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Pseudomonas aeruginosa is a pathogenic micro-organism responsible for many

hospital-acquired infections. It is able to adhere to solid surfaces and develop an

immobilized community or so-called biofilm. Many studies have been focusing on the

use of specific materials to prevent the formation of these biofilms, but the reactivity

of the bacteria in contact to surfaces remains unknown. The aim of this study was to

evaluate the impact of the abiotic surface on the physiology of adherent bacteria. Three

different materials, stainless steel (SS), glass (G), and polystyrene (PS) that were relevant

to industrial or medical environments were characterized at the physicochemical level

in terms of their hydrophobicity and roughness. We showed that SS was moderately

hydrophilic and rough, potentially containing crevices, G was hydrophilic and smooth

while PS was hydrophobic and smooth. We further showed that P. aeruginosa cells were

more likely able to adhere to SS and G rather than PS surfaces under our experimental

conditions. The physiological response of P. aeruginosa when adhering to each of

these materials was then evaluated by global proteomic analysis. The abundance of

70 proteins was shown to differ between the materials suggesting that their abundance

was modified as a function of the material to which bacteria adhered. Our data lead

to enabling the identification of abundance patterns that appeared to be specific to a

given surface. Taken together, our data showed that P. aeruginosa is capable of sensing

and responding to a surface probably via specific programmes to adapt its physiological

response accordingly.

Keywords: Pseudomonas aeruginosa, adhesion, abiotic material, physicochemical properties, hydrophobicity,

roughness, proteome modification, porins

INTRODUCTION

Pseudomonas aeruginosa is an opportunistic pathogen responsible for a variety of human
infections such as pneumonia, aggravated cystic fibrosis, septic shock, urinary tract
infection, skin, and soft tissue infections. It is also involved in nosocomial infections
due to the development of resistance mechanisms to disinfecting procedures, notably in
healthcare environments. Various surfaces can be contaminated by this pathogen and may
become new starting points for its dissemination (Dunne, 2002; Leibovitz et al., 2003;
Zegans et al., 2005). The exceptional survivability properties of P. aeruginosa have been
related to this strain’s ability to colonize solid substrates and form three-dimensional
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(3D) structured aggregates of bacterial cells called biofilms
(Costerton et al., 1995). In this state, the bacteria become
immobilized and embedded into an exopolymer-containing
matrix, leading to their increased resistance to antimicrobials,
either via the chemical and mechanical protections provided
by the matrix itself, or by the considerable physiological
modifications that are encountered by the bacteria in these
conditions compared to motile planktonic cells (Stewart and
Costerton, 2001; Whiteley et al., 2001; Drenkard and Ausubel,
2002). Many studies have been performed on sessile cells at the
proteomic level (Sauer et al., 2002) and showed that the bacterial
protein content was markedly modified, depending on various
parameters such as nutritional cues (carbon and nitrogen sources,
calcium, or ferrous ion concentrations), temperature, oxygen
availability, or even biofilm maturity (Whiteley et al., 2001;
Sauer et al., 2002; Yoon et al., 2002; Arevalo-Ferro et al., 2003;
Vilain et al., 2004; Southey-Pillig et al., 2005; Waite et al., 2005;
Patrauchan et al., 2007). While many studies have focused on the
physiology of the cells within biofilms, few have examined their
behavior during the first stage of biofilm formation, i.e., adhesion.
To date, the impact of thematerial on bacterial physiology during
the adhesion stage is far from being known. Bacterial adhesion
to inert surfaces has been shown to impact the viability of cells
(Terada et al., 2006; Nejadnik et al., 2008), their resistance to
antibiotics (Aaron et al., 2002) and their virulence (Siryaporn
et al., 2014). Most studies of bacterial adhesion have hitherto
only focused on the amount of adherent cells found on various
abiotic surfaces (Yuan et al., 2011; Gadenne et al., 2013; Bedel
et al., 2015) in relation to the surface energy, charge, topography,
and stiffness of the materials employed (Song et al., 2015).
Surface stiffness was recently shown to impact the proteome
of a non-pathogenic strain of Pseudoalteromonas sp. when
adhering to agar (Guégan et al., 2013), suggesting that bacteria
are able to sense different surfaces (Busscher and van der Mei,
2012; Song et al., 2015). Remarkably, in P. aeruginosa the two
SadC (surface attachment defective) and Wsp (wrinkly spreader
phenotype) regulated circuits have been shown to be involved
in surface sensing, leading to higher production of the second
messenger bis-(3′–5′)-cyclic guanosine monophosphate (c-di-
GMP) resulting in biofilm formation (Belas, 2014). However, the
degree to which the physiology of adhering bacteria is affected
by the physicochemical properties of the material involved still
needs to be elucidated. This is a key question, particularly
with respect to safety issues, because the answers would enable
strategies to optimize the control of surface bio-contamination
(choice of material, modification of the solid surface, etc.) and
consequently to reduce associated risks. The aim of this study
was therefore to evaluate the impact of the abiotic surface on
the physiology of adherent bacteria. Three different materials
(stainless steel, glass, and polystyrene) that were relevant to

Abbreviations: SS, stainless steel; G, glass; PS, polystyrene; SS/G, SS compared to

G; SS/PS, SS compared to PS; PS/G, PS compared to G; RT, room temperature; Ra,

arithmetic average roughness; Rmax, maximum peak to valley height; SDS, sodium

dodecyl sulfate; PseudoCAP, Pseudomonas Community Annotation Project; OM,

outer membrane; OMP, outer membrane proteins; PagL, lipid A deacylase; QS,

quorum sensing; SadC, surface attachment defective; Wsp, wrinkly spreader

phenotype; LPS, lipopolysaccharide.

industrial or medical environments were first of all characterized
at the physicochemical level in terms of their hydrophobicity
and roughness. The physiological response of P. aeruginosawhen
adhering to each of these materials was then evaluated by means
of global proteomic analysis relative to the physicochemical
properties of these materials.

