
HAL Id: hal-01575325
https://hal.science/hal-01575325v1

Preprint submitted on 18 Aug 2017 (v1), last revised 23 Nov 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse polynomial interpolation: compressed sensing,
super resolution, or Prony?

Cédric Josz, Jean-Bernard Lasserre, Bernard Mourrain

To cite this version:
Cédric Josz, Jean-Bernard Lasserre, Bernard Mourrain. Sparse polynomial interpolation: compressed
sensing, super resolution, or Prony?. 2017. �hal-01575325v1�

https://hal.science/hal-01575325v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Sparse polynomial interpolation: compressed sensing, super resolution, or

Prony?

Cédric Josz · Jean Bernard Lasserre · Bernard
Mourrain

Abstract We show that the sparse polynomial interpolation problem reduces to a discrete super-
resolution problem on the n-dimensional torus. Therefore the semidefinite programming approach
initiated by Candès & Fernandez-Granda [7] in the univariate case (and later extended to the multi-
variate setting) can be applied. In particular, exact recovery is guaranteed provided that a geometric
spacing condition on the “supports” holds and the number of evaluations are sufficiently many (but
not many). It also turns out that the (compressed sensing) LP-formulation of ℓ1-norm minimization is
also guaranteed to provide exact recovery provided that the evaluations are made in a certain manner
and even though the Restricted Isometry Property for exact recovery is not satisfied. (A naive com-
pressed sensing LP-approach does not offer such a guarantee.) Finally we also describe the algebraic
Prony method for sparse interpolation, which also recovers the exact decomposition but from less
point evaluations and with no geometric spacing condition. We provide two sets of numerical exper-
iments, one in which the super-resolution technique and Prony’s method seem to cope equally well
with noise, and another in which the super-resolution technique seems to cope with noise better than
Prony’s method, at the cost of an extra computational burden (i.e. a semidefinite optimization).

Keywords Linear programming · Prony’s method · Semidefinite programming · super-resolution

1 Introduction

Suppose that we are given a black-box polynomial g ∈ R[z], that is, g is unknown but given any “input”
point z ∈ Cn, the black-box outputs the complex number g(z).

A sparse polynomial is a polynomial z 7→ g(z) =
∑

α gαz
α with only a few non-zero coefficients (gα)

and sparse interpolation is concerned with recovering the unknown monomials (zα) and coefficients
(gα) of a sparse polynomial via the sole knowledge of a few (and as few as possible) values of g at some
points (zk) ⊂ Cn that one may choose at our convenience. Basically there are two possible methods
to recover the coefficients of the unknown polynomial:
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Naive LP

A naive “compressed sensing” LP-approach consists of solving min{‖x‖1 : Ax = b} where x is the
vector of coefficients of the unknown polynomial and Ax = b are linear constraints obtained from
evaluations at some given points. In minimizing the ℓ1 norm one expects to obtain a “sparse” solution
to the undetermined system Ax = b (as in compressed sensing). However since the matrix A does not
satisfy the sufficient Restricted Isometry Property (RIP), exact recovery is not guaranteed (at least by
invoking results from compressed sensing).

Prony

The method goes back to the pioneer work of G. R de Prony [11] who was interested in recovering
a sum of few exponential terms from sampled values of the function. Thus Prony’s method is also
a standard tool to recover a complex atomic measure from knowledge of some of its moments [24].
Briefly, in the univariate setting this purely algebraic method consists of two steps: (i) Computing
the coefficients of a polynomial p whose roots form the finite support of the unknown measure. As
p satisfies a recurrence relation it is the unique element (up to scaling) in the kernel of a (Hankel)
matrix. (ii) The weights associated to the atoms of the support solve a Vandermonde system.

This algebraic method has then been used in the context of sparse polynomial interpolation. In
the univariate case it consists in evaluating the black-box polynomial at values of the form ϕk for
a finite number of pairs (k, ϕ) ∈ N × C, fixed. A sequence of 2 r evaluations allows to recover the
decomposition exactly, where r is the number of terms of the sparse polynomial. The decomposition
is obtained by computing a minimal recurrence relation between these evaluations, by finding the
roots of the associate polynomial, which yields the exponents of the monomials and by solving a
Vandermonde system which yields the coefficients of the terms in the sparse polynomial.

Since then, it has been extended to address numerical issues and to treat applications in various
domains (particularly in signal processing). See e.g. [32], [34], [17], [4], [31], [30] and the many references
therein. For instance, from an algorithmic point of view the approach has been improved by exploiting
the Berlekamp-Massey algorithm [3], [26] and the structure of the involved matrices; see e.g. [21], [36],
[18]. It has been applied to treat multivariate sparse interpolation problems [35] and [2]. It has also been
extended to approximate data [16]. In particular it has been applied to sparse polynomial interpolation
with noisy data in [38] to provide a way to recover a blackbox univariate polynomial exactly when
some (but not all) of its evaluations are corrupted with noise (in the sipirit of error-decoding).

Generalizations of Prony’s method to multivariate reconstruction problems have been developed
more recently. Instead of computing a univariate polynomial from the moments and finding its roots,
the algebraic structure of an Artinian Gorenstein algebra is computed and the decomposition is de-
duced from eigenvectors of multiplication operators. See e.g. [24] for a projection based method, [33] for
methods which require the computation of an H-basis of the kernel ideal or more direct decomposition
methods in [27] and [19] which we are going to use hereafter.

Super-resolution

The super-resolution problem consists in recovering the support of a sparse atomic (signed) measure
on a compact set K, from known moments. Hereafter we will consider the particular case where K is
the multi-dimensional torus Tn ⊂ Cn. In the work of Candès and Fernandez-Granda [7] it is shown
that if the support atoms of the measure are well-separated then the measure is the unique solution of
an infinite-dimensional convex optimization problem on a space of measures with the total variation
as minimization criterion. In the univariate case its (truncated) moment matrix can be recovered by
solving a single Semidefinite Program (SDP). The number of evaluations needed for exact recovery is
then at most 4s if s is the number of atoms1 (and in fact significantly less in all numerical examples
provided). Interestingly, the total-variation minimization technique adapts nicely to noisy model and
yields stable approximations of the weighted sum of Dirac measures, provided that the support atoms
are well separated, see e.g. [6], [1], [14].

1 As noted in Candès and Fernandez-Granda [7], with the proviso that the number of evaluations is larger than 128
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An extension to the multivariate case has been proposed in [13] to recover weight sums of Dirac
measures in Rn, where now one needs to solve a hierarchy of semidefinite programs.

The existence and unicity of the solution of the total variation minimization problem relies on the
existence of a dual certificate, that is, a polynomial with sup-norm reached at the points of the support
of the measure. The relaxation into a hierarchy of semidefinite programs [13] yields a decomposition
into a finite weighted sum of Dirac measures, provided that at some order of the hierarchy, a flat
extension condition is satisfied at an optimal solution. Then the decomposition can be recovered from
the moment matrix at this optimal solution by applying a Prony’s like technique.

Contribution

•We first consider the naive LP-approach to sparse interpolation via ℓ1-norm minimization min{‖x‖1 :
Ax = b} in the spirit of compressed sensing and we characterize optimal solutions via standard
arguments of linear programming (LP). Interestingly, this characterization is a “formal analogue” in
appropriate spaces of that in super-resolution (2.1) in some measure spaces. However as the matrix A
does not satisfy the RIP there is no guarantee (at least by invoking results from compressed sensing)
that an optimal solution is unique and corresponds to the unique sparse black-box polynomial g.

• We propose a variant of (multivariate) Prony’s method in the context of sparse polynomial
interpolation. In particular in the univariate case it only requires r + 1 evaluations (instead of 2r)
where r is the number of monomials of the blackbox polynomial. It involves a Toeplitz matrix rather
than a Hankel matrix and numerical experiments confirm the theoretical result regarding the number
of evaluations.

•We then propose another approach which uses the fact that one has the choice of points (zk) ⊂ Cn

at which evaluations of g can be done through the black-box and yields the following simple but crucial
observation: By choosing zk as some power zβ0 with β ∈ Nn (and where z0 ∈ Tn is fixed, arbitrary)
the sparse polynomial p can be viewed as a signed atomic measure µ on Tn with finitely many atoms
(zα0 ) ⊂ T

n associated with the nonzero coefficients of p (the signed weights of µ associated with each
atom). In doing so the sparse interpolation problem is completely equivalent to a super-resolution
problem on the multi-dimensional torus Tn and therefore the sparse polynomial is the unique optimal
solution of a certain infinite-dimensional linear program on a space of measures, provided that a
geometric condition of minimum spacing (between atoms of the support) is satisfied and sufficiently
many evaluations are available. Notice that previous works on Prony’s method (e.g. [38]) have also
exploited (but in a different manner) evaluations at consecutive powers of a fixed element. In fact our
view of a polynomial as a signed atomic measure on the torus is probably the shortest way to explain
why Prony’s method can be used for polynomial interpolation (as the original Prony’s method can
be interpreted directly as reconstructing an atomic measure on the complex plane from some of its
moments [24]). To the best of our knowledge, this interpretation of a polynomial as a signed measure
seems to be new.

We then relax this problem to a hierarchy of semidefinite programs. In principle, the convergence
is only asymptotic (and guaranteed to be finite only in the cases n = 1, 2). However generic finite
convergence results of polynomial optimization of Nie [29] seem to be also valid in our context as
evidenced from our numerical experiments (and in those in De Castro et al. [13] in signal processing).
The flat extension rank condition on moment matrices of Curto and Fialkow [10, Theorem 1.1] or
its generalization in [25] can be extended to Toeplitz-like moment matrices [20], to test whether
finite convergence takes place. In all our numerical experiments, finite convergence takes place and
the coefficients and exponents of the unknown polynomial could be extracted. To give an idea, a
univariate polynomial of degree 100 with 3 atoms can be recovered by solving a single SDP with
associated 4 × 4 Toeplitz matrices and which only involves 4 evaluations. On the other hand if some
atoms are close to each other then more information (i.e. evaluations) is needed as predicted by the
spacing condition (and confirmed in some numerical experiments).

