polynomial space. It can be seen from (34) that the assembling320

of the stiffness matrix on the left-hand side is local (and thus fully parallelizable).321

As is classical with HHO methods [18], and more generally with hybrid approximation meth-322

ods, the cell unknowns δun
T h in (34) can be eliminated locally using a static condensation (or Schur323

complement) technique. Indeed, testing (34) against the function ((δvT δT,T ′)T ′∈T h , (0)F∈Fh) with324

Kronecker delta δT,T ′ and δvT arbitrary in Pk
d(T ;Rd), one can express, for all T ∈ T h, the cell325

unknown δun
T in terms of the local face unknowns collected in δun

∂T . As a result, the static326

condensation technique allows one to reduce (34) to a linear system in terms of the face-based327

unknowns only. This reduced system is of size NFh × dim(Pk
d−1(T ;Rd)) where NFh denotes the328

number of mesh faces (Dirichlet boundary faces can be eliminated by enforcing the boundary329

condition explicitly), and its stencil is such that each mesh face is connected to its neighbouring330

faces that share a mesh cell with the face in question.331

The implementation of the HHO methods is realized using the open-source library DiSk++332

[10] which provides generic programming tools for the implementation of HHO methods. The333

Dirichlet boundary conditions are enforced weakly by means of Lagrangian multipliers, and the334

linear systems are solved using the direct solver PardisoLU from the MKL library. Dunavant335

quadratures [24] are used with an order 2 for k = 1 and 4 for k = 2 for stabilized HHO methods,336

and with an order 4 for k = 1 and 6 for k = 2 for unstabilized HHO methods.337

4 Test cases with known solution338

The goal of this section is to evaluate the stabilized and unstabilized HHO methods on some test339

cases with known solution. This allows us to compute errors on the displacement and the gradient340

as ‖u − uT h‖L2(Ω0) and ‖∇
X
u − G

h
(uT h ,uFh)‖L2(T h) where u is the exact solution (L(T h)341

means that the Hilbertian sum of L2(T ;Rd×d)-norms over the mesh cells is considered). We342

assess the convergence rates to smooth solutions and we study the behavior of the HHO methods343

in the quasi-incompressible regime. We consider two- and three-dimensional settings. We use344

the abridged notation uHHO(k) for the unstabilized method with R(T ;Rd×d) = Pk+1
d (T ;Rd×d)345

and sHHO(k) with R(T ;Rd×d) = Pk
d(T ;Rd×d) for the stabilized method; whenever the context346

is unambiguous, we drop the polynomial degree k. All the considered meshes are matching,347

simplicial affine meshes.348

4.1 Manufactured solution349

We first report convergence rates for a nonlinear problem with a manufactured solution in two350

and three space dimensions. We denote by X = (X,Y, Z) the Cartesian coordinates in R3. We351
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Mesh sHHO(1) uHHO(1)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

2.27e-1 1.27e-2 - 1.72e-1 - 1.95e-2 - 6.27e-1 -
1.13e-1 1.68e-3 2.91 4.15e-2 2.05 5.41e-3 1.85 3.55e-1 0.82
5.68e-2 2.12e-4 2.99 1.03e-2 2.00 1.31e-3 2.04 1.79e-1 0.99
2.84e-2 2.64e-5 2.99 2.61e-3 1.98 3.31e-4 1.98 8.94e-2 1.00
1.42e-2 3.32e-6 2.99 6.55e-4 1.99 8.28e-5 2.00 4.46e-2 1.00

Table 1: 2D manufactured solution: errors vs. h for k = 1.

Mesh sHHO(2) uHHO(2)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

2.27e-1 2.08e-4 - 1.27e-2 - 1.58e-3 - 9.79e-2 -
1.13e-1 1.25e-5 4.05 1.70e-3 2.90 1.96e-4 3.01 2.45e-2 1.99
5.68e-2 7.61e-7 4.04 2.04e-4 3.06 2.42e-5 3.02 6.17e-3 1.99
2.84e-2 4.68e-8 4.02 2.51e-5 3.01 3.05e-6 2.99 1.54e-3 1.99
1.42e-2 2.91e-9 4.00 3.15e-6 2.99 3.82e-7 2.99 3.86e-4 2.00

Table 2: 2D manufactured solution: errors vs. h for k = 2.