MATERIALS AND METHODS

Bacterial Strain and Medium
P. aeruginosa PAO1 strain was used during this study. Frozen
bacterial stocks of the strain were sub-cultured three times in
Luria-Bertani broth (LB) and then adjusted to pH 7.4 at 37◦C
with vigorous orbital shaking (180 rpm).

Materials
AISI 316 stainless steel (SS) (Goodfellow, Huntingdon, United
Kingdom), borosilicate glass Petri dishes (G) (Schott, Mainz,
Germany), and polystyrene Petri dishes (PS) (Gosselin, Borre,
France) were used as the model surfaces. Before each experiment,
these surfaces were cleaned as previously described (Kamgang
et al., 2007). Briefly, all surfaces were soaked for 15 min in a
2% (v/v) solution of commercial RBS 35 detergent (Société des
Traitements Chimiques de Surface, Lambersart, France), then
rinsed five times for 5 min in sterile deionized water at 50◦C and
then a further five times for 5 min with sterile deionized water
at room temperature (RT). The surfaces were stored for 24 h at
RT in sterile deionized water to prevent any atmospheric carbon
pollution before the experiment.

Physicochemical Characterization of the
Materials
The homogeneity of surface hydrophobicity was investigated
by water contact angle measurements using the sessile drop
technique (DSA100M goniometer, Krüss, Palaiseau, France).
This apparatus deposited a sterile deionized water droplet (300
pL) with a piezo dosing unit every 1 mm on an area of 10
× 20 mm2. The droplets were monitored for 2 s using a fast
CCD (Charge Coupled Device) camera with 4x zoom and a
20x microscope objective. An automatic procedure was used for
drop generation, image acquisition, contact angle determination,
and the mapping of sample hydrophobicity. For each material,
a cartography of wettability was constructed using Matlab 2011b
software (Mathworks, Natick, USA) with a color map of visible
colors from blue to red representing the contact angle to water
(θ) from 0 to 100◦. The average contact angle was determined
from the 231 drops. All measurements were performed in
triplicate.

Surface roughness was investigated as previously described
(Poncin-Epaillard et al., 2013) using a surface profilometer
(Perthometer M2, Mahr, Igny, France). The Ra (arithmetic
average roughness) and Rmax (maximum peak to valley height)
parameters were calculated from the altitude of a stylus on seven
consecutive sections of 0.8 mm. The experiments were conducted
six times on each sample.
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Adhesion Assays
Adhesion assays were performed in 150 mM NaCl to prevent
bacterial growth and a shift to a biofilm phenotype. The viability
of P. aeruginosa in this medium was tested and confirmed for
an extended time of 72 h. P. aeruginosa PAO1 cultures grown
overnight were washed three times in NaCl 150 mM and their
concentrations were adjusted to 108 CFU/mL (Colony Forming
Unit per mL). The three model surfaces were covered with this
bacterial suspension (to a depth of 0.5 cm) for 3 h at 37◦C.
Each material was then rinsed six times with 150 mM NaCl
to remove any non- or weakly-attached bacteria. For direct
observations, the fluorescent labeling of bacteria was achieved
by immersing each contaminated material in distilled water
containing SYTO9 1 µM (Molecular Probes, Life Technologies,
Saint Aubin, France). Epifluorescence microscopic observations
of the materials (Leica Microsystems, Nanterre, France) were
performed using a 20X objective. The coverage rate of the
bacteria adhering to the materials was determined using ImageJ
(Rasband, 1997; Schneider et al., 2012). To enumerate the
adherent cells, harvesting from the surfaces was performed with
a cell scraper (Sarstedt, Newton, USA) in 150 mMNaCl. The cells
were then centrifuged (10,000 g, 30 min, 4◦C) and the pellets
were stored at –80◦C. Enumeration on LB agar plates enabled
a determination of the number of bacteria that had thus been
detached from each material.

Total Protein Extraction
Bacterial pellets (109 CFU) were lysed with 20 µL of 10% sodium
dodecyl sulfate (SDS, Sigma-Aldrich, Lyon, France), sonicated
three times for 5 min at 4◦C and then centrifuged (10,000 g,
10 min, 4◦C). Supernatants containing soluble proteins were
recovered and mixed with an equivalent volume of Laemmli 2X
running buffer (Biorad, Marnes-la-Coquette, France).