• In practice we reduce the number of measurements (i.e., evaluations) needed to retrieve a sparse
polynomial when using super resolution. To do this we invoke a result (Lemma 1 of this paper) related
to the full complex moment problem. It states that atomic measures onCn with finitely many atoms are
completely characterized by their moments (

∫
zα dµ)α∈Nn , with no need of all moments (

∫
z̄βzα dµ)α,β

involving conjugates. This result, which holds true in full generality, yields a simplified hierarchy
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with significant computational savings. It is the subject of future work to determine whether this
preserves the guarantee of “asymptotic” recovery of the original complete hierarchy; in our numerical
experiments, finite convergence is always observed, and with fewer measurements than in the original
method.

• A rigorous LP-approach. In fact the interpolation problem is even a discrete super-resolution
problem (i.e. recovery of a discrete signal) where the atomic measure consists of finitely many atoms
on a fixed grid {t/N}t=0,...,N−1 as described in Candès and Fernandez-Granda [7, §1.4]. Therefore
this fact also validates exact recovery via a (compressed sensing) LP-formulation of ℓ1-minimization
minx{‖x‖1 : Ax = b} provided that the spacing condition is satisfied and evaluations (modeled by the
constraints Ax = b are made in a certain manner on the torus T

n, and not on a random sample of
points in Rn). Interestingly, this provides us with an important case of compressed sensing where exact
recovery is guaranteed even though the RIP property is not satisfied. However from a practical side
the SDP formulation is more efficient and elegant. Indeed for instance in the univariate case the size
of the Toeplitz matrix involved is directly related to the number of atoms to recover whereas in the
compressed sensing LP-approach, one has to fix a priori the length N of the vector x (which depends
on the degree of the unknown polynomial, possibly very large) even if ultimately one is interested only
in its few non zero entries (usually a very small number).

• Finally we provide a numerical comparison of the three approaches (LP, SDP and Prony) on a
sample of problems and comment on their respective advantages and drawbacks. We clarify the rela-
tionship between Prony’s method and super-resolution. In [7] Prony’s method was briefly mentioned
and neglected as sensitive to noise in the data (in contrast to super-resolution). We try to clarify this
statement: actually, super-resolution requires Prony’s method (or some variant of it) to extract rele-
vant information from the output (the optimal solution) of the semidefinite program. In other words,
super-resolution preprocesses the input data to Prony’s method via a convex optimization procedure.
We find that this sometimes helps to deal with noise in the context of polynomial interpolation, con-
firming the elegant theory of [7]. In some instances, super resolution does not perform well because of
numerical issues present in current semidefinite programming solvers. To the best of our knowledge
this drawback has not been discussed in the literature.

2 Notation, definitions and Preliminary results

2.1 Notation and definitions

Let R[x] (resp. R[x]d) denote the ring of real polynomials in the variables x = (x1, . . . , xn) (resp.
polynomials of degree at most d), whereas Σ[x] (resp. Σ[x]d) denotes its subset of sums of squares
(SOS) polynomials (resp. of SOS of degree at most 2d). For every α = (α1, . . . , αn) ∈ Nn the notation
xα stands for the monomial xα1

1 · · ·xαn
n and for every i ∈ N, let Np

d := {β ∈ Nn :
∑

j βj ≤ d} whose

cardinal is s(d) =
(
n+d
n

)
. A polynomial f ∈ R[x] is written f =

∑

α∈Nn fα xα with fα almost all equal
to zero, and f can be identified with its vector of coefficients f = (fα) in the canonical basis (xα),
α ∈ Nn.

Denote by R[x]∗d the space of linear functionals on R[x]d, identified with Rs(d). For a closed set
K ⊂ Rn denote by Cd(K) ⊂ R[x]d the convex cone of polynomials of degree at most d that are
nonnegative on K, and for f ∈ R[x]d, let

‖f‖1 := ‖f‖1 =
∑

α∈Nn
d

|fα|.

Denote by St ⊂ Rt×t the space of real symmetric matrices, and for any A ∈ St the notation A � 0
stands for A is positive semidefinite.

A real sequence z = (zα), α ∈ Nn, has a representing measure supported on a set S ⊂ Rn if there
exists some finite Borel measure µ on S such that

zα =

∫

S

xα dµ(x), ∀α ∈ N
n.

The space of finite Borel (signed) measures (resp. continuous functions) on S ⊂ Rn is denoted by
M (S) (resp. C (S)).
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2.2 Super-resolution

Let S ⊂ Rn and suppose that µ is a signed atomic measure supported on a few atoms (zi) ⊂ S,
i = 1, . . . , s, i.e., µ =

∑s
k=1 wi δzi . Super-resolution is concerned with retrieving the supports (zi) ⊂ S

as well as the weights (wi) ⊂ R, from the sole knowledge of a few (and as few as possible) “moments”
(ak =

∫

S
gk dµ), k = 1, . . . ,m, for some functions (gk). One possible approach is to solve the convex

optimization problem:

ρ = inf
µ∈M (S)

{ ‖µ‖TV :

∫

S

gk dµ = ak, k = 1, . . . ,m } (2.1)

where M (S) is the space of finite signed Borel measures on S equipped with the total-variation nom
‖ · ‖TV . The dual of (2.1) reads:

ρ∗ = sup
λ∈Rm

{ aTλ : ‖
m∑

k=1

λk gk‖∞ ≤ 1 }, (2.2)

where ‖f‖∞ = sup
x∈S |f(x)|. (In fact and interestingly, both programs (2.1) and its dual (2.2) have

already appeared in the sixties in a convex and elegant formulation of some bang-bang type optimal
control problems; see Neustadt [28] and Krasovskii [23].) The rationale behind this approach is the
analogy with compressed sensing. Indeed, the total variation norm ‖µ‖TV is the analogue for measures
of the ℓ1-norm for vectors2.

In the univariate case when S is an interval (one may also consider the torus T ⊂ C) and the gk’s are
the usual algebraic monomials (xk), solving (2.1) then reduces to solving a single semidefinite program
(SDP) and Candès and Fernandez-Granda [7] have shown that exact reconstruction is guaranteed
provided that the (unknown) s supports (zi) are sufficiently spaced and m ≥ max[4s, 128]. This
approach was later generalized to arbitrary dimension and semi-algebraic sets in De Castro et al [13];
in contrast to the univariate case, one has to solve a hierarchy of semidefinite programs (instead of a
single one). In the 2-dimensional and 3-dimensional examples treated in [13], exact recovery is obtained
rapidly.

Alternatively one may also recover µ via the algebraic multivariate Prony method described in
[27] and the references therein, and for which no minimum geometric separation of the supports is
required. In addition, in the univariate case only m = 2r moments are needed for exact recovery.

2.3 The multivariate Prony method

2.3.1 Hankel Prony

Amultivariate Prony method has been proposed in [27,19] and is implemented in https://gitlab.inria.fr
/mourrain/PolyExp.We refer to it in this paper as “Hankel Prony”. It consists in two successive linear
algebra operations.

Input

– Measurements yα ∈ C for α = (α1, . . . , αn) ∈ N
n up to a degree ‖α‖1 =

n∑

i=1

αk 6 d

– A threshold ǫ > 0 to determine the numerical rank

Output Atomic measure µ

1. For d1 := ⌊d
2⌋ and d2 := ⌈d

2⌉ (where ⌊·⌋ and ⌈·⌉ denote the ceiling and floor of an integer), a singular
value decomposition of a submatrix containing the measurements (i.e.H0 = (yα+β)|α|6d1,|β|6d2−1 =
UΣV ∗ where (·)∗ stands for adjoint); the threshold ǫ > 0 is used to determine the numerical rank
r using the ratio of successive singular values. Precisely, the singular values in the diagonal matrix
Σ are sorted in decreasing order and the rank is taken to be equal to the first instance when the
ratio drops below the threshold. Multiplication matrices of size r × r can then be formed for each
variable, i.e. Mk = Σ−1

r UrHkVr where Hk = (yα+β+ek)|α|6d1,|β|6d2−1, Σr contains the r greatest

2 To see this suppose that µ is the signed atomic measure
∑s

i=1 θiδxi
. Then ‖µ‖TV = ‖θ‖1.
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singular values in its diagonal, Ur is composed of the first r rows of the conjugate transpose of U ,
Vr is composed of the first r columns of the conjugate of V , and ek denotes the row vector of size
n of all zeros apart from 1 in position k.

2. An eigen-decompositon of a random linear combination of the multiplication matrices
n∑

k=1

λkMk =

PDP−1 (for generic λ1, . . . , λn ∈ R) yields the atoms and the weights of the measure µ :=
∑r

i=1 ωiδξi . Precisely, the atoms are ξi := ||Pi||−2
2 (P ∗

i MkPi)16k6n where Pi denotes the i
th column

of P and the weights are

wi :=
e1H0VrPi

(ξαi )‖α‖16d2−1VrPi

. (2.3)

We apply the above procedure to retrieve a measure from the output of the semidefinite optimization
in super-resolution.

2.3.2 Toeplitz Prony

We now describe a new version of Prony’s method, which we refer to as “Toeplitz Prony”. In the
setting of polynomial interpolation, Prony’s method can be adapted to exploit the fact that we are
interested in finding an atomic measure supported on the torus with real weights. As a result, fewer
evaluations are necessary. For simplicity, we described this idea in the univariate setting, but it applies
to the multivariate setting as well.

Following Kunis [24] say we are searching for a measure of finite support of the form µ =
∑r

k=1 ωkδξk where the weights ωk are real and the support points ξk with coordinates of norm 1.

