
HAL Id: hal-01575288
https://hal.science/hal-01575288v1

Submitted on 18 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PiPo, A Plugin Interface for Afferent Data Stream
Processing Modules

Norbert Schnell, Diemo Schwarz, Joseph Larralde, Riccardo Borghesi

To cite this version:
Norbert Schnell, Diemo Schwarz, Joseph Larralde, Riccardo Borghesi. PiPo, A Plugin Interface for
Afferent Data Stream Processing Modules. International Symposium on Music Information Retrieval
(ISMIR), Oct 2017, Suzhou, China. �hal-01575288�

https://hal.science/hal-01575288v1
https://hal.archives-ouvertes.fr

PIPO, A PLUGIN INTERFACE FOR AFFERENT DATA STREAM
PROCESSING MODULES

Norbert Schnell
UMR STMS

IRCAM-CNRS-UPMC
schnell@ircam.fr

Diemo Schwarz
UMR STMS

IRCAM-CNRS-UPMC
schwarz@ircam.fr

Joseph Larralde
UMR STMS

IRCAM-CNRS-UPMC
larralde@ircam.fr

Riccardo Borghesi
UMR STMS

IRCAM-CNRS-UPMC
borghesi@ircam.fr

ABSTRACT

We present PiPo, a plugin API for data stream processing
with applications in interactive audio processing and music
information retrieval as well as potentially other domains
of signal processing. The development of the API has been
motivated by our recurrent need to use a set of signal pro-
cessing modules that extract low-level descriptors from au-
dio and motion data streams in the context of different au-
thoring environments and end-user applications.

The API is designed to facilitate both, the develop-
ment of modules and the integration of modules or module
graphs into applications. It formalizes the processing of
streams of multidimensional data frames which may rep-
resent regularly sampled signals as well as time-tagged
events or numeric annotations. As we found it sufficient
for the processing of incoming (i.e. afferent) data streams,
PiPo modules have a single input and output and can be
connected to sequential and parallel processing paths. Af-
ter laying out the context and motivations, we present the
concept and implementation of the PiPo API with a set
of modules that allow for extracting low-level descriptors
from audio streams. In addition, we describe the integra-
tion of the API into host environments such as Max, Juce,
and OpenFrameworks.

1. INTRODUCTION

1.1 Context and Motivation

Many of the interactive audio applications that we have de-
veloped over the past years in collaboration with artists and
other researchers rely on signal processing techniques to
automatically analyse and annotate audio and motion sen-
sor streams. We often refer to the techniques we deploy in
this context as content-based audio processing [1]. These
techniques generally allows for interactively transforming
recorded audio materials as a function of low-level audio
descriptions such as pitch, intensity, and timbre descrip-
tions as well as segmentations into temporal units such as

c© Norbert Schnell, Diemo Schwarz, Joseph Larralde, Ric-
cardo Borghesi. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Norbert Schnell, Diemo
Schwarz, Joseph Larralde, Riccardo Borghesi. “ PiPo, A Plugin Interface
for Afferent Data Stream Processing Modules ”, 18th International Soci-
ety for Music Information Retrieval Conference, Suzhou, China, 2017.

modelling,
generators,
synthesis,

etc.

extraction,
filtering,

segmentation,
etc.

audio or sensor  
data streams

mixing,
spatialization,

effects,
etc.

audio or control
data streams

afferent
stream 

processing

efferent
stream 

processing

instrument pluginsaudio analysis plugins

interaction and
sound generation

sensors,
recording,

file storage,

file storage,
rendering,
actuators,

effect plugins
(e.g. VST, AudioUnits, LADSPA)(e.g. FEAPI, VAMP)

existing
audio

solutions

… …

Figure 1. An interactive audio system with afferent and
efferent data streams. The labels at the bottom cite existing
plugin interfaces for audio applications.

notes, syllables, and musical phrases. Similar processing
applies in this context to motion capture streams to extract
movement qualities and meaningful events and temporal
units such as onsets and gestures. In this processing, we
frequently reuse a set of algorithms such as filters, pro-
jections, extractors, and detectors that may apply in real-
time to incoming data streams or, offline, to data streams
recorded into files. Since these data streams occur in the
overall interactive systems we develop as inputs, we refer
to them as afferent data streams.