Protein Digestion
The proteins thus extracted were reduced with 5 mM
dithiothreitol (Sigma-Aldrich), and alkylated with 25 mM
iodoacetamide for 45 min in the dark. The protein sample was
mixed with SDS loading buffer (63 mM Tris–HCl, pH 6.8, 10
mM DTT, 2% SDS, 0.02% bromophenol blue, 10% glycerol),
then loaded onto a SDS-PAGE stacking gel (7%) and subjected
to a short period of electrophoresis (10 mA, 50 V, 5 min).
After migration, the gels were stained with Coomassie blue
and de-stained with a solution containing 50% ethanol, 10%
acetic acid, and 40% deionized water. The protein band revealed
was then excised, washed with water, and subjected to protein
digestion with 300 ng trypsin (Promega France, Charbonnières,
France) in 25 mM ammonium bicarbonate buffer at 37◦C.
After overnight hydrolysis, tryptic peptides were recovered by
extraction (Shevchenko et al., 2006), dried in under a speed
vacuum and finally suspended in 25 µL nano-LC loading buffer
(0.08% trifluoroacetic acid, 2% acetonitrile; Sigma-Aldrich). The
peptides were then dried and stored at−20◦C.

Tandem Mass Spectrometry
Peptide analyses were performed on an Ultimate 3000 RSLC
Nanosystem (Dionex, Voisins le Bretonneux, France) coupled
to an LTQ-Orbitrap Discovery mass spectrometer (Thermo

Fisher, Waltham, USA; PAPPSO proteomic platform, INRA,
Jouy-en-Josas) with a nanoelectrospray interface. Briefly, 4 µL
of tryptic digest were loaded onto a Pepmap100C18 pre-column
(0.3 mm ID x 5 mm, 5 µm, Dionex) at a flow rate of 20 µL/min
for 4 min. All peptides were separated onto a Pepmap100C18
column (0.075 mm ID × 500 mm, 2 µm, Dionex) with
a gradient from 2 to 35% for 68 min at 300 nL/min and
40◦C, for a total running time of 85 min which included the
regeneration and equilibration steps of the column. Ionization
was performed in positive mode (1.4 kV ionization potential)
with a liquid junction and capillary probe (PicoTip Emiter, 10
µm ID; New Objective, Woburn, MA, USA). Data were acquired
using Xcalibur (v2.07, Thermo Fisher Scientific) using a data-
dependent method comprising two steps: first, a full scan MS in
an Orbitrap analyser (from 300 to 1,400 in profile mode with
a resolution of 15,000 at m/z 400) and second, fragmentation
and the detection of daughter ions in the linear trap (qz =

0.22, activation time 50 ms and collision energy fixed at 35%) in
centroid mode. The dynamic exclusion time was set at 45 s. To
enhance mass accuracy, the lock mass option was activated on
dimethylcyclosiloxan (m/z 445.120029).

Protein Quantification
The raw files produced under Xcalibur were first converted
to mzXML files with MSconvert (http://sashimi.sourceforge.net,
version 3.0.3768) and in a second step, proteins were identified
using X!tandem software (X!tandem Piledriver 2015.04.01.1;
http://www.thegpm.org) (Craig and Beavis, 2004) against a P.
aeruginosa PAO1 protein database (NCBInr, NC_002516.2; 5566
sequences) associated with a standard proteomic contaminant
database. The X!Tandem search parameters were (i) trypsin
specificity with three missed cleavages and (ii) variable oxidation
states of methionine. Semi-tryptic peptide detection was included
by activating the option in the data refine mode. The mass
tolerance was fixed at 10 ppm for precursor ions and 0.5 Da
for fragment ions. The final search results were filtered using
a multiple threshold filter applied at the protein level and
consisting of a Log10 protein E-value lower than −2.6 identified
with a minimum of two different peptide sequences, detected
in at least one analysis as having a peptide E-value lower than
0.05. These criteria led to false discovery rates estimated using
the decoy database of 0.07 and 0.10% for peptide and protein
identification, respectively.

X!TandemPipeline 3.3.5 analysis (Langella et al., 2017) (http://
pappso.inra.fr/bioinfo/xtandempipeline/) was used to filter and
group the peptide/protein identifications from MS/MS mass
spectra.

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (Vizcaíno
et al., 2016) partner repository with the dataset identifier
PXD006881 and 10.6019/PXD006881. PRIDE Converter 2 was
used to convert our data in PRIDE-xml format (Côté et al., 2012).
The submission was achieved using ProteomeXchange (Vizcaíno
et al., 2014).

The mass spectrometry proteomics data have been also
deposited on the PROTICdb platform (http://moulon.inra.fr/
protic/p_aeruginosa_adhesion).
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Statistical Analyses
Physicochemical results (contact angles and roughness) were
considered to be significantly variable using ANOVA when the
p-value was <0.05.

A spectral counting approach was used to identify proteins
detected in statistically different quantities between the
conditions. Data from the mass spectrometry protein
quantification of five biological replicates were compared.
First, all conditions were compared (70 proteins significantly
different) and second, the conditions were compared between
each other and the results were merged.

Filtering and statistical analysis were performed using
MassChroqR, an R package developed by PAPPSO (http://
pappso.inra.fr/). A small difference in the number of spectra
may be noise-induced, so proteins displaying a minor variation
between the conditions (whose mean difference was less than
three spectra) were discarded from the analysis. A generalized
linear mixed model (GLM) with a Poisson distribution was
applied. This model is appropriate in the case of a counting
such as spectral counting. The significance of protein abundance
changes was determined by analysis of variance ANOVA using
a Chi-square test. A protein was considered to be significantly
variable when the p-value was <0.01. The p-values were adjusted
for multiple comparisons using Benjamini and Hochberg’s
method (Benjamini and Hochberg, 1995).