Prony’s method is based on the fact that the polynomial p(z) = zr−∑r−1
k=1 pkz

k := (z− ξ1) . . . (z− ξr)
satisfies

∫

C
q(z)p(z)dµ = 0 for any q(z) ∈ C[z]. We consider instead the following relations

∫

C
z̄0p(z)dµ = 0,

...
∫

C
z̄r−1p(z)dµ = 0,

(2.4)

yielding





σ0 . . . σr−1

...
...

σr−1 . . . σ0











p0
...

pr−1




 =






σr

...
σ1




 (2.5)

where σk =
∫
zkdµ and σk =

∫
zkdµ =

∫
z−kdµ since µ has real weights and the coordinates of its

support points are of norm 1. Note that only r+ 1 evaluations are needed and that the above matrix
is a Toeplitz matrix, as opposed to the Hankel matrix of the Prony method. Both matrices have the
same size, but to construct the Hankel matrix, 2r moments σk are needed.

The approach can be extended to the multivariate case, with Toeplitz like moment matrices. The
rows are indexed by monomials and columns indexed by anti-monomials, that is, monomials with
negative exponents. The entries of the matrix indexed by (α,−β) with α, β ∈ Nn is σα−β =

∫
zα−βdµ.

The same algorithm as in the Hankel Prony approach can then be used to obtain the decomposition of
the measure from its moments. Note that the variant of Prony’s method [33] (which also uses Toeplitz
matrices) is computationally more demanding and thus not relevant here.

2.3.3 Advanced Prony

We now describe a more elaborate form of Prony’s method, which we will refer to as “Advanced
Prony”. The multivariate Prony method decomposes a multi-index sequence σ = (σα)α∈Nn ∈ CN

n

, or
equivalently a multivariate series, into a sum of polynomial-exponential sequences or series, from a
finite set {σα, α ∈ A ⊂ Nn} of coefficients.

In the case of sparse interpolation, the coefficients σα of the series are the values f(ζα) for α ∈
A ⊂ Nn. If f = xβ β ∈ Nn, the corresponding series is the exponential series of ξ, where ξ = ζβ .
Therefore if f =

∑r
i=1 ωix

βi is a sparse polynomial, the series σα = f(ζα) decomposes into a sum of
r exponential series with weights ωi and frequencies ξi = ζβi . The weights ωi are the coefficients of
the monomials of f and the frequencies ζβi yield the exponents βi = logζ(ξ) of the monomials.
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To compute this decomposition, we apply the following method. Subsets of monomials A0, A1 ⊂
xN

n

are chosen adequately so that the rank of the Hankel matrix

H0 = (σα0+α1
)α0∈A0,α1∈A1

is the number of terms r. The Hankel matrices Hi = (σei+α0+α1
)α0∈A0,α1∈A1

are also computed for
i = 1, . . . , n and (ei) is canonical basis of N

n. The subsets A0, A1 are chosen so that the monomial sets
xA0 and xA1 contain a basis of the quotient algebra of the polynomials modulo the vanishing ideal of
the points ξ1, . . . , ξr.

Using Singular Value Decomposition [19] or a Gramm-Schmidt orthogonalization process [27],
tables of multiplication by the variables in a basis of the associated Artinian Gorenstein algebra Aσ

are deduced. The frequencies ξi ∈ C
n, which are the points of the algebraic variety associated to Aσ,

are obtained by solving techniques from multiplication tables, based on eigenvector computation. The
weights ωi can then be deduced from the eigenvectors of these multiplication operators.

To compute this decomposition, only the evaluations f(ζα) with α ∈ A = ∪n
i=1e0+A0+A1 (where

e0 = (0, . . . , 0)) are required.
Naturally, the “Advanced Prony” can be adapted to the Hankel and Toeplitz cases described in

the two previous sections, yielding approaches which we will refer to as “Advanced H. Prony” and
“Advanced T. Prony”.

3 Sparse Interpolation

In §2.3 we have seen how to solve the sparse interpolation problem via Prony’s method. We now
consider two other approaches which both solve some convex optimization problem with a sparsity-
inducing criterion.

3.1 A (naive) LP-approach to interpolation

Suppose that g∗ ∈ R[x]d is an unknown polynomial of degree d and we can make a certain number of
“black-box” evaluations g∗(xk) = ak at some points (xk) ⊂ S, k = 1, . . . , s, that we may choose to
our convenience. Consider the following optimization problem P:

P : ρ = inf
g∈R[x]d

{ ‖g‖1 : g(xk) = ak, k = 1, . . . ,m } (3.1)

= inf
g∈R[x]d

{ ‖g‖1 : 〈g, δxk
〉 = ak, k = 1, . . . ,m } (3.2)

where δxk
is the Dirac at the point xk ∈ Rn, and 〈·, ·〉 the duality bracket

∫

S
fdµ between C (S) and

M (S). Equivalently P also reads:

ρ = inf
g
{
∑

α∈Nn
d

|gα| :
∑

α

gα xα
k = ak, k = 1, . . . ,m }, (3.3)

or in the form of an LP as:

ρ = inf
g+,g−≥0

{
∑

α∈Nn
d

(g+α + g−α ) :
∑

α

g+α xα
k − g−α x

α
k = ak, k = 1, . . . ,m } (3.4)

which is an LP. Let a = (ak), k = 1, . . . ,m. The dual of the LP (3.1) is the LP:

P∗ : ρ = sup
λ∈Rm

{ aTλ : |
m∑

k=1

λk x
α
k | ≤ 1; α ∈ N

n
d }

= sup
λ∈Rm

{aTλ : |〈xα,

m∑

k=1

λk δxk
〉|

︸ ︷︷ ︸

=|mλ(α)|

≤ 1; α ∈ N
n
d }

= sup
λ∈Rm

{aTλ : ‖mλ‖∞ ≤ 1 }, (3.5)
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where to every λ ∈ Rm is associated the vector mλ ∈ Rs(d) defined by

mλ(α) := 〈xα,
m∑

k=1

λk δxk
〉 =

m∑

k=1

λk x
α
k .

So in the dual P∗ one searches for λ∗, equivalently the signed atomic measure µ∗ :=
∑m

k=1 λ
∗
k δxk

, as
we also do in super-resolution (2.1) (but in P∗ the support is known).

Lemma 3.1 Let (ĝ+, ĝ−) be an optimal solution of the naive LP (3.4) with associated polynomial
x 7→ ĝ(x) := ĝ+(x)− ĝ−(x), and let λ∗ ∈ Rs be an optimal solution of its dual (3.5). Then:

(i) ĝ has at most m non-zero entries, out of potentially s(d) =
(
n+d
n

)
.

(ii) −1 ≤ mλ∗(α) ≤ 1 for all α ∈ Nn
d , and

ĝα > 0 ⇒ mλ(α) = 1
︸ ︷︷ ︸
∫
xαdµ∗=1

; ĝα < 0 ⇒ mλ(α) = −1
︸ ︷︷ ︸
∫
xαdµ∗=−1

, (3.6)

The proof is by standard arguments of LP and the Simplex algorithm.

Exact recovery. A natural issue is exact recovery, i.e., is there a value ofm (with possiblym ≪ O(nd))
for which ĝ = g∗? And if yes, how small m must be?

A well-known and famous condition for exact recovery of sparse solution x∗ to

min
x

{ ‖x‖1 : Ax = b } (3.7)

is the so-called Restricted Isometry Property (RIP) of the matrix A introduced in Candès and Tao [8]
(see also Candès [5, Definition 1.1]) from which celebrated results of Candès et al. [9] in compressed
sensing could be obtained. The interested reader is also referred to Fan and Kamath [15] for an
interesting recent comparison of various algorithms to solve (3.7) (even in the case where the RIP
does not hold).

It turns out that for Problem (3.3) the resulting (Vandermonde-like) matrix A does not satisfy the
RIP property, and so exact recovery of the sparse polynomial as solution of (3.3) (and equivalently of
the LP (3.4)) is not garanteed in general.

3.2 A formal analogy with super-resolution

Observe that (3.2) is the analogue in function spaces of the super-resolution problem in measure spaces.
Indeed in both dual problems (2.2) and (3.5) one searches for a real vector λ ∈ Rm. In the former it
is used to build up a polynomial h :=

∑m
k=1 λ

∗
kgk uniformly bounded by 1 on S (‖h‖∞ ≤ 1) while in

the latter it is used to form an atomic measure
∑m

k=1 λ
∗
kδxk

whose moments (up to some order d) are
uniformly bounded by 1 (‖mλ‖∞ ≤ 1).

Moreover, let (µ∗, λ∗) be a pair of optimal solutions to (2.1)-(2.2). Then µ∗ = µ+−µ− where µ+ and
µ− are positive atomic measures respectively supported on disjoint sets X1, X2 ⊂ S, and each point
of X1 (resp. X2) is a zero of the polynomial x 7→ 1 −∑m

k=1 λ
∗
k gk(x) (resp. x 7→ 1 +

∑m
k=1 λ

∗
k gk(x)).

That is:

sup
x∈S

|
m∑

k=1

λ∗
k gk(x)| ≤ 1, and (3.8)

xj ∈ supp(µ+) ⇒
m∑

k=1

λ∗
k gk(xj) = 1; xj ∈ supp(µ−) ⇒

m∑

k=1

λ∗
k gk(xj) = −1, (3.9)

(compare with (3.6)).
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3.3 Sparse interpolation as super-resolution

In §3.2 we have shown that the “compressed sensing” formulation (3.1) of the sparse interpolation
problem could be viewed as a “formal analogue” in function spaces of the super-resolution problem
in measure spaces.

In this section we show that sparse interpolation is in fact a true (as opposed to formal) super-
resolution problem on the torus Tn ⊂ Cn, provided that evaluations are made at points chosen in a
certain adequate manner. So let

x 7→ g(z) =
∑

β∈Nn
d

gβ z
β ,

be the black-box polynomial with unknown real coefficients (gβ) ⊂ R.