set Γ = Γd and the value of ud is determined from the exact solution on Γd. Concerning the352

constitutive relation, we take µ = 1, λ = 10, and Θ(J) = lnJ .353

4.1.1 Two-dimensional manufactured solution354

In the two-dimensional setting, we consider the unit square Ω0 = (0, 1) × (0, 1) and the exact355

displacement solution is356

uX =

(
1

λ
+ α

)
X, uY =

(
1

λ
− α

1 + α

)
Y + ϑ(X). (36)

where α is a real parameter and ϑ : R→ R is a smooth function. The body forces corresponding357

to ϑ(X) = 2α(cos(2πX)− 1) are given by358

fX = 0, fY = 2µαπ2 cos(2πX). (37)

We set α = 0.2. The stabilization parameter is taken as β0 = 1 for sHHO. The displacement359

and gradient errors are reported as a function of the average mesh size h for k = 1 in Tab. 1 and360

for k = 2 in Tab. 2. For both k = 1 and k = 2, the displacement and the gradient converge,361

respectively, with order k + 2 and k + 1 for sHHO and with order k + 1 and k for uHHO. These362

convergence rates are consistent with the discussion at the end of Sections 3.3 and 3.4 on the363

convergence rates to be expected for linear elasticity and smooth solutions.364
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Mesh sHHO(1) uHHO(1)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

4.75e-1 1.14e-3 - 9.40e-3 - 1.85e-3 - 6.64e-2 -
2.19e-1 1.22e-4 2.88 2.24e-3 1.84 3.49e-4 2.16 2.95e-2 1.05
1.76e-1 6.36e-5 2.97 1.51e-3 1.79 2.19e-4 2.12 2.36e-2 1.01
1.39e-1 3.10e-5 3.05 9.16e-4 2.14 1.36e-4 2.01 1.88e-2 0.96
1.11e-1 1.56e-5 3.00 5.92e-4 1.91 8.79e-5 1.94 1.50e-2 1.00

Table 3: 3D manufactured solution: errors vs. h for k = 1.

Mesh sHHO(2) uHHO(2)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

4.75e-1 1.04e-4 - 9.89e-4 - 1.96e-4 - 7.68e-3 -
2.19e-1 4.54e-6 4.04 9.57e-5 3.01 1.68e-5 3.17 1.60e-3 2.02
1.76e-1 1.79e-6 4.23 4.78e-5 3.16 9.72e-6 2.49 1.10e-3 1.68
1.39e-1 7.23e-7 3.85 2.35e-5 3.01 4.30e-6 3.36 6.53e-4 2.24
1.11e-1 2.93e-7 3.96 1.21e-5 2.91 2.23e-6 2.88 4.20e-4 1.94

Table 4: 3D manufactured solution: errors vs. h for k = 2.

4.1.2 Three-dimensional manufactured solution365

In the three-dimensional setting, we consider the unit cube Ω0 = (0, 1) × (0, 1) × (0, 1) and the
exact displacement solution is

uX =

(
1

λ
+ α

)
X + ϑ(Y ), uY = −

(
1

λ
+

α+ γ + αγ

1 + α+ γ + αγ

)
Y, (38a)

uZ =

(
1

λ
+ γ

)
Z + g(X) + h(Y ), (38b)

where α and γ are real constants, and ϑ : R → R, g : R → R, h : R → R are smooth functions.366

Choosing ϑ(Y ) = α sin(πY ), g(X) = γ sin(πX), and h(Y ) = 0, the corresponding body forces are367

given by368

fX = µαπ2 sin(πX), fY = 0, fZ = µγπ2 sin(πY ). (39)

We set α = γ = 0.1. The stabilization parameter is taken as β0 = 1 for sHHO. The displacement369

and gradient errors are reported as a function of the average mesh size h for k = 1 in Tab. 3 and370

for k = 2 in Tab. 4. The same convergence orders are observed as in the two-dimensional case for371

both sHHO and uHHO.372

4.2 Quasi-incompressible annulus373

Our goal is now to evaluate the sHHO and uHHO methods in the quasi-incompressible case for374

finite deformations. We consider a test case from [29, Section 5.2] that consists of an annulus with375

inner radius R0 = 1/2 and outer radius R1 = 1 which is deformed by imposing a displacement376

ud(X) = X(r0 − R0)/R0 on Γd = SR0 where r0 is a real positive parameter and t = 0 on377

Γn = SR1 (SR is the sphere of radius R centred at the origin). An accurate reference solution can378
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be computed by solving differential equation along the radial coordinate, as detailed in [29]. We379

set r0 = 1.5 and µ = 0.333 (different values of λ are considered). Since we use affine meshes, we380

only consider k = 1.381

The reference and deformed configuration for sHHO(1) are shown in the left panel of Fig. 2 for382