Heat Map Representation
Heat maps were generated under MassChroqR using the heatplot
function from the made4 package (http://www.bioconductor.
org). The heat map revealed a gradient of colors assigned to
the different numbers of spectra (centered and reduced) and the
dendrogram provided a graphical representation of a hierarchical
cluster with distances calculated using the Pearson correlation
coefficient (default distfun argument of the heatplot function of
the “made4” of the R package); the aggregation criterion was the
average-linkage or UPGMA (Unweighted Pair Group Method
with Arithmetic mean).

PseudoCAP Functional Classification and
GO (Gene Ontology) Term Annotations
Functional classifications were performed using the facilitating
community-based PseudoCAP (Pseudomonas Community
Project) functional classes (http://www.pseudomonas.com)
(Winsor et al., 2016). GO term annotations based on mappings
to InterPro functional domain predictions provide additional
information.

RESULTS

Physicochemical Properties of the
Surfaces of Different Materials
Surface hydrophobicity or hydrophilicity can be characterized
by water surface wettability, measured using contact angles (θ)
(Boulangé-Petermann et al., 1997). A cartography of wettability
was constructed bymeasuring 231 contact angles per material. As
shown in Figure 1, stainless steel (SS), glass (G), and polystyrene
(PS) displayed homogeneous wettability which ensured the
homogeneous adhesion of bacteria. Under our experimental

conditions, SS was considered to bemoderately hydrophobic (62◦

± 7◦), G as hydrophilic (18◦ ± 4◦), and PS as hydrophobic (94◦

± 3◦) (Figure 1), providing an hydrophobic range for adhesion
studies with materials exhibiting statistically different contact
angles (p < 0.05). Concerning the topography of these surfaces,
SS was shown to be rough, with an Ra of 0.216 µm, while
G and PS were considered as smoother surfaces with Ra =

0.027 and 0.028µm, respectively (Figure 1). The Rmax parameter
(maximum peak to valley height) was clearly higher for SS than
for G and PS, suggesting the presence of crevices on the SS
surface (Boulangé-Petermann et al., 1997). SS roughness (Ra and
Rmax) was shown to differ statistically from that of G and PS,
while the roughness of G and PS was statistically similar (p <

0.05). Taken together, our data led us to conclude that the three
studied surfaces presented different physicochemical properties,
i.e., SS was moderately hydrophilic and rough, potentially
containing crevices, G was hydrophilic and smooth while PS was
hydrophobic and smooth. As the number of adherent bacteria
could be related to the physicochemical properties of materials
(Bellon-Fontaine et al., 1990), the adhesion of P. aeruginosa was
investigated on these different surfaces.

Materials Impact the Adhesion Capability
of P. aeruginosa
Bacteria were allowed to adhere to these three surfaces for 3 h
before being recovered and observed or counted. Figure 2 shows
that 8.4 × 106 (± 1.3 × 106) CFU/cm2, 2.2 × 106 (± 0.9 × 106)
CFU/cm2, and 6 × 105 (± 2.5 × 105) CFU/cm2 (P<0.05) were
detached from SS, G, and PS, respectively, indicating that the
material had an impact on the number of adherent cells. Direct
epifluorescence microscopic observations of the contaminated
materials (Figure 2) were correlated to the enumeration results
by showing a higher coverage rate of bacteria on SS (31%), an
intermediate rate on G (11%), and a lower rate on PS (2.6%).
Taken together, these data suggest that P. aeruginosa cells were
more likely able to adhere to SS and G rather than PS surfaces
under our experimental conditions.

P. aeruginosa Displays Varied Global
Proteome Patterns in Response to
Adhesion on Different Materials
The total proteome of P. aeruginosa PAO1 adhering to SS, G and
PS was analyzed using nano-LC-MS/MS and X!TandemPipeline.
The mass spectra thus generated (Table S1) enabled the
identification of 930 proteins (Table S2) out of the 5,570
predicted ORFs that are encoded by the P. aeruginosa PAO1
genome. Of these, 785 were identified on the three materials,
107 on two of them, and 38 were detected specifically on only
one surface (Figure 3, Tables S2, S3). Using strong statistical
validation assays, the abundance of 70 out of these 930 proteins
was shown to differ between the materials compared by pairs
(Table S4). P. aeruginosa displayed differential abundance of
the greatest number of proteins (or a differential abundance of
peptide ions) when adhesion was compared between SS and PS
(57 proteins). Among the 834 proteins identified on these two
materials (Figure 3), 57 proteins showed significant differences
in their abundances: four were specifically present in this pair
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FIGURE 1 | Physicochemical properties of the materials. Stainless steel (SS), glass (G), and polystyrene (PS) were assayed for their wettability. The average contact

angles (2) and the roughness parameters Ra and Rmax were also reported. Standard deviations are given into brackets.