A crucial observation. Let z0 ∈ T
n (with z0 6= (1, . . . , 1)) be fixed, e.g., of the form:

z0 := (exp (2iπ/N), . . . , exp (2iπ/N)), (3.10)

for some arbitrary (fixed) integer N , or

z0 := (exp (2iπθ0), . . . , exp (2iπθ0)), (3.11)

for some arbitrary (fixed) irrational θ0 ∈ R. With the choice (3.11)

[ α, β ∈ Zn and α 6= β ] ⇒ zα0 6= zβ0 .

whereas with the choice (3.10)

[ α, β ∈ Zn, maximax[|αi|, |βi|] < N , and α 6= β ] ⇒ zα0 6= zβ0 .

Next for every α ∈ Nn :

aα := g(zα0 ) =
∑

β∈Nn

gβ (z
α
0 )

β =
∑

β∈Nn

gβ (z
α1

01 )
β1 · · · (zαn

0n )
βn (3.12)

=
∑

β∈Nn

gβ (z
β1

01 )
α1 · · · (zβn

0n )
αn

=
∑

β∈Nn

gβ (z
β
0 )

α =

∫

Tn

zα dµg,z0(z),

where µg,z0 is the signed atomic-measure on Tn defined by:

µg,z0 :=
∑

β∈Nn

gβ δξβ (and ‖µg,z0‖TV =
∑

β |gβ | = ‖g‖1), (3.13)

where ξβ := zβ0 ∈ Tn, for all β ∈ Nn such that gβ 6= 0, and δξ is the Dirac probability measure at the
point ξ ∈ Cn.

In other words: Evaluating g at the point zα0 ∈ Tn is the same as evaluating the moment
∫

Tn zα dµg,z0 of the signed atomic-measure µg,z0 . Therefore, the sparse interpolation problem is the

same as recovering the finitely many unknown weights (gβ) ⊂ R and supports (zβ0 ) ⊂ Tn of the signed
measure µg,z0 on Tn, from finitely many s moments of µg,z0 , that is, a super-resolution problem.

Remark 3.2 The n-dimensional torus Tn is one among possible choices but any other choice of a
set S ⊂ Cn and z0 ∈ Cn (or S ⊂ Rn and z0 ∈ Rn) is valid provided that (zα0 )α∈Nn ⊂ S. For instance
z0 ∈ (−1, 1)n and S := [−1, 1]n is another possible choice.
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Let ‖z‖∞ denote the usual sup-norm supi |zi| in Cn. Given fc ∈ N define the set

Afc := {−fc,−(fc − 1), . . . ,−1, 0, 1, . . . , (fc − 1), fc}n ⊂ Z
n.

With the choice S := Tn, z0 ∈ Tn as in (3.10) or in (3.11), and fc ∈ N, consider the optimization
problems:

ρfc = inf
µ∈M (Tn)

{ ‖µ‖TV :

∫

Tn

zα dµ(z) = aα, α ∈ Afc}, (3.14)

where aα = g(zα0 ) is obtained from the black-box polynomial g ∈ R[z], and

ρ∗fc = sup
g∈C[z;Afc ]

{ℜ(aTg) : ‖ℜ(g(z))‖∞ ≤ 1} (3.15)

(where a = (aα)). Notice that the super-resolution problem problem (3.14) has the following equivalent
formulation in terms of an infinite dimensional LP

ρfc = inf
µ+,µ−∈M (Tn)

{
∫

Tn

1 d(µ+ + µ−) :

∫

Tn

zα d(µ+ − µ−) = aα, α ∈ Afc}, (3.16)

with same dual (3.15) as (3.14). Moreover ρfc = ρ∗fc ; the proof for S = Tn is very similar to the proof
in De Castro et al. [13] for the case where S ⊂ Rn is a compact semi-algebraic set.

Theorem 3.3 Let g∗ ∈ R[z], x 7→ g∗(z) :=
∑

β g
∗
βz

β, be an unknown real polynomial. Let Γ :=
{β ∈ Nn : g∗β 6= 0} and s := |Γ |. Let z0 ∈ Tn be as in (3.11) or in (3.10) (in which case N >
max

i=1,...,n
max{βi : β ∈ Γ}), and let aα = g(zα0 ), α ∈ Afc .

Let 0 < δ := min{ ‖zα0 − zβ0‖∞ : α, β ∈ Γ, α 6= β }. There is a constant Cn > 0 (that depends
only on the dimension3 n) such that if δ > Cn/fc then the optimization problem (3.14) has a unique
optimal solution µ∗ such that

µ∗ :=
∑

α∈Γ

g∗β δzβ
0

and ‖µ∗‖TV =
∑

α

|g∗β|. (3.17)

In addition, there is no duality gap (i.e., ρfc = ρ∗c), (3.15) has an optimal solution f∗ ∈ C[x;Afc ],
and

g∗+β > 0 ⇒ ℜ(f∗(zβ0 )) = 1; g∗−β > 0 ⇒ ℜ(f∗(zβ0 )) = −1. (3.18)

Proof Of course the measure µ∗ in (3.17) is feasible for (3.14). From the definition of N and Γ , all
points (zα0 ) ⊂ Tn, α ∈ Γ , are distinct whenever z0 is chosen as in (3.10) or in (3.11). Moreover, from
[7, Theorem 1.2, 1.3] and the extensions in higher dimensions (see remark after Theorem 1.3 [7]), it
follows that under the separation condition δ > Cn/fc, the optimal solution of (3.14) is unique and is
the sparse measure on Tn that satisfies the moment conditions of (3.14), i.e., µ∗.

Next, write the optimal solution µ∗ of (3.14) as µ∗ = µ+ − µ− for two signed Borel measures
µ+, µ− ∈ M (Tn)+, i.e.,

µ+ =
∑

β

g∗+β δ
z
β
0

; µ− =
∑

β

g∗−β δ
z
β
0

.

We have already mentioned that from [13], the optimal values of (3.14), (3.15) and (3.16) are the
same, i.e., ρfc = ρ∗fc , and therefore the measures µ+ and µ− are optimal solutions of (3.16). Let f∗ be

an optimal solution of (3.15). One relates µ∗ and f∗ has follows. As ρfc = ‖µ∗‖TV = ρ∗c = ℜ(aT f∗),

‖µ∗‖TV =

∫

Tn

d(µ+ + µ−)

=

∫

Tn

ℜ(1− f∗)
︸ ︷︷ ︸

≥0

dµ+

∫

Tn

ℜ(1 + f∗)
︸ ︷︷ ︸

≥0

dµ− +

∫

Tn

ℜ(f∗) d(µ+ − µ−)

︸ ︷︷ ︸

=ℜ(aT f∗)

it follow that µ+ (resp. µ−) is supported on the zeros of ℜ(1− f∗) (resp. ℜ(1 + f∗)) on Tn. ⊓⊔

Therefore to recover s points one needs at most (2sCn + 1)n evaluations.

3 If fc ≥ 128 then C1 = 1.87, C2 = 2.38 as proved in Candès and Fernandez-Granda [7].
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3.4 A hierarchy of SDP relaxations for solving the super-resolution problem

Recall that in the the super-resolution model described in Candès and Fernandez-Granda [7], one has
to make evaluations in the multivariate case at all points zα0 with

α ∈ Afc = {−fc,−(fc − 1), . . . ,−1, 0, 1, . . . , (fc − 1), fc}n = {α | ‖α‖∞ 6 fc} ⊂ Z
n, (3.19)

where ‖α‖∞ := max{|α1|, . . . , |αn|}. This makes perfect sense in such applications as image recon-
struction from measurements (typically 2-dimensional objects) of signal processing. However, for poly-
nomial interpolation |Afc | is rapidly prohibitive if one consider polynomials of say n = 10 variables.
Indeed, if n = 10 then the first order semidefinite program of the hierarchy entails matrix variables
of size 1, 024 × 1024. Bear in mind that currently, semidefinite programming solvers are limited to
matrices of size a few hundred. Thus it is not possible to compute even the first order relaxation!

We propose to reduce the computional burden by using the one-norm truncation, i.e. ‖α‖1 :=
|α1|+ . . .+ |αn|, by making evaluations at all points zα0 with

α ∈ A
1
fc

:= {α− β | α, β ∈ Z
n, ‖α‖1, ‖β‖1 6 fc}. (3.20)

α1

α2

Fig. 1 Evaluations at α− β with |α1|+ |α2| 6 3 and |β1|+ |β2| 6 3 and α1, α2, β1, β2 ∈ Z.

An illustration is provided in Figure 1. In addition:

∀fc ∈ N, ∃f̃c ∈ N : ∀l > f̃c, Afc ⊂ A
1
l . (3.21)

Thus, all the theoretical results of [7] are preserved. To appreciate the gain in using A 1
fc
, for 10

variables, the first order semidefinite program of the hierarchy entails matrix variables of size 11× 11
(instead of 1, 024 × 1, 024) and 56 linear equalities. It is thus possible to compute the first order
relaxation. The second order relaxation entails matrices of size 66 × 66 (instead of 59, 049× 59, 049)
and 1, 596 linear equalities.

Notice also that Toeplitz Prony of Section 2.3.2 uses A 1
fc

instead of Afc and is guaranteed to
recover the optimal solution provided that fc is large enough.