Figure 1 shows the overall structure of such an inter-
active system. The schema does not distinguish whether
the audio and motion data streams actually enter the sys-
tem in real-time or whether they are read from files. Af-
ferent streams processed in real-time typically originate
from a microphone or motion sensors. In some of the sys-
tems we have developed, the streams are used to control
an interactive system through sound (e.g. voice) or move-
ment. In many of these systems, the same — or very sim-
ilar — processing that is applied in real-time, applies to
data streams read from files. For example for concatenative
synthesis [21], audio descriptors are extracted from pre-
recorded materials. While some interactive systems may
generate sound in real-time, the generated description and
annotations may be used to create visualizations (e.g. in
the context of musicology or education) as well as to sup-
port the editing and transformation of recordings in post-
production systems.

In general, the processing of afferent streams can be
described as reducing the data streams in terms of their
complexity, dimensionality, and data rate. Typical terms
used to characterize this processing include filtering, anal-

ysis, extraction, description, detection, recognition, scal-
ing, and mapping.

The PiPo API (Plug-in Interface for Processing Ob-
jects) formalizes modules that in this sense transform an
incoming data stream into an output data stream allowing
for a possibly wide range of streams as well as for mod-
ules of arbitrary complexity going from simple scalings to
sophisticated machine learning algorithms.

The major motivations for developing the PiPo API can
be summarized as follows:

• facilitating the integration of algorithms of different
origins (i.e. developers) into a given application

• facilitating the use/comparison of different algo-
rithms of similar functionalities in a given context
(e.g. applying different filters, extractors or classi-
fiers to the same input stream)

• facilitating the integration of a given algorithm into
different contexts and applications

• facilitating the development of applications where
the same algorithm applies to data streams in real-
time and offline

Ultimately, the motivation for developing the API is
the idea of enabling the development of an ecosystem of
stream modules and host environments in particular do-
mains as well as across different domains of signal pro-
cessing.

1.2 Requirements

In this section, we give an overview over the most impor-
tant general requirements for an afferent data stream pro-
cessing framework for real-time and off-line use. These re-
quirements concern specific functionalities as well as their
efficient implementation in a real-time system (see [22]).

1.2.1 Functional Requirements

Scheduling Processing should run either in batch on
sound files and buffers, or on a live audio stream

Segmentation Allow several streams of segmentations in
parallel and overlapping segments, or an implicit seg-
mentation, where segments are analysis frames, ele-
mentary waveforms, or whole sound files.

Temporal Modeling Any number of temporal modeling
algorithms can be integrated, either universal (modeling
all descriptors, e.g. mean) or specific (modeling specific
descriptors only, e.g. geometric mean for pitch).

Data Type Data can be numeric scalars, vectors, matrices,
or strings

Multi-Modality The input data type and rate should allow
motion and other data and not be limited to audio only.

User Composability Modules should be composable by
the user in the host environment (without having to
write and compile code), e.g. chaining feature ex-
tractors, smoothing filters, segmentation, and temporal

modeling, in order to allow experimentation and rapid
prototyping.

1.2.2 Implementation Requirements

Easy Integration and Efficiency It should be easy to in-
tegrate the framework in any platform and environment,
including real-time and resource-constrained systems
(e.g. single-board computers). This basically stipulates
that the API be written in C or C++.

Dynamic Plugin Loading It should be possible to add
processing modules as plugins to an existing host in-
stallation, e.g. by leveraging dynamic linking of shared
libraries.

Efficient Modularisation The framework should allow
an efficient implementation, notably by sharing com-
monly used calculation results, most of all the FFT rep-
resentation, between modules, by avoiding copying and
re-sending data, instead writing them directly to its des-
tination.

External Data External data streams and sources of seg-
mentation, such as a human tapping on attacks oder ex-
isting analysis files, must be integratable into the data
flow.

Reanalysis A subset of descriptors or only the segmenta-
tion and subsequent temporal modeling can be re-run
with changed parameters.

Almost all of these requirements are fulfilled by PiPo,
with the exception of the possibility to pass strings as data
elements. This has been avoided to simplify the API and
avoid problems of memory-handling. A fixed set of strings
(such as class labels for machine-learning) can always be
transmitted by their index.

The top-level requirements, that best distinguish PiPo
from other frameworks are dynamic linking of plugins,
multi-modality, and user-composability of modules.

1.3 Related Work

In the rich existing work, we must distinguish audio anal-
ysis libraries and toolboxes (see the recent overview [15])
from plugin APIs which impliy a formalization of the in-
put/output formats and the dynamic loading of modules.