FIGURE 2 | Adhesion of P. aeruginosa PAO1 to stainless steel (SS), glass (G), and polystyrene (PS), 3 h at 37◦C. Quantity of adherent P. aeruginosa PAO1 determined

by enumeration and epifluorescence microscopic observations with a ×20 objective after SYTO9 staining.

comparison, 8 in SS vs. G and 7 in PS vs. G. By contrast,
comparing SS vs. G and PS vs. G led to 21 and 39 differentially
abundant proteins (Table S4). Taken together, these data showed
a strong bacterial response that was specific to the material
used for adhesion. The data were then subjected to hierarchical
clustering which focused on the 70 proteins that displayed

differential content following adhesion on at least two materials.
The abundance of these 70 proteins was compared using the
normalized quantities of spectral counting from five biological
replicates (Figure 4, Table S4). Protein levels were represented
as a color map ranging from red to blue, indicating proteins
produced at lower and higher levels, respectively. Clustering
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FIGURE 3 | Venn diagram based comparisons indicating the number of total

detected proteins (930) from P. aeruginosa adhering to stainless steel, glass,

and polystyrene. The complete list of these proteins is available in Table S1.

of the five replicates highlighted a strong coherence for each
material in terms of protein abundance, which demonstrated
the reproducibility of our assays (Figure 4, upper dendrogram).
Clustering of the 70 proteins in terms of their abundance on
a given material, followed by a comparison of these results on
the three materials, enabled the identification of a further four
clusters (Figure 4, left dendrogram, clusters A, B, C, and D).
Under these conditions, each cluster enabled the grouping of
proteins with a relatively similar level on a particular material
compared to the two others. SS-adherent bacteria presentedmore
proteins belonging to the A- and B- clusters, while G-adherent
bacteria displayed more proteins from the A- and C- clusters. PS-
adherent bacteria were characterized by an abundance of proteins
belonging to the C- andD-clusters. Taken together, this clustering
led to the definition of patterns on each material which reflected
protein abundance profiles considering A to D clusters on a given
material, vs. the other two (Figure 4). Remarkably, this global
approach permitted the identification of three protein abundance
patterns that were each relevant to a specific material.

Physiological Response to the Materials of
Adherent P. aeruginosa
To obtain further insights into the physiological response of
P. aeruginosa to adhesion on each of the three materials,
the functional classes of the 70 proteins whose abundance
differed significantly between at least twomaterials were assigned
according to the PseudoCAP classification (Winsor et al., 2016).
The functional classes relative to all differentially abundant
proteins are available in Table 1 and Table S5.

Proteomic Response of P. aeruginosa Adhering to SS

Compared to G (SS/G)
Based on PseudoCAP analysis, most proteins belonged to three
functional classes (Table 1). These included the “Membrane

proteins” and “Transport of small molecules” classes, in which the
great majority of the affected proteins were less abundant when
P. aeruginosa was allowed to adhere to SS/G. Conversely, more
abundant proteins were mostly found in the “Translation, post-
translational modification, degradation” class. Numerous outer
membrane proteins (OMPs) were produced at markedly lower
levels when the bacteria were allowed to adhere to SS/G (Table 1).
This was notably the case for many major porins, including
the non-specific major porin OprF, the specific channels OprD,
OprE, OprQ, OprC, OprG, and the OprM OM component of
the MexAB/OprM efflux pump. It was also the case for Opr86,
which is involved in porin folding into the OM (Tashiro et al.,
2008), and for the peptidoglycan associated lipoprotein (Pal)
OprL, a member of the Tol-Pal complex that is important to
maintaining OM integrity in Gram negative bacteria (Lazzaroni
et al., 1999). In addition, lipid A deacylase (PagL), which is
involved in lipopolysaccharide (LPS) modification, was also
less abundant when P. aeruginosa was allowed to adhere to
SS/G. Conversely, four proteins belonging to the “Translation”
PseudoCAP functional class, such as the ribosomal proteins
RpmF, RpsS, the translation initiation factor InfC, the peptidyl-
prolyl cis-trans isomerase PpiB and the TolB protein belonging
to the “Transport of small molecules” class, were found to be
produced at higher levels when bacteria were allowed to adhere
to SS/G.

Proteomic Response of P. aeruginosa Adhering to SS

Compared to PS (SS/PS)
Based on PseudoCAP analysis, most of the dysregulated proteins
belonged to eight functional classes (Table 1). These included the
“Transport of small molecules,” “Membrane proteins,” “Putative
enzymes,” “Energy metabolism,” and “Adaptation, protection”
classes, in which the great majority of affected proteins were
less abundant when P. aeruginosa was allowed to adhere to
SS/PS. By contrast, proteins included in the “Hypothetical
proteins” and “Related to phages, transposon or plasmid”
functional classes were found at higher abundance after the
adhesion of P. aeruginosa to SS/PS (Table 1, Table S5). Numerous
OMPs were less abundant when P. aeruginosa was allowed
to adhere to SS/PS. Interestingly, many of them, including
the previously described porins, the porin folding chaperone
Opr86 and the LPS lipase PagL, were also found at lower
levels when SS and G were compared. Remarkably, and as
indicated elsewhere regarding the abundance of the 70 proteins
that were differentially produced between the three materials,
this led to grouping all of these OMPs in a single cluster
(Figure 4, cluster C). In addition, the glucose-specific porin
OprB, the OMP precursors PA1041, PA1288, and PA4974, the
LPS-assembly protein LptD and the type 4 fimbrial biogenesis
OMP PilQ (which is involved in the production of adhesive
organelles type IV pili) were also produced less when bacteria
were allowed to adhere to SS/PS. In addition, 10 proteins
in the energy, amino acid, carbon compound, central, or
fatty acid metabolism pathways were down-regulated when
P. aeruginosa was allowed to adhere to SS/PS. For example,
this was the case for the periplasmic nitrate reductase protein
NapA, urocanate hydratase, aconitate hydratase 1, probable
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FIGURE 4 | Normalized number of spectra of the 70 proteins with significant differences of quantities after adhesion of P. aeruginosa cells to stainless steel (SS), glass