As the super-resolution problem (3.14) is concerned with atomic measures finitely supported on
the multi-dimensional torus Tn, we can adapt to the torus Tn the hierarchy of semidefinite programs
defined in De Castro et al. [13] for solving super-resolution problems with atomic measures (finitely
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supported) on semi-algebraic subsets of Rn. For every fixed fc, at step d ≥ fc of the hierarchy, the
semidefinite program to solve reads:

(Pd,fc)

ρd,fc = inf
y+,y−

y+0 + y−0

s.c. y+α − y−α = aα , ∀α ∈ A 1
fc

Td(y
+) � 0, Td(y

−) � 0,

(3.22)

where the Hermitian matrix Td(y
+) has its rows and columns indexed in {α | ‖α‖1 6 d} and

Td(y
+)α,β = y+β−α, for every ‖α‖1, ‖β‖1 6 d, and similarly for the Hermitian matrix Td(y

−). In

the univariate case Td(y
+) Td(y

−) are Toeplitz matrices. When y+ is coming from a measure µ+ on
Tn then y+α =

∫

Tn zα dµ+(z). Clearly, (3.22) is a relaxation of (3.16) and so ρd ≤ ρfc for all d ≥ fc.
Moreover ρd ≤ ρd+1 for all d.

Note that with the above notations, the “Toeplitz Prony” method proposed in Section 2.3.2 consists
in directly extracting a measure from the matrix Td(a). In constrast, the super resolution approach
consists of decomposing it into Td(a) = Td(y

+) − Td(y
−), optimizing over y+ and y−, and then

applying the “Toeplitz Prony” method to Td(y
+
∗ ) and Td(y

−
∗ ) at an optimal solution (y+

∗ ,y
−
∗ ) of

(3.22).

Lemma 3.4 For each d ≥ fc the (complex) semidefinite program (Pd,fc) in (3.22) has an optimal
solution (y+,y−). In addition, if the rank conditions

rank(Td(y
+)) = rank(Td−2(y

+)) (3.23)

rank(Td(y
−)) = rank(Td−2(y

−)) (3.24)

are satisfied then there exist two Borel atomic measures µ+ and µ− on Tn such that:

y+α =

∫

Tn

zα dµ+(z) and y−α =

∫

Tn

zα dµ−(z), ∀α ∈ A
1
d . (3.25)

The support of µ+ (resp. µ−) consists of rank(Td(y
+)) (resp. rank(Td(y

−))) atoms on Tn which can
be extracted by a numerical algebra routine (e.g. the Prony method described in Section 2.3.1).

In addition, if (3.23)-(3.24) hold for an optimal solution of (Pd,f̃c
) with f̃c as in (3.21), then under

the separation conditions of Theorem 3.3, the Borel measure µ∗ := µ+ − µ− is the unique optimal
solution of (3.14).

Proof Consider a minimizing sequence (y+,ℓ,y−,ℓ)ℓ∈N of (3.22). Since one minimizes y+0 + y−0 one has

y+,ℓ
0 +y−,ℓ

0 6 y+,1
0 +y−,1

0 =: ρ, for ℓ ≥ 1. The Toeplitz-like structure of Td(y
+,ℓ) and the psd constraint

Td(y
+,ℓ) � 0 imply |y+,ℓ

α | 6 ρ for all α ∈ A 1
d ; and similarly |y−,ℓ

α | 6 ρ for all α ∈ A 1
fc
. Hence there is

a subsequence (ℓk) and two vectors y+ = (y+α )α∈A 1
fc

and y− = (y−α )α∈A 1
fc
, such that

lim
k→∞

y+,ℓk = y+ and lim
k→∞

y−,ℓk = y−.

In addition, from the above convergence it also follows that (y+,y−) is a feasible solution of (3.22),
hence an optimal solution of (3.22).

Next, in the univariate case, a Borel measure µ+ and µ− on T can always be extracted from the
semidefinite positive Toeplitz matrices Td(y

+) and Td(y
−) respectively. This is true regardless of

the rank conditions (3.23)-(3.24) and was proved in [37, P. 211]. In the multivariate case, Td(y
+)

and Td(y
−) are Toeplitz-like matrices, and we may and will invoke the recent result [20, Theorem

5.2]. (Note that this is true for Toeplitz matrices, but not for general Hermitian matrices for which
additional non-trivial conditions must be satisfied (see [20, Theorem 5.1]).) It implies that a Borel
measure µ+ (resp. µ−) on Tn can be extracted from a multivariate semidefinite positive Toeplitz-like
matrix Td(y

+) (resp. Td(y
−)) if the rank condition (3.23) (resp. (3.24)) holds. Hence we have proved

(3.25).
Finally the last statement follows from Theorem 3.3 and the fact that (3.14) and (3.16) have same

optimal value and an optimal solution (µ+, µ−) of (3.16) provides and optimal solution µ∗ = µ+−µ−

of (3.14). �

Asymptotics as d increases. In case the conditions (3.23)-(3.24) do not hold, we still have the
following asymptotic result at an optimal solution.
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Lemma 3.5 Assume that fc satisfies the conditions of Theorem 3.3 and let f̃c be as in (3.21). For
each d ≥ f̃c, let (y

+,d,y−,d) be an optimal solution of (3.22). Then for each α ∈ Zn,

lim
d→∞

(y+,d
α − y−,d

α ) =

∫

Tn

zα dµ∗, (3.26)

where the Borel signed measure µ∗ on Tn is the unique optimal solution of (3.14) characterized in
(3.17).

Proof As ρd,f̃c ≤ ρd+1,f̃c
≤ ρfc for all d ≥ f̃c and y+,d

0 + y−,d
0 = ρd,f̃c , it follows that |y

+,d
α | ≤ ρfc and

|y−,d
α | ≤ ρfc for all α ∈ A 1

d and all d ≥ f̃c. By completing with zeros, one may and will consider all
finite-dimensional vectors y+,d and y−,d as elements of a bounded set of ℓ∞. Next, by weak-⋆ sequential
compactness of the unit ball of ℓ∞, there exist infinite vectors y+,y− ∈ ℓ∞, and a subsequence (dk)k∈N

such that :

lim
k→∞

y+,dk
α = y+α ; lim

k→∞
y−,dk
α = y−α , ∀α ∈ Z

n. (3.27)

Moreover from the above convergence we also have Td(y
+) � 0 and Td(y

−) � 0 for all d. This in
turn implies that y+ (resp. y−) is the moment sequence of a Borel measure µ+ (resp. µ−) on Tn. In
addition, the convergence (3.27) yields

aα = lim
k→∞

(y+,dk
α − y−,dk

α ) =

∫

Tn

zα d(µ+ − µ−), ∀α ∈ A
1
f̃c
,

and

ρfc ≥ lim
k→∞

ρdk,fc = lim
k→∞

(y+,dk

0 + y−,dk

0 ) =

∫

Tn

d(µ+ + µ−) ≥ ‖µ+ − µ−‖TV ,

which proves that (µ+, µ−) is an optimal solution of (3.16). Therefore µ∗ := µ+ − µ− is an optimal
solution of (3.14) and thus unique when f̃c satisfies the condition of Theorem 3.3. This also implies that
the limit y+α (resp. y−α ) in (3.27) is the same for all converging subsequences (dk)k∈Nn and therefore,
for each α ∈ Zn, the whole sequence (y+,d

α )d∈N (resp. (y−,d
α )d∈N) converges to y+α (resp. y−α ), which

yields the desired result (3.26). �

3.5 A rigorous compressed sensing LP approach

In this section we take advantage of an important consequence of viewing sparse interpolation as a
super-resolution problem. Indeed when z0 is chosen as in (3.10) we know that the (unique) optimal
solution µ∗ of (3.14) is supported on the a priori fixed grid (exp(2iπk1/N), . . . , exp(2iπkn/N)), where
0 ≤ ki ≤ N , i = 1, . . . , n. That is, (3.14) is a discrete super-resolution problem as described in Candès
and Fernandez-Granda [7]. Therefore solving (3.14) is also equivalent to solving the LP:

min
x

{‖x‖1 : Ax = b }

where x ∈ R[0,1,...,N ]n . The matrix A has its columns indexed by β ∈ [0, 1, . . . , N ]n and its rows
indexed by α ∈ Afc , while b = (bα)α∈Afc

is the vector of black-box evaluations at the points (zα0 ),
α ∈ Afc . So

A(α, β) = (zβ0 )
α = zβ1α1

01 · · · zβnαn

0n ; bα = g(zα0 ), (3.28)

for all α ∈ Afc and β ∈ [0, 1, . . . , N ]n.

Proposition 3.6 Under the conditions of Theorem 3.3, the LP ρ = min
x

{‖x‖1 : Ax = b } with A

and b as in (3.28) has a unique optimal solution which is the vector of coefficients of the polynomial
g∗ of Theorem 3.3.

Proof Let x ∈ R[0,...,N ]n be an admissible solution of the LP with A and b as in (3.28). Let g ∈ R[x],
z 7→ g(z) :=

∑

β gβ z
β , be the polynomial with vector of coefficients

gβ = xβ (= xβ1
, . . . , xβn

), ∀β ∈ [0, . . . , N ]n.
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By construction one has g(zα0 ) = aα = g∗(zα0 ) for all α ∈ Afc , where g∗ is as in Theorem 3.3. The
Borel measures ν+ and ν− on Tn defined by

ν+ :=
∑

β∈[0,...,N ]n

max[0, xβ] δzβ
0

; ν− :=
∑

β∈[0,...,N ]n

−min[0, xβ] δzβ
0

,

are a feasible solution of (3.16) and the Borel signed measure ν := ν+ − ν− satisfies ‖ν‖TV =
‖ν+‖ + ‖ν−‖. Hence ‖ν‖TV ≥ ‖µ∗‖TV where µ∗ is the optimal solution of (3.14). So the optimal
value ρ of the LP satisfies ρ ≥ ‖µ∗‖TV . On the other hand with g∗ as in Theorem 3.3, let

x∗
β (= x∗

β1
, . . . , x∗

βn
) := g∗β, ∀β ∈ [0, . . . , N ]n.

