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I. INTRODUCTION

Over the last decade, much attention has been paid to inverse problems involving sparse signals. A popular approach consists in formulating such problems under a variational form where one minimizes the sum of a data fidelity term and a regularization term incorporating prior information. For sparse signals, the regularization term may involve the ℓ0 norm, or an approximation of it [START_REF] Soubies | A continuous exact ℓ 0 penalty (CEL0) for least squares regularized problem[END_REF]. This generally results in difficult optimization problems with many local minima and weak global convergence guaranties [START_REF] Nikolova | Description of the minimizers of least squares regularized with ℓ 0 norm. Uniqueness of the global minimizer[END_REF]- [START_REF] Soussen | Homotopy based algorithms for l0-regularized least-squares[END_REF]. In this work, we consider rational optimization algorithms offering global optimality guaranties. In addition, our method allows us to address the challenging case of a nonlinear model [START_REF] Shetzen | The Volterra and Wiener Theories of Nonlinear Systems[END_REF]- [START_REF] Deville | An overview of blind source separation methods for linear-quadratic and post-nonlinear mixtures[END_REF].

II. MODEL AND CRITERION

Consider a sparse vector with unknown nonnegative samples x := (x1, . . . , xT ) ⊤ , only a few of which are nonzero. We aim at recovering it from measurements y := (y1, . . . , yT ) ⊤ related to x through a linear transformation (typically, a convolution) followed by some nonlinear effects:

y = ϕ(Hx) + n , (1) 
where n := (n1, . . . , nT ) ⊤ is a realization of a random noise vector, and ϕ : R T → R T is a rational nonlinear function with components [ϕ(u)] k = ϕ(u k ) depending on the k th entry u k only. H ∈ R T ×T is a given convolution matrix, which is assumed Toeplitz banded under suitable vanishing boundary conditions. To estimate x, we minimize a penalized criterion having the following form:

(∀x ∈ R T + ) J (x) = ∥y -ϕ(Hx)∥ 2 + λ T ∑ t=1 xt δ + xt , (2) 
where λ and δ are positive regularization and smoothing parameters. The last term is a Geman-McClure like potential as in [START_REF] Castella | Optimization of a Geman-McClure like criterion for sparse signal deconvolution[END_REF]. We assume that an upper-bound B on the values (xt) T t=1 is available and the minimization is thus performed over a compact set defined and represented by

K = {x ∈ R T | xt(B -xt) ≥ 0, t = 1, . . . , T }.
Then, the optimization problem consists in finding J ⋆ := inf x∈K J (x) .

III. RATIONAL MINIMIZATION

Given J in (2), the previous minimization is a rational problem. The methodology in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF]Moments, Positive Polynomials and Their Applications[END_REF] builds for different orders k a hierarchical sequence of semi-definite programming (SDP) relaxations P ⋆ k for which the following optimality result holds:

P ⋆ k ↑ J ⋆ as k → +∞.
By using SPD solvers to solve P ⋆ k , one can hence theoretically obtain the global optimum [START_REF] Castella | Optimization of a Geman-McClure like criterion for sparse signal deconvolution[END_REF]. Due to the maximum tractable size of state of the art SDP solvers, this approach is however limited to small/medium size problems having small degree, even when restricting the hierarchy to a finite and small order k. To overcome this difficulty, we exploit the problem structure in the sum of rational terms in [START_REF] Nikolova | Description of the minimizers of least squares regularized with ℓ 0 norm. Uniqueness of the global minimizer[END_REF]. Using the sparse Toeplitz banded shape of H, it can be noticed that:

J (x) = T ∑ t=1 [ yt -ϕ ( L ∑ i=1 hixt-i+1 )] 2 depends on x k for k ∈ J t + λ xt δ + xt depends on x t only
, where Jt = {min{1, t -L -1}, . . . , t} and Jt+T = {t} for any t ∈ {1, . . . , T }. These index subsets satisfy the so-called "Running Intersection Property" [START_REF] Bugarin | Minimizing the sum of many rational functions[END_REF]. As a consequence, it is possible to introduce a much smaller SDP relaxation P ⋆s k instead of P ⋆ k . The fundamental idea is that the SDP relaxations involve variables representing monomials in (x1, . . . , xT ). Using the above split form, many monomials can be discarded, the most striking case being when J is fully separable.

IV. EXPERIMENTS

We have generated 100 Monte-Carlo realizations of vector x containing T = 200 sparse samples, exactly 20 of which are nonzero. The nonzero sample values were randomly drawn in [ 2 3 ; 1]. We have generated y according to (1) with the nonlinearity ϕ(u k ) = u k 0.3+u k and with additive i.i.d. zero-mean Gaussian noise with standard deviation σ = 0.15. The banded Toeplitz matrix H has been set in accordance with two choices of FIR filters of length 3 (denoted h (a) and h (b) ). We considered the estimate x ⋆s 3 given by the optimal point of the SDP relaxation P ⋆s 3 of order k = 3. For comparison, we have implemented a proximal gradient algorithm based on Iterative Hard Thresholding (IHT) [START_REF] Blumensath | Iterative thresholding for sparse approximations[END_REF] extended to the the nonlinear model. Also, we tested a convex relaxation based on a a linearized reconstruction with ℓ1 penalization. The local optimization algorithms have been started with different initializations and Table I indicates the existence of local minima.

On Figure 1, we have plotted the value P ⋆s 3 reached by the SDP relaxation (which is a lower bound on J ⋆ ), the objective value J (x ⋆s 3 ) and the objective value reached using IHT using two different initializations. Clearly, our method provides a point close to a global minimizer and is very useful in providing a good initialization point for local optimization algorithms.

Finally, the estimation error has been quantified by ∥x -x∥ for a given estimate x. The average error and objective values are summarized in Table II. 
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 1 Fig.1. Objective values provided by the different algorithms and lower-bound (using filter h(a) ).

TABLE I FINAL

 I VALUES OF THE OBJECTIVE J (x) FOR THE GRADIENT AND IHT LOCAL OPTIMIZATIONS (AVERAGE OVER 100 MONTE-CARLO

			REALIZATIONS)		
			Gradient minimization		
	Filter			Initialization		
	param.	x ⋆s 3	ℓ 1	y	zero	x
	h (a)	6.9219 15.136 31.338 16.041	7.0894
	h (b)	6.7078 13.245 30.222 18.060	7.0894
			IHT minimization		
	Filter			Initialization		
	param.	x ⋆s 3	ℓ 1	y	zero	x
	h (a)	6.6943 8.4078 8.4129 16.041	6.7628
	h (b)	6.6292 8.3442 8.2598 14.664	6.7372
			Monte-Carlo realization		

TABLE II FINAL

 II VALUES OF THE OBJECTIVE J (x) AND ESTIMATION ERROR GIVEN BY THE PROPOSED METHOD AND IHT WITH DIFFERENT INITIALIZATIONS(AVERAGE OVER 1000 MONTE-CARLO REALIZATIONS).

		Objective	Error
	Filter param.	h (a)	h (b)	h (a)	h (b)
	Proposed method	6.9219 6.7078 1.3278	1.5408
	Proposed method + IHT	6.6943 6.6292 1.3374	1.5393
	linear + ℓ 1 +IHT	8.4078 8.3442 1.5575	1.6833