(G), and polystyrene (PS). Quantity of each protein is normalized from the number of spectra counted by mass spectrometry. The 70 proteins identified as significantly

altered in abundance between SS, G, and PS were sorted by heatplot function. Replicates are indicated by numbers 1 to 5 and are referred to patterns 1 to 3 (1

corresponds to SS, 2 to G, and 3 to PS). Proteins are designated by their locus tag referenced in Table S4. Four clusters of proteins (A, B, C, and D) following the

same abundance pattern are represented by black boxes.

dihydrolipoamide acetyltransferase, quinone oxidoreductase
and isocitrate dehydrogenase which are involved in energy
metabolism. In addition, 3 proteins belonging to the “putative
enzymes” class, PA2815, PA3972, and PA0745, were less abundant
in this condition and might be involved in lipid homeostasis
(Table S5). Conversely, several proteins were more abundant in
the context of SS/PS. This was the case for PA0720, PA0724,
PA0726, PA0727, and PA0728, which are components of the
Pf1 bacteriophage. PA0724, PA0726, PA0727, and PA0728 were
not detected on PS and PA0720 was about 30 times more
abundant when the bacteria were allowed to adhere to SS/PS.
Similarly, the type 6 secretion system ATPase ClpV1, and the
Tol-Pal periplasmic TolB component that is involved in cell wall
integrity maintenance, were found to be more abundant when
the bacteria adhered to SS/PS. Finally, the ATP-dependent RNA
helicase that is involved in transcription was more abundant on
SS/PS. Interestingly, most of the hypothetical proteins were more
abundant in this condition and for several their predicted activity
is related to the envelope metabolism, i.e., PA2540 is a putative
phospholipase, and PA1791, PA4842, and PA4491 are putative
membrane proteins.

Proteome Response of P. aeruginosa Adhering to PS

Compared to G (PS/G)
Based on PseudoCAP analysis, most of the dysregulated proteins
belonged to six functional classes (Table 1). These included
the “Energy metabolism,” “Adaptation, protection,” “Putative
enzymes,” and “Motility and attachment” classes, where the
great majority of affected proteins were up-regulated when P.
aeruginosa was allowed to adhere to PS/G. By contrast, down-
regulated proteins were mostly found in the “Hypothetical
proteins” and “Related to phages” classes. Several metabolic
proteins were over-produced on PS/G, namely periplasmic
nitrate reductase NapA, urocanate hydratase, dihydrolipoamide
acetyltransferase, and quinone oxidoreductase, all involved in
energy metabolism and malate synthase G related to central
intermediary metabolism. Chitinase that is involved in carbon
catabolism is regulated by quorum sensing (QS) in P. aeruginosa.
The over-production of ChiC in response to adhesion on PS
might thus reflect some activity of QS. Similarly, two proteins
involved in chemotaxis (PA2573 and Aer2), and two proteins
related to pili biogenesis (PilQ and PilM) were over-produced on
PS/G. Other proteins were found in smaller quantities on PS/G,
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including MagB which is potentially involved in host-pathogen
interactions (Robert-Genthon et al., 2013), and the three phage-
related proteins PA0720, PA0726, and PA0727.

Taken together, these data showed that the abundance of
numerous proteins was modified as a function of the material to
which bacteria adhered, enabling the identification of abundance
patterns that appeared to be specific to a given surface.

DISCUSSION

This study was designed to use a proteomic approach to
highlight the physiological responses of P. aeruginosa regarding
its adhesion to three different surfaces that are commonly found
in many environments, including hospitals and industry. It had
previously been shown that bacterial adhesion to solid surfaces
is dependent on a number of factors, e.g., physicochemical and
mechanical interactions (Bos et al., 1999). Therefore, under our
experimental conditions (static adhesion, high ionic strength),
the number of adherent bacteria would mainly depend on
the Lifshitz-van der Waals, Lewis acid-base and roughness
characteristics of the materials, or in another words their
hydrophobic/hydrophilic properties (Bruzaud et al., 2015). First
of all, the three studied surfaces were shown to present different
physicochemical properties: SS was moderately hydrophilic and
rough, containing possible crevices, G was hydrophilic and
smooth and PS was hydrophobic and smooth. Enumerations
combined with microscopic assays revealed that P. aeruginosa
PAO1, previously characterized in terms of its hydrophilic
and electron-donor properties (Bruzaud et al., 2015), was able
to adhere about 14- and 4-fold more to SS and G than to
PS. This phenotype could at least partly explain the weaker
interactions between P. aeruginosa and the hydrophobicmaterial.
Although SS was less hydrophilic than G, maximum adhesion
was observed using SS. These observations may have resulted
from the rougher surface of SS, potentially trapping the cells
(Faille et al., 2000).