λ = 16664.4 (which corresponds to a Poisson ratio of ν ' 0.49999). The stabilization parameter383

has to be of the order of β0 = 100 to achieve convergence. In the right panel of Fig. 2, we384

display the discrete Jacobian Jh on the reference configuration (computed using sHHO(1)), and385

we observe that this quantity takes values very close to 1 everywhere in the annulus (as expected).386

Convergence rates for the displacement and the gradient are reported in Tab. 5 for λ = 16664.4387

(similar convergence rates, not reported herein, are observed for lower values of λ). We observe388

that for sHHO, the displacment and the gradient converge with order 2, whereas for uHHO,389

the displacement converges with order 2 and the gradient with order 1. More importantly, the390

errors are uniform with respect to λ as shown Fig. 3. This result confirms numerically that391

in this case, sHHO and uHHO remain locking-free in quasi-incompressible finite deformations.392

Incidentally, we notice that sHHO produces slightly lower errors than uHHO. Finally, let us393

mention that the displacement on the boundary is imposed by uniform load increments. For394

λ = 16664.4, sHHO requires 30 loading steps with a total of 125 Newton’s iterations, whereas395

uHHO requires 33 loading steps with a total of 137 Newton’s iterations, i.e., sHHO is about 10%396

more computationally-effective than uHHO in this example.

(a) Reference and final configuration

0.99910 0.99958 1.00006

(b) Discrete Jacobian on the
reference configuration

Figure 2: Quasi-incompressible annulus with λ = 16664.4: sHHO(1) solution on a mesh composed
of 10161 triangles.

397

4.3 Efficiency398

In this section, we compare the performance of sHHO, uHHO and that of a continuous Galerkin399

(cG) method in terms of efficiency when solving the three-dimensional manufactured solution400

already described in Section 4.1.2. The number of unknowns is the number of degrees of freedom401

attached to faces after static condensation for sHHO and uHHO and the number of degrees of402

freedom attached to nodes for cG. The cG formulation is based on a primal formulation realized403
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(b) Gradient error

Figure 3: Quasi-incompressible annulus: errors vs. λ for h = 2.52e-2

Mesh sHHO(1) uHHO(1)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

1.15e-1 5.98e-2 - 3.22e-1 - 4.00e-2 - 1.23e-1 -
5.77e-2 1.81e-2 1.72 8.23e-1 1.97 1.32e-2 1.62 1.01e-1 0.28
3.45e-2 6.30e-3 2.05 3.15e-2 1.86 3.80e-3 2.42 6.60e-2 0.83
2.52e-2 3.42e-3 1.95 1.83e-2 1.73 2.03e-3 2.05 5.11e-2 0.94
1.64e-2 1.49e-3 1.93 7.98e-3 1.93 9.76e-4 1.72 3.09e-2 1.08

Table 5: Quasi-incompressible annulus: errors vs. h for k = 1 and λ = 16664.4.
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within the industrial open-source FEM software code_aster [15] interfaced with the open-source404

mfront code generator [27] to generate Neohookean laws.405

We present the displacement error versus the number of degrees of freedom in Fig. 4a and406

versus the number of non-zero entries in the stiffness matrix in Fig. 4b. Owing to the static407

condensation, we observe that, for the same approximation order and the same number degrees408

of freedom or non-zero entries in the stiffness matrix, the displacement error is smaller for sHHO409

than for cG and comparable between uHHO and cG.

103 104 105 106
10−7

10−6

10−5

10−4

10−3

10−2

10−1

cG(1) sHHO(1) uHHO(1)
cG(2) sHHO(2) uHHO(2)

(a) Displacement error vs. number of total
degrees of freedom

104 105 106 107
10−7

10−6

10−5

10−4

10−3

10−2

10−1

cG(1) sHHO(1) uHHO(1)
cG(2) sHHO(2) uHHO(2)

(b) Displacement error vs non-zero entries
in the stiffness matrix

Figure 4: 3D manufactured solution: comparison of the displacement error obtained with sHHO,
uHHO, and cG.