Then ‖x∗‖1 = ‖µ∗‖TV ≤ ρ and so ‖x∗‖1 = ρ, which proves that x∗ is an optimal solution of the LP.
Uniqueness follows from the uniqueness of solution to (3.14). ⊓⊔

4 Numerical experiments

In the problem of polynomial interpolation, we are not given a number of evaluations to begin with,
i.e. fc. Rather, we seek to recover a blackbox polynomial using the least number of evaluations. Thus,
one could set fc = 1, then compute a hierarchy of SDPs of order d = 1, 2, . . .. Next, set fc = 2,
and compute another hierarchy of order d = 2, 3, . . .. This leads to a hierarchy of hierarchies, which
is costly from a computational perspective. Thus, we propose a single hierarchy where we choose to
make all possible evaluations at each relaxation order. Therefore we have fixed d = fc in (3.22) and
let fc increase to see when we recover the desired optimal measure (polynomial g∗) of Theorem 3.3.4

In order to make a rigorous comparison with Prony’s method, we use the same exact same procedure
to extract the atomic measures from the output matrices of the semidefinite optimization as for
Prony’s method. For the super-resolution of order d, we use Prony with input measurements up to
degree 2d (that way d1 = d2 = d in Section 2.3.1) for each of the two Toeplitz matrices. In all
numerical experiments, we use the threshold ǫ = 0.1 for determining the rank of a matrix in its SVD
decomposition. This threshold is also used to test the rank conditions (3.23)-(3.24).

4.1 Separation of the support

Initially, super resolution was concerned with signal processing where the measurements are given
and fixed and we have no influence on them. In constrast, in the super resolution formulation of an
polynomial interpolation problem, we can choose where we make the measurements, that is the points
where we want to evaluate the blackbox polynomial. This can have a strong influence on the seperation
condition which guarantees exact recovery on the signal (our blackbox polynomial). We illustrate this
phenomenon on the following example. Suppose that we are looking for the blackbox polynomial

f(x) = 3x20 + x75 − 6x80 (4.1)

whose degree we assume to be less than or equal to 100. We consider such a high degree in order
to well illustrate the notion of the separation of the support. Below, we will consider more realistic
polynomials, limited to degree 10. We now investigate two different ways of making evaluations and
their impact on the separation of the support, crucial for super-resolution. Let us firstly evaluate the
blackbox polynomial at the points

(e
2πi
101 )0, (e

2πi
101 )1, (e

2πi
101 )2, . . . , (e

2πi
101 )d ⊂ T (4.2)

at step d of the SDP hierarchy (i.e. (Pd,d) in (3.22)). The proximity of points on the torus is thus
directly related to the proximity of the exponents of the polynomial. It can be seen in the left part of
Figure 2 that some of the point on the torus are very close to one another.

4 In the univariate case, the optimal value of (Pd,fc) in (3.22) does not increase with d when d > fc. Indeed, for any
optimal solution of (Pfc,fc), there exists a representing signed measure µ = µ+ − µ− on the torus. However, one may
not be able to extract this measure.
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Let us secondly evaluate in the blackbox polynomial at the points

(ei)0, (ei)1, (ei)2, . . . , (ei)d ⊂ T (4.3)

at step d of the SDP hierarchy. The proximity of points on the torus is thus no longer related to the
proximity of the exponents of the polynomial. It can be seen in the left part of Figure 3 that the
points on the torus are nicely spread out. This is not guaranteed to be the case, but is expected to
be true generically. In order to recover the blackbox polynomial once a candidate atomic measure is
computed, we form a table of the integers k = 1, . . . , d modulo 2π. For each atom, we consider its
argument and find the closest value in the table, yielding an integer k, i.e. the power of the monomial
associated to the atom. The coefficient of the monomial is given by the weight of the atom.

We now provide numerical experiments. Table 1 and Table 2 show the optimal value and the
number of atoms of the optimal measure µ at each order d. Graphical illustrations of the solutions
appear in Figure 2 and Figure 3. The dual polynomials in the right hand of the figures illustrate why
a higher degree is needed when the points are closer.

Table 1 Evaluation at roots of unity e
2kiπ
101

Order d = fc ‖µ‖TV #supp(µ)
0 2.0000 1
1 7.6618 2
2 8.1253 3
3 8.3655 5
4 8.7240 7
5 8.9882 9
6 9.3433 11
7 9.5837 13
8 9.7993 17
9 9.9436 19
10 9.9978 20
11 10.0000 3

Table 2 Evaluation at eki

Order d = fc ‖µ‖TV #supp(µ)
0 2.0000 1
1 8.7759 2
2 9.2803 3
3 10.0000 3

Remark 1 Before we move on to other examples, we note that naive LP with evaluations at random
points on the real line requires about 50 evaluations on this example, compared with the 4 evaluations
with super-resolution using multiple loops and in fact, the rigorous LP on the torus also requires 4
evaluations.
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Fig. 2 Primal-dual solution of super-resolution at order 11 (using single loop)
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Fig. 3 Primal-dual solution of super-resolution at order 3 (using multiple loops)

4.2 Methodology for comparison

Our methodology for comparing the various approaches is as follows.

1. Generation of the examples: We define a random set of ten sparse polynomials with up to ten
variables and up to degree ten (first column of Table 3). We believe that polynomials of higher
degree are not realistic and are rarely used in numerical computations. For example, for a poly-
nomial of n variables and k atoms, we generate the exponents β of the k monomials xβ randomly
from Nn

d := {β ∈ Nn | ∑n
i=1 βi 6 d} and the associated non-zero coefficients gβ are drawns from

a uniform distribution in the interval [−10, 10].

2. Results in the noiseless case: We detect the minimum number of evaluations for each ap-
proach to recover the blackbox polynomial in the noiseless case and report the results in Table 3.
We use evaluations at the points eαi = (eiα1 , . . . , eiαn) with α = (α1, . . . , αn) ∈ Zn up to a certain
degree

∑n
k=1 |αk| 6 d.The corresponding number of evaluations and degree (d) are reported in

the columns Rigorous LP, super-resolution, and Toeplitz Prony of Table 3. In Advanced T. Prony,
evaluations are made at different points. Thus, only the first three columns of Table 3 can be
compared in presence of noise.

3. Results in the presence of noise: For each of the ten polynomials in the list of examples,
we determine the maximum degree dmax for the evaluations g(eiα1 , . . . , eiαn) with α1, . . . , αn ∈ Z

and
∑n

i=1 |αk| ≤ dmax, among Rigorous LP, super-resolution, and Toeplitz Prony in Table 3. For
example, for the first line of Table 3, that number is dmax := 2 which corresponds to 3 evaluations
in this univariate problem. As a result, we know that for these evaluations all three approaches
return the correct sparse polynomial. We then add uniform noise to those evaluations, i.e.

g(eiα1 , . . . , eiαn) + ǫα , ǫα ∈ C, ℜǫα, ℑǫα ∈ [−0.1,+0.1] (4.4)

for all |α1|+ . . .+ |αn| 6 dmax and α1, . . . , αn ∈ Z. Next, we run each approach ten times (with new
noise every time) and report the average error in Table 4. The error is defined as the relative error
in percentage of the output polynomial ĝ(x) =

∑

α ĝαx
α compared with the blackbox polynomial

g(x) =
∑

α gαx
α using the 2 norm of the coefficients, i.e.

100×
√∑

α(ĝα − gα)2
√∑

α g2α
. (4.5)

Note that in Rigorous LP and super-resolution the equalities associated to the evaluations are
relaxed to inequalities, a functionality which is not possible in Toeplitz Prony. This allows for more
robutness. Precisely, in Rigorous LP, we replace Ax − b = 0 by −0.1 6 ℜ(Ax − b) 6 0.1 and
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−0.1 6 ℑ(Ax−b) 6 0.1, while in super-resolution we use a 2-norm ball of radius 0.1×
√
2 (similar

to the technique employed in [7]).

Blackbox Rigorous Super Toeplitz Advanced
Polynomial LP Resolution Prony T. Prony

−1.2x4 + 6.7x7 2 (1) 3 (2) 3 (2) 3
2.3x6 + 5.6x3 − 1.5x2 4 (3) 5 (4) 4 (3) 4

−2.1x3 + 5.4x2 − 2.0x+ 6.2x5 − 5.2 5 (4) 6 (5) 6 (5) 6
0.8x1x2 − x1x

2
2

19 (3) 31 (4) 10 (2) 6
−5.8x2

1x
2
2 − 8.2x2

1x
3
2 + 5.5x3

1x2 + 1.1 10 (2) 19 (3) 19 (3) 13
−7.2x1x

2
2
+ 1.8x3

1
x2
2
+ 2.6x4

1
x5
2
+ 6.2x1x

5
2
+ 2.5x1 10 (2) 19 (3) 19 (3) 14

−3.5 + 8.1x3
1x2x3 7 (1) 28 (2) 28 (2) 9

−1.2x2
1
x2
2
x3
3
+ 7.3x2

1
x2 − 2.4x2 28 (2) 28 (2) 28 (2) 16

−6.1x2
1
x5 + 2.5x2x4 + 4.8x3 136 (2) 136 (2) 136 (2) 30

2.9x2x3x
4
9
x10 − 5.6x1x

2
4
x7 − 4.1x3x5x

3
6
x8 N. A. 1595 (2) 1595 (2) 65

Table 3 Minimum number of evaluations and degrees without noise (evaluations in the points (eiα1 , . . . , eiαn) for
|α1|+ . . .+ |αn| 6 d and α1, . . . , αn ∈ Z for the first three columns)

Blackbox Rigorous Super Toeplitz
Polynomial LP Resolution Prony

−1.2x4 + 6.7x7 4.18% 1.58% 0.61%
2.3x6 + 5.6x3 − 1.5x2 1.94% 1.81% 0.85%

−2.1x3 + 5.4x2 − 2.0x+ 6.2x5 − 5.2 1.47% 1.40% 0.69%
0.8x1x2 − x1x

2
2

3.23% 4.84% 2.26%
−5.8x2

1
x2
2
− 8.2x2

1
x3
2
+ 5.5x3

1
x2 + 1.1 1.13% 0.87% 1.29%

−7.2x1x
2
2
+ 1.8x3

1
x2
2
+ 2.6x4

1
x5
2
+ 6.2x1x

5
2
+ 2.5x1 1.23% 1.08% 6.28%

−3.5 + 8.1x3
1
x2x3 0.79% 0.70% 0.50%

−1.2x2
1
x2
2
x3
3
+ 7.3x2

1
x2 − 2.4x2 2.19% 1.03% 1.39%

−6.1x2
1x5 + 2.5x2x4 + 4.8x3 0.94% 1.15% 1.04%

2.9x2x3x
4
9
x10 − 5.6x1x

2
4
x7 − 4.1x3x5x

3
6
x8 N. A. 0.47% 0.46%

Table 4 Relative error in percentage with uniform noise between −0.1 and 0.1 for the real and imaginary parts on the
measurements (evaluations in the points (eiα1 , . . . , eiαn ) for |α1|+ . . .+ |αn| 6 d and α1, . . . , αn ∈ Z).