Given these results, which indicate different adhesion
phenotypes as a function of the material involved, proteomic
studies were performed to determine bacterial physiology in
response to adhesion to these three materials. One technical
problem was to recover sufficient adhered bacteria to be able
to perform a proteomic study (at least 109 CFU). Indeed,
whereas the concentration of cells recovered from biofilms is
clearly sufficient (Walker et al., 2005), under our conditions
the concentration of recovered adherent bacteria was 8.4 × 106

CFU/cm2 with SS, 2.2 × 106 CFU/cm2 with G, and 6.0 × 105

CFU/cm2 with PS. Large surface areas of the materials (120 cm2

for SS, 500 cm2 for G, and 1,700 cm2 for PS per replicate) were
therefore used for the adhesion assays in order to recover 109

CFU of bacteria. Furthermore, because this study was trying
to determine the effects of the abiotic material on bacterial
physiology, proper contact between the cells and surfaces was
necessary to ensure that the majority of harvested cells had been
affected. The adherent cells were observed using epifluorescence
microscopy, which confirmed that most of the adherent cells
were indeed in contact with the surface.

Total proteins were then extracted from P. aeruginosa that
had been allowed to adhere to the three materials. Nano-LC
MS/MS analyses enabled the identification of 930 proteins,
representing about 16% of the open reading frames encoded
by the P. aeruginosa genome. Among these, 70 proteins were
identified as displaying a different abundance between at least
two materials, representing about 7% of the total identified
proteome. These observations were consistent with previous
studies that had compared planktonic and biofilm cells and
revealed similar quantities of dysregulated proteins (Vilain et al.,
2004; Southey-Pillig et al., 2005). Remarkably, clustering of these
proteins enabled the identification of three protein abundance
patterns, each relevant to a specific material, suggestive of
complex molecular mechanisms as a function of the relationships
between cells and the surfaces of materials, as had previously
been observed for bacteria adhering to agar surfaces of differing
stiffness (Belas, 2014). The abundance of these 70 P. aeruginosa
proteins varied according to the substrate, indicating that
adhesion was probably complex and involved more than one
protein (as shown by the three abundance patterns). A broad
diversity of cellular functions was affected differently by the
type of material, including mainly the “Membrane proteins,”
“Transport of small molecules,” and “Metabolism” PseudoCAP
functional classes. Taken together, these data clearly suggest
that P. aeruginosa may develop a specific physiological state
in response to such abiotic surfaces. To our knowledge, this is
the first proteomic study to have shown such an impact of a
substrate on the bacterial response, suggesting that P. aeruginosa
is capable of the differential sensing of surfaces and modulates
its physiology accordingly. This is the case for the sensing system
responsible for type IV pili biogenesis (Whitchurch et al., 2004)
that may be activated when the bacteria are grown on PS rather
than other surfaces as shown with the increase on PS of two
proteins belonging to type IV pili biogenesis pathway. This
sensing system is involved in the surface-associated behaviors of
P. aeruginosa as previously shown (Luo et al., 2015) but this role
might be modulated by the nature of the surfaces.

We detected only one bacteriophage Pf1 protein with a very
low level on PS when compared to SS and G. Although these
proteins play a key role in host interactions and are largely
involved in the formation of P. aeruginosa biofilms (Webb
et al., 2004; Secor et al., 2015), their production seems not
systematically enhanced when bacteria adhere to inert materials.

One of the most striking findings of this study was the
variations in abundance of major porins and of porin folding
chaperoneOpr86, amember of theOmp85 family that is involved
in OM biogenesis (Tashiro et al., 2008). Porins are proteins
which form water-filled channels across the OM of Gram-
negative bacteria and mediate the uptake or efflux of a number
of compounds such as ions, small nutrient molecules, antibiotics,
and large iron-siderophore complexes (Tamber et al., 2006).
Porins are thus involved in controlling OM permeability and
selectivity (Hancock and Farmer, 1993), and are also important
actors in maintaining cell wall structure and homeostasis
(Tashiro et al., 2008). OprF belongs to the OmpA family, which is
a group of genetically related, surface-exposed porin proteins that
are present in high-copy numbers in the OM of Gram-negative
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bacteria. OprF is a general porin that is non-covalently linked
to the peptidoglycan layer, contributing thus to maintenance
of the cell wall structure (Hancock and Carey, 1979). It is
involved in adhesion, biofilm formation and virulence (Azghani
et al., 2002; Sriramulu et al., 2005; Fito-Boncompte et al., 2011;
Bouffartigues et al., 2015). OprD, OprG, and OprQ are involved
in the uptake of small peptides, amino acids, or carboxylic acids
(Hancock and Brinkman, 2002; Kucharska et al., 2015). OprE
and OprC are induced in response to anaerobiosis and copper,
respectively (Yoneyama and Nakae, 1996; Jaouen et al., 2006),
and OprM is the OM component of the general efflux pump
MexAB/OprM that is involved in general cell detoxification
(Hancock and Brinkman, 2002). It should be noted that the
abundance of these porins was found to be lower in bacteria that
adhered to SS comparatively to PS and G, suggesting a reduction
in OM permeability. A similar reduction in porin content has
already been described in the OM of P. aeruginosa in response
to a copper-induced stress (Teitzel et al., 2006), potentially
suggesting a specific response to the metals composing the SS
(iron, chromium, molybdenum, and nickel).