410

Let us now compare the time spent to solve the non-linear problem when using sHHO(k) and411

uHHO(k) with k ∈ {1, 2}. For the present test case, the nonlinear problem is solved, for both412

methods, in four Newton’s iterations. The codes are instrumented to measure the assembly time413

τass to build the local contributions to the global stiffness matrix and the solver time τsol which414

corresponds to solving the global linear system (τass and τsol are computed after summation over415

all the Newton’s steps). In DiSk++, the linear algebra operations are realised thanks to the Eigen416

library and the global linear system (involving face unknowns only) is solved with PardisoLU.417

The tests are run sequentially on a 3.4 Ghz Intel Xeon processor with 16 Gb of RAM. We plot in418

Fig. 5a the ratio τass/τsol versus the number of mesh faces card(Fh). We can see that on the finer419

meshes, the cost of local computations becomes negligible compared to that of the linear solver;420

we notice that the situation is a bit less favorable than for the results reported on linear elasticity421

in [18] since the space to reconstruct the gradient is now larger. Finally, in Fig. 5b, we compare422

the cost of each local operation on a fixed mesh with 31621 faces. We observe that the difference423

between sHHO(k) and uHHO(k) is not really important; in fact, the surplus time to reconstruct424

the gradient for uHHO(k) in a larger space is compensated by the time to build the stabilization425

for sHHO(k) (the stabilzation time includes the time to build the displacement reconstruction).426

If memory is not a premium, the gradient and the stabilization can be computed once and for all,427

and re-used at each Newton’s step.428
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Solver Gradrec
Stab MechComput

(b) Time for the different operations nor-
malized by the total time for sHHO(1) for
a mesh with 31621 faces

Figure 5: Comparison of CPU times for the sHHO and uHHO methods.

5 Application-driven three-dimensional examples429

The goal of this section is to show that sHHO and uHHO are capable of dealing with challenging430

three-dimensional examples with finite deformations. For the first test case, we compare our431

results with a cG method and the industrial software code_aster. For the second and third test432

cases, we compare our results with the HDG solutions reported in [29]. In all cases, we choose433

Θ(J) = ln J .434

5.1 Quasi-incompressible indented block435

In this example, we model an indentation problem as a prototype for a contact problem. We436

consider the unit cube (−1, 1) × (−1, 1) × (−1, 1). The bottom surface is clamped, a horizontal437

displacement of −0.8 is imposed on a part of the top surface (−0.5, 0.5) × (−0.5, 0.5) × {1} to438

model the rigid intendor, and the other parts of the boundary are traction-free. We set µ = 1439

and λ = 4999 in the quasi-incompressible regime. The stabilization parameter needs to be taken440

of the order of β0 = 100 for sHHO. Fig 6c and Fig 6d present the Euclidean displacement norm441

on the deformed configuration obtained with sHHO(1) (right; the uHHO(1) solution is very close)442

and cG(1) (left). We can observe the locking phenomenon affecting the cG solution. To better443

appreciate the influence of the parameter λ on the discrete solutions, we plot in Figure 6a and444

Figure 6b the Euclidean displacement norm in the compressible regime (λ = 1). We observe that445

in the compressible regime, the results produced by the various numerical methods are all very446

close, whereas the cG solutions depart from the prediction of the sHHO and uHHO solutions in447

the quasi-incompressible regime.448

5.2 Cylinder under compression and shear449

This test case, proposed in [29], simulates a hollow cylinder under important compression and450

shear (it can be seen as a controlled buckling). The cylinder in its reference configuration has a451

inner and outer radius of 0.75 and 1, and a height of 4. The bottom face is clamped, whereas the452

top face has an horizontally and vertically imposed displacement of −1 in both directions and the453

lateral faces are traction-free. We set µ = 0.1, λ = 1. The displacement is imposed uniformly. For454

sHHO, the stabilization parameter has to be taken of the order of β0 = 100. We notice that sHHO455
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(a) Euclidean displacement norm for
cG(1) in the compressible regime

(b) Euclidean displacement norm for
sHHO(1) in the compressible regime

(c) Euclidean displacement norm for
cG(1) in the quasi-incompressible
regime

(d) Euclidean displacement norm for
sHHO(1) in the quasi-incompressible
regime

Figure 6: Quasi-incompressible indented block: compressible (top) and quasi-incompressible
regime (bottom) with Euclidean displacement norm shown in color on a mesh composed of 5526
tetrahedra.
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and uHHO are robust and produce very close results, which compare very well with the results456

reported in [29]. The loading is applied in 30 steps for uHHO and in 37 steps for sHHO, leading457

respectively to a total of 152 and 187 Newton’s iterations. This indicates that uHHO is up to458

20% more effective for this test case. Some snapshots of the solution obtained with uHHO(1) on459

a mesh composed of 44220 tetrahedra are shown in Fig. 7 where the color indicates the Euclidean460

norm of the displacement. In Fig. 8, we display the Von Mises stress at different loading steps on461

the reference configuration.