The Advanced T. Prony column of Table 3: the first r exponents α ∈ Nn are chosen (where
r is the number of monomials in the blackbox polynomias) for the monomials indexing the rows and
the first r exponents −α with α ∈ Nn are chosen for indexing the columns of the Toeplitz matrix.
Since g(e−iα) = g(eiα), the number of evaluations does not include the conjugate of known values of
g. The number of monomials r is unknown but one could use Advanced T. Prony with r = 1, 2, . . .
successively. We only report the result when setting r to the number of monomials in the blackbox
polynomial. Note that in the other approaches in Table 3, we do not assume that the number of
monomials is known. Same goes in the presence of noise.

4.3 Discussion

Disclaimer: In the sequel, we discuss various advantages and drawbacks of the three methods and of
course the resulting conclusions should be interpreted with care as they are biased by the examples
that we have considered.

• In the noiseless case, Rigorous LP generally requires the least number of evaluations compared
with super-resolution and Toeplitz Prony as can be seen in Table 3. This is a remarkable situation
where the compressed sensing approach (Rigorous LP) is guaranteed to recover the polynomial even
if the RIP property does not hold. The classical result on Prony’s method is that the number of
evaluations to recover the blackbox polynomial is equal to twice the number of monomials in the
blackbox polynomial (in the univariate case). Toeplitz Prony goes further: the number of evaluations
is equal to the number of monomials plus one (in the univariate case, as explained in Section 2.3.2).
For example, the third example in Table 3 requires 6 evaluations and is composed of 5 monomials.
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• In terms of certification, in principle, super-resolution has to be applied with enough points
(> 128 for n = 1, > 512 for n = 2 and more if the separation between the points is small [7]) to
guarantee the existence of a dual certificate polynomial. Moreover, in the multivariate case, no bound
on the order of the SDP relaxation is known to guarantee that the flat extension property is satisfied
(rank conditions (3.23)-(3.24))5. In contrast, Toeplitz Prony requires evaluations at points α ∈ Zn

with |α| ≤ r where r is at most the number of monomials, in order to recover the decomposition of
the sparse polynomial. In practice, the experimentations show that a small number of evaluations is
sufficient to compute the decomposition in both methods.

• In terms of computational burden, among Rigorous LP, super-resolution, and Toeplitz Prony,
the cheapest approach is Toeplitz Prony since it requires only two linear algbebra operations on
matrices of size dependent on the number of monomials in the blackbox polynomials. super-resolution
entails a heavy computational burden with the semidefinite optimization. Rigorous LP requires the
longest setup time because a variable has to be created for each potential monomial in the blackbox
polynomial, unlike the two other approaches. In particular, the setup time is too long on a standard
laptop for the example with 10 variables (hence N. A. in Table 3 and Table 4). Howevever, after the
setup step has been performed, computing the LP is fast and reliable.

• Concerning noise, it seems that the three methods perform more and less equally well even with
the relatively large noise level that we have selected, namely 0.1 error on the evaluations. This is little
bit surprising for the Prony method because it seems to be commonly admitted that Prony is not
very robust to noise. This surprising relative robustness may be due to the large threshold ǫ = 0.1
allowed in the rank determination of the SVD decomposition. Indeed, if we select a smaller threshold,
we observe degradation of the results for Prony (and super resolution which relies on Prony for the
extraction step after the optimization step). See table 5 below.

Blackbox Super Resolution Toeplitz Prony
Polynomial 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

−1.2x4 + 6.7x7 1.58% 1.58% 1.58% 1.58% 0.79% 0.79% 0.79% 0.79%
2.3x6 + 5.6x3 − 1.5x2 1.80% 1.80% 1.80% 1.80% 0.91% 1.15% 1.15% 1.15%

−2.1x3 + 5.4x2 − 2.0x+ 6.2x5 − 5.2 1.42% 1.44% 1.44% 1.44% 0.68% 0.68% 0.68% 0.68%
0.8x1x2 − x1x

2
2

4.69% 17.25% 12.49% 25.50% 5.35% 137.90% 165.79% 226.29%
−5.8x2

1x
2
2 − 8.2x2

1x
3
2 + 5.5x3

1x2 + 1.1 0.93% 2.10% 42.69% 47.50% 1.22% 60.36% 53.86% 42.47%
−7.2x1x

2
2
+ 1.8x3

1
x2
2
+ 2.6x4

1
x5
2
+ . . . 1.00% 17.56% 43.39% 67.55% 8.45% 89.45% 45.82% 33.87%

−3.5 + 8.1x3
1x2x3 0.78% 0.78% 72.17% 62.02% 0.41% 96.50% 77.42% 83.27%

−1.2x2
1
x2
2
x3
3
+ 7.3x2

1
x2 − 2.4x2 1.09% 18.55% 86.55% 83.45% 3.59% 66.02% 39.77% 55.15%

−6.1x2
1x5 + 2.5x2x4 + 4.8x3 0.85% 24.60% 105.84% 140.05% 1.68% 130.39% 86.77% 79.96%

2.9x2x3x
4
9
x10 − 5.6x1x

2
4
x7 + . . . 0.54% 0.54% 136.20% 146.93% 6.45% 251.17% 119.65% 257.64%

Table 5 Same experiments as in Table 4 but with four different values of the rank threshold ǫ = 10−1, 10−2, 10−3, 10−4.

5 Another efficient (a priori heuristic) approach

In sequel we propose still use the super-resolution hierarchy (3.22) but now by restricting the evalua-
tions at points zα0 with

α ∈ A
2
fc

:= {α ∈ N
n | ‖α‖1 6 fc} ⊂ A

1
fc

⊂ Afc . (5.1)

This is illustrated in Figure 4. This restriction is first inspired by the fact that Hankel Prony
descibed in Section 2.3.1 is guaranteed to work using only those evaluations. There is another more
general inspiration coming from two mathematical results.

We provide a result valid in full generality for atomic measures (with finitely many atoms) which
indeed suggests that in practice it may suffice to make evaluations at α ∈ N (instead of α ∈ Z). The
resulting semidefinite programs have Toeplitz matrices of the same dimension but include much less
linear moment constraints. With 10 variables, the first order semidefinite program of the hierarchy
entails matrix variables of size 11× 11 and only 11 linear equalities (instead of 56)! The second order

5 In a few cases where (3.23)-(3.24) are not satisfied, we are still able to a recover polynomial using the algorithm in
Section 2.3.1.
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α1

α2

Fig. 4 Evaluations at α with α1 + α2 6 3 and α1, α2 ∈ N.

relaxation entails matrix variables of size 66× 66 and 66 linear equalities (instead of 1,596), and the
third relaxation entails matrix variables of size 286× 286 and 286 linear equalities (instead of 21,691),
and so on. We first remind the reader of a well-known result.

Proposition 5.1 (Consequence of Stone-Weiestrass) Let (yα,β)α,β∈Nn denote a multi-indexed
sequence of complex numbers and let K ⊂ Cn denote a compact set. If there exists a complex-valued
finite Borel measure µ supported on K such that

yα,β =

∫

K

zαz̄βdµ , ∀α, β ∈ N
n, (5.2)

then µ is the unique complex-valued finite Borel measure to satisfy (5.2).

Proof Consider another such measure µ̂. Then
∫

K

zαz̄βd(µ− µ̂) = 0 , ∀α, β ∈ N
n. (5.3)

Thanks to the complex Stone-Weiestrass Theorem,
∫

Cn

ϕd(µ− µ̂) = 0 , ∀α, β ∈ N
n. (5.4)

for all function ϕ : Cn −→ C continuous with respect to the sup-norm ‖ϕ‖∞ := supz∈K |ϕ(z)|.
Therefore µ = µ̂.

In practice, whether it be interpolation or optimization, we are generally interested in atomic measures
with finitely many atoms (in short, atomic measures in the sequel). The next result establishes that
for such atomic measures we do not have to care about conjugates, which in view of Proposition 5.1,
we find somewhat counter-intuitive.

Lemma 1 Let (yα)α∈Nn denote a multi-indexed sequence of complex numbers. If there exists an atomic
complex-valued measure µ such that

yα =

∫

Cn

zαdµ , ∀α ∈ N
n, (5.5)

then µ is the unique atomic measure to satisfy (5.5).
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Proof Let us write the measure µ as

µ =

d∑

k=1

wkδa(k) (5.6)

where d ∈ N, and w1, . . . , wd ∈ C \ {0}, and a(1), . . . , a(d) ∈ Cn.

Consider another atomic measure µ̂ that satisfies (5.5), of the form

µ̂ =

d̂∑

k=1

ŵkδâ(k) (5.7)

where d̂ ∈ N, and ŵ1, . . . , ŵd̂
∈ C \ {0}, and â(1), . . . , â(d̂) ∈ Cn.