In addition to porins, other proteins associated with cell wall
homeostasis were identified being produced at lower levels on SS
than on the other twomaterials. This was the case for OprL, LptD,
and PagL. OprL is homologous to the Escherichia coli Pal major
OM lipoprotein that is involved in anchoring the peptidoglycan
to the OM (Lloubès et al., 2001; Lim et al., 2012). LptD is an
OM protein that is involved in the assembly of LPS in the OM
outer leaflet (Srinivas et al., 2010). Lipid A 3O-deacylase PagL
removes the 3-OH C10 or 3-OH C14 β-hydroxy fatty acid from
lipid A, thus modifying the lipopolysaccharide structure (Ernst
et al., 2006). Because lipid A is the biologically active component
of LPS, its remodeling is known to alter the integrity of the
bacterium’s OM (King et al., 2009; Shah et al., 2013).

We therefore found on the one hand that numerous OM
proteins were found at a lower abundance after adhesion to SS
than to the other two surfaces. On the other hand, we were
able to show that P. aeruginosa was able to adhere about 3-
or 10-fold more to SS than to G or PS, respectively. This was
quite surprising since it has been shown that some porins are
involved in adhesion. Indeed, because they are exposed to the
cell surface, some porins have been found to be involved in
adhesion to biotic and/or abiotic surfaces. For example, this is
the case for OprF (Azghani et al., 2002; Rebiere-Huet et al., 2002;
Bodilis et al., 2004; Hemery et al., 2007; Fito-Boncompte et al.,
2011), OprQ (Arhin and Boucher, 2010), and OprD (Paulsson
et al., 2015). Taken together, these data enabled to highlight
the importance of physicochemical properties to adhesion to
solid surfaces. In E. coli, the low abundance of OM proteins
including porins and the major lipoprotein Lpp, is correlated to
a complex pathway called the general envelop stress response
(ESR), which is under control of the master sigma alternative
factor RpoE (Ades, 2004; Guo et al., 2014). RpoE maintains
OM homeostasis by inducing synthesis of proteins involved in
membrane repair and small regulatory RNAs (sRNAs) that down-
regulate synthesis of abundant membrane porins and Lpp (Guo
et al., 2014). Noticeably, it has been recently suggested that stress
pathways, among which ESR, can play a role in surface sensing,

leading to adhesion and biofilm formation (O’Toole and Wong,
2016). The periplasmic stress pathways Rcs (Regulator of capsule
synthesis) and Cpx, which are members of the global ESR in
E. coli, may indeed act as surface sensors with perturbation of
the membrane(s), cell wall, and/or periplasmic space probably
triggering these canonical stress systems, thereby perhaps alerting
the microbe to cell-to-substratum contact (Otto and Silhavy,
2002; Morgenstein and Rather, 2012). In Enterobacteriaceae,
specific Cpx pathway may prevent damages to the cell envelope
caused by interactions of the cell with a surface (Otto and Silhavy,
2002). In P. aeruginosa, ESR is far less studied than in E. coli, and
to date, only the two ECF sigma factors AlgU and SigX have been
shown to be involved inmaintaining the cell wall integrity (Wood
and Ohman, 2009; Duchesne et al., 2013). Remarkably, the OM
proteome of a SigX deficient P. aeruginosa strain was shown to
present a much lower abundance in OM porins (Duchesne et al.,
2013). Moreover, the conditions leading to cell wall stress among
which membrane perturbations, were shown to increase SigX
activity resulting in enhancing adhesion and biofilm formation
(Bouffartigues et al., 2014, 2015). It may be conceivable that
perception of an SS surface may occur viamembrane or cell wall
perturbations, leading to activation of the cell wall stress response
of P. aeruginosa.

CONCLUSION

This study showed that under our experimental conditions, the
abiotic surface impacted the protein production of adherent
cells of P. aeruginosa PAO1. About 7% of the proteome thus
detected underwent quantitative changes that involved all cell
compartments and particularly outer membrane proteins. To our
knowledge, no such global proteomic study has previously been
performed at such an early stage in the surface biocontamination
process. This study showed that biological and physiological
functions can be modified by the surface involved, suggesting
that P. aeruginosa was able to sense the material to which it
was adhering. However, the molecular mechanisms that lead
to this surface sensing are probably numerous and complex,
as highlighted by the various physiological responses of P.
aeruginosa to adhesion on SS, G, or PS surfaces, and confirming
the hypothesis that P. aeruginosa is capable of sensing and
responding to a surface via specific programmes. These different
proteomes found in P. aeruginosa adhering to surfaces with
various physicochemical properties may also result in part from
the different adhesion forces that exist between the surfaces of
bacteria and materials. This physiological reactivity of bacteria
to materials needs to be taken into account in sensitive
environments where pathogenic strains may present a health
threat, such as in hospitals and in the food industry. Further
studies now need to investigate whether contact with the material
can induce unwanted phenotypes for example cross-resistance to
antibacterial products.
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