Figure 7: Sheared cylinder: snapshots of the Euclidean displacement norm on the deformed
configuration at 0%, 40%, 80%, and 100% of loading, and a zoom where the deformations are the
most important (uHHO(1) solution). The color scale goes from 0.0 (blue) to 1.8 (red).

462

5.3 Sphere with cavitating voids463

The last example simulates the problem of cavitation encountered for instance in elastomers, that464

is, the growth of cavities under large tensile stresses [2]. Simulations of cavitation phenomena465

present difficulties because the growth induces significant deformations near the cavities. For a466

review, we refer the reader to [45]. Some conforming [33], non-conforming [45], and HDG [29]467

methods have already been studied for this problem. For cavitation to take place, the strain energy468

density has to be changed, and we consider here, as in [29], the following modified Neohookean469

law:470

Ψ(F ) =
2µ

35/4

(
F : F

)3/4 − µ ln J +
λ

2
(ln J)2, (40)

21



Figure 8: Sheared cylinder: Von Mises stress on the refrence configuration at 40%, 80% and 100%
of loading (uHHO(1) solution). The color scales goes from 0.0 (blue) to 0.3 (red).

where µ and λ are constant parameters. We set µ = 1, λ = 1.471

The reference configuration consists of a unit sphere of radius 1 with two spherical cavities.472

The origin of the Cartesian coordinate system is the center of the sphere. The first cavity has473

a radius of 0.15 and its center is the point of coordinates (−0.7,−0.7, 0), and the second cavity474

has a radius of 0.2 and its center is the point of coordinates (0.25, 0.25, 0.25). A displacement475

u(X) = rX with r ≥ 0 is imposed on the outer surface (|X| = 1) of the sphere. The stabilization476

parameter has to be taken of the order of β0 = 100 for sHHO. The mesh is composed of 32288477

tetrahedra, and the value of r is increased progressively until the moment where the Newton’s478

method fails to converge. Some snapshots of the Euclidean displacement norm are shown in Fig. 9479

on the deformed configuration. We also present a zoom near the region where the two cavities are480

only separated by a thin thickness for uHHO(2). The reported solution compares very well with481

the HDG solution from [29]. Interestingly, the maximum value of r is 1.88 for uHHO and 1.73482

for sHHO, which indicates about 10% more robustness of uHHO than sHHO to handle extreme483

loading situations in this case.484

6 Conclusion485

We have proposed and evaluated numerically two HHO methods to approximate hyperelastic ma-486

terials undergoing finite deformations. Both methods deliver solutions that compare well to the487

existing literature on challenging three-dimensional test cases, such as a hollow cylinder under488

compression and shear or a sphere under traction with two cavitating voids. In addition, both489

methods remain well-behaved in the quasi-incompressible limit, as observed numerically on an an-490

nulus under traction and on the indentation of a rectangular block. The test cases with analytical491

solution also show that both methods are competitive with respect to an industrial software using492

conforming finite elements. The stabilized HHO method rests on a firmer theoretical basis than493

the unstabilized method, but requires the introduction and tuning of a stabilization parameter494

that can become fairly large in the quasi-incompressible limit. The unstabilized HHO method495

avoids any stabilization by introducing a stable gradient reconstructed in a polynomial space with496

higher degree, but on smooth solutions, the convergence rate is one order lower than with the497

stabilized method, i.e., the unstabilized method still converges, but in a suboptimal way. For498
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Figure 9: Sphere with cavitating voids: snaphots of the Euclidean displacement norm at r = 0,
r = 0.6, r = 1.2 and r = 1.88 of loading (the sphere is cut along the Equatorial plane). The
bottom right plot shows a thin slice of the sphere (still along the Equatorial plane) for r = 1.88.

compressible materials, the unstabilized method appears to be somewhat more competitive than499

the stabilized method since it requires less Newton’s iterations and, at the same time, supports500

stronger loads, as observed in particular in the case of cavitating voids in the sphere. Among501

possible perspectives, we mention the numerical evaluation of the unstabilized HHO method us-502

ing Raviart–Thomas–Nédélec functions, devising a reconstruction based on the ideas introduced503

in [25] for dG methods, and the use of different reconstructions for the isochoric and volumic parts504

of the energy density.505
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