Consider the following truncated Hankel matrix

Hk(y) = (yα+β)|α|,|β|6k (5.8)

where |α| := α1 + . . .+ αn. Thanks to Lemma 2, its rank is equal to d when k > d− 1 and it is equal

to d̂ when k > d̂− 1. Thus d = d̂. Moreover, when k > d = d̂, Lemma 3 implies that

span{ vk(a(1)) , . . . , vk(a(d)) } = span{ vk(â(1)) , . . . , vk(â(d)) } (5.9)

where vk(z) = (zα)|α|6k.

We now reason by contradiction. Assume that one of the atoms of µ̂, say â(1), is distinct from the
atoms of µ. Hence â(1), a(1), . . . , a(d) are d+ 1 distinct points of Cn. Lemma 2 implies that

vk(â(1)) , vk(a(1)) , . . . , vk(a(d)) (5.10)

are linearly independent vectors if k > d. This contradicts equation (5.9). The atoms of µ and µ̂ thus
coincide. Their weights satisfy

(w1 − ŵ1)vk(a(1)) + . . . + (wd − ŵd)vk(a(d)) = 0. (5.11)

Again, thanks to Lemma 2, the vectors are linearly independent if k > d − 1, thus w1 − ŵ1 = . . . =
wd − ŵd = 0. This terminates the proof.

Numerical experiments:
Below, we replicate the experiments of Section 4.2 (with and without noise) but now we make

evaluations in α1, . . . , αn ∈ N instead of α1, . . . , αn ∈ Z.

Blackbox Rigorous Super Hankel Advanced
Polynomial LP Resolution Prony H. Prony

−1.2x4 + 6.7x7 2 (1) 3 (2) 4 (3) 4
2.3x6 + 5.6x3 − 1.5x2 4 (3) 5 (4) 6 (5) 6

−2.1x3 + 5.4x2 − 2.0x+ 6.2x5 − 5.2 5 (4) 6 (5) 10 (9) 10
0.8x1x2 − x1x

2
2

10 (3) 15 (4) 10 (3) 7
−5.8x2

1
x2
2
− 8.2x2

1
x3
2
+ 5.5x3

1
x2 + 1.1 10 (3) 15 (4) 21 (5) 15

−7.2x1x
2
2
+ 1.8x3

1
x2
2
+ 2.6x4

1
x5
2
+ 6.2x1x

5
2
+ 2.5x1 10 (3) 15 (4) 21 (5) 18

−3.5 + 8.1x3
1
x2x3 10 (2) 10 (2) 20 (3) 10

−1.2x2
1
x2
2
x3
3
+ 7.3x2

1
x2 − 2.4x2 20 (3) 20 (3) 20 (3) 16

−6.1x2
1x5 + 2.5x2x4 + 4.8x3 21 (2) 21 (2) 56 (3) 28

2.9x2x3x
4
9
x10 − 5.6x1x

2
4
x7 − 4.1x3x5x

3
6
x8 66 (2) 66 (2) 286 (3) 58

Table 6 Minimum number of evaluations and degrees without noise (evaluations in the points (eiα1 , . . . , eiαn) for
α1 + . . .+ αn 6 d and α1, . . . , αn ∈ N for the first three columns)

In Table 6, in the column Advanced H. Prony, the first r exponents α ∈ Nn are chosen for the
monomials indexing the rows and columns of the Hankel matrix, where r is the number of terms in
the blackbox polynomial g. As in Section 4.2, for the first three columns of Table 6 and Table 7, we do
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Blackbox Rigorous Super Hankel
Polynomial LP Resolution Prony

−1.2x4 + 6.7x5 2.32% 1.66% 0.97%
2.3x6 + 5.6x3 − 1.5x2 1.71% 2.31% 3.33%

−2.1x3 + 5.4x2 − 2.0x+ 6.2x5 − 5.2 0.80% 1.64% 2.89%
0.8x1x2 − x1x

2
2 14.91% 11.03% 52.14%

−5.8x2
1
x2
2
− 8.2x2

1
x3
2
+ 5.5x3

1
x2 + 1.1 0.73% 1.01% 2.13%

−7.2x1x
2
2 + 1.8x3

1x
2
2 + 2.6x4

1x
5
2 + 6.2x1x

5
2 + 2.5x1 1.19% 12.30% 2.67%

−3.5 + 8.1x3
1
x2x3 0.82% 1.32% 0.93%

−1.2x2
1
x2
2
x3
3
+ 7.3x2

1
x2 − 2.4x2 3.29% 2.13% 16.99%

−6.1x2
1
x5 + 2.5x2x4 + 4.8x3 2.90% 1.64% 6.74%

107.87% (1) 161.36% (1) 134.87% (1)
2.9x2x3x

4
9x10 − 5.6x1x

2
4x7 − 4.1x3x5x

3
6x8 N.A. (2) 2.12% (2) 134.69% (2)

N.A. (3) N.A. (3) 0.57% (3)

Table 7 Relative error in percentage with uniform noise between −0.1 and 0.1 for the real and imaginary parts on the
measurements (evaluations in the points (eiα1 , . . . , eiαn ) for α1 + . . .+ αn 6 d and α1, . . . , αn ∈ N).

not assume anything to be known about the blackbox polynomial expect for the number of variables
and an upper bound on the degree (i.e. 10).

In the presence of noise, the optimization step of super-resolution (before the second step of
extraction) seems to behave as an efficient filter as it indeed reduces the error compared with Hankel
Prony in 7 out of the 9 comparable instances of Table 7. However, sometimes, the semidefinite program
does not provide a good output. Indeed, in the sixth example, among the ten trials there are two trials
where the solver runs into numerical issues, which explains the large error of 12.30%.

6 Conclusion

We have addressed the sparse polynomial interpolation problem with three different approaches: com-
pressed sensing, super resolution, and Prony’s method. The common denominator of the three ap-
proaches is our view of a polynomial as a signed atomic measure where the atoms correspond to
monomials and the weights to coefficients. Then, on the one hand we can invoke directly results from
(discrete) super-resolution theory à la Candès & Fernandez-Granda [7] to show that the unknown
black box polynomial is the unique solution of a certain LP on a measure space and also the unique
solution of finite-dimensional linear program. On the other hand, invoking Kunis et al. [24] Prony’s
method can also be applied. To the best of our knowledge this unifying view of sparse interpolation
is new and makes the numerical comparison of the three methods very natural. In our preliminary
numerical experiments :

– Prony’s method works well and better than expected in the presence of noise.
– Super-resolution acts in two steps: a first optimization step and then an extraction procedure

applied to the optimal solution. The latter step is nothing less than Prony’s method. We find that
this optimization step sometimes helps significantly in the presence of noise.

– LP-Compressed sensing also works well but its set-up time is quite limiting.

Acknowledgement

The work of the first two authors was funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement 666981 TAMING).

Appendix

Lemma 2 If z(1), . . . , z(d) are distinct points of Cn, then vd−1(z
(1)), . . . , vd−1(z

(d)) are linearly inde-
pendent vectors, where vd(z) := (zα)|α6d.

Proof Consider some complex numbers c1, . . . , cd such that

d∑

k=1

ck(z
(k))α = 0 , ∀|α| 6 d− 1. (6.1)
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Given 1 6 l 6 d, define the Lagrange interpolation polynomial

L(l)(z) :=
∏

1 6 k 6 d
k 6= l

zi(k) − z
(k)
i(k)

z
(l)
i(k) − z

(k)
i(k)

(6.2)

where i(k) ∈ {1, . . . , n} is an index such that z
(k)
i(k) 6= z

(l)
i(k). It satisfies L(l)(z(k)) = 1 if k = l and

L(l)(z(k)) = 0 if k 6= l. The degree of L(l)(z) =:
∑

α L
(l)
α zα is equal to d − 1. Thus we may multiply

the equation in (6.1) by L
(l)
α to obtain

d∑

k=1

ck L(l)
α (z(k))α = 0 , ∀|α| 6 d− 1. (6.3)

Summing over all |α| 6 d− 1 yields
∑d

k=1 ck L(l)(z(k)) = cl = 0.

Lemma 3 If u1, . . . , ud ∈ Cn are linearly independent, and c1, . . . , cd ∈ C\{0}, then R(
∑d

i=1 ciuiu
T
i ) =

R(
∑d

i=1 ciuiu
∗
i ) = span{u1, . . . , ud} where R denotes the range.

Proof If z ∈ Cn, then (
∑d

i=1 ciuiu
T
i )z =

∑d
i=1(ciu

T
i z)ui ∈ span{u1, . . . , ud} and (

∑d
i=1 ciuiu

∗
i )z =

∑d
i=1(ciu

∗
i z)ui ∈ span{u1, . . . , ud}. Conversly, an element of the span

∑d
i=1 λiui with λ1, . . . , λn ∈ C

belongs to the the range of
∑d

i=1 ciuiu
T
i if there exists z ∈ Cn such that

d∑

i=1

λiui =

(
d∑

i=1

ciuiu
T
i

)

z

which is equivalent to each of the next three lines:

d∑

i=1

[λi − (ciu
T
i z)]ui = 0, (6.4)

λi = (ciui)
T z , i = 1, . . . , d, (6.5)

λ = (c1u1 . . . cdud)
T z. (6.6)

Since (c1u1 . . . cdud) ∈ Cn×d has rank d, its transpose has rank d. Thus there exists a desired z ∈ Cn.

Likewise,
∑d

i=1 λiui belongs to the the range of
∑d

i=1 ciuiu
∗
i if there exists z ∈ Cn such that

λi = (ciui)
∗z , i = 1, . . . , d.

Since (c1u1 . . . cdud) ∈ Cn×p has rank d, its conjugate transpose has rank d. Thus there exists a desired
z ∈ Cn.
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