Several plugin APIs are commonly used in the
world of audio signal processing and virtual instruments,
namely LADSPA (Linux Audio Developer’s Simple Plu-
gin API), 1 VST (Virtual Studio Technology by Stein-
berg), 2 and AU (Audio Units by Apple). 3 These APIs
are mainly designed for transforming an input audio stream
(effect processing) or for generating an audio stream in
reaction to incoming MIDI events (virtual instruments).
Thus they are not applicable to the demands of general data
processing or audio feature extraction.

Many monolithic or collections of analysis mod-
ules for popular real-time environments exist, such as

1 http://www.ladpsa.org
2 http://ygrabit.steinberg.de
3 http://developer.apple.com/audio/audiounits.html

input
data

stream

output
data
stream

PiPo host

frame
sink

frame
source

error reporting

PiPo
operator

A

PiPo
operator

B

PiPo
operator

C

Figure 2. A chain of modules in a host environment.

analyser˜ [11], the patch-based ZSA [13] for MAX,
imtr-analysis [22], TimbreID [3] for PureData. None of
these can be integrated into other environments.

The first descriptor analysis frameworks that would al-
low the dynamic inclusion of external modules are either
plugin frameworks such as the sadly defunct FEAPI [12],
and the more lively VAMP [6]. 4 However, the latter does
not propose user-composability nor multi-modality (the in-
put is always audio).

There are many existing libraries for audio descrip-
tor analysis (Yaafe 5 [14], Essentia 6 [2], OpenSmile 7 [7,
8], libXtract, 8 IrcamDescriptor [18]) see this compari-
son [15]. None of them allow for dynamic linking, easy
integration of new algorithms, or user composability with-
out having to code a new module.

The MARSYAS framework, dedicated to music informa-
tion retrieval, is concerned with scheduling [5] as well as
CLAM, 9 but neither is a common environment for real-
time sound and music applications.

In summary, no existing API combines all three top-
level requirements of dynamic linking of plugins, multi-
modality, and user-composability of modules.

2. CONCEPTS AND FORMALIZATION

The PiPo API formalizes modules as objects that receive
a data stream as a succession of frames at their input and
send a stream as output. As shown in figure 2, modules
can be connected to a chain by connecting the input of one
module to the output of another. In the simplest case, the
processing requires a single module. A PiPo host, con-
structs the modules and connects to the input of the first
module of the chain as the source of the stream of frames
to be processed. In addition, the host connects to the out-
put of the last module of the chain as the terminating sink
that receives the resulting stream.

The data streams received and produced by PiPo mod-
ules are described by a set of stream attributes that are de-
fined before the modules actually receive and produce any
frames. This way, the initialization of a module may de-
pend on the attributes of the incoming stream and the mod-
ule may determine the attributes of the stream it produces
as a function of the attributes of the incoming stream.

4 http://vamp-plugins.org
5 http://yaafe.sourceforge.net
6 http://essentia.upf.edu/
7 http://opensmile.sourceforge.net/
8 http://jamiebullock.github.io/LibXtract/documentation/
9 http://clam-project.org

The propagation of the stream parameters and the actual
processing of frames are separated into two phases that are
both initiated by the host through its connection to the first
module. In both phases, each module receives information
from its predecessor in the chain and sends information to
its successor. In the initialization phase, the host sends out
the stream parameters of the input stream to the first mod-
ule which sends its output stream parameters to the input of
the next module, and so forth, until the last module sends
the resulting stream parameters back to the host connected
to its outlet. Similarly, once the modules are initialized,
the host can start sending frames into the input of the first
module and receives the resulting frames from the output
of the last module. Only in the case of error, as for example
when a module cannot accept a stream with a given set of
attribute values at its input, a module would report directly
to the host, which in turn can output the error message to
the host environment.

2.1 Streams of Frames

Each frame of a data stream is composed of a time-tag and
a two-dimensional matrix of numeric values. A data stream
is described by the following set of attributes:

• frame rate of the stream

• whether the frames of the stream are time-tagged

• dimensions of the frames’ two-dimensional matrix

• labels describing the columns of the data matrix

• whether the frames’ data matrices have a variable
number of rows

In case of streams of time-tagged frames of an irregular
rate, the frame rate attribute should announce the worst
case (the fastest) rate, so that succeeding modules — or
the host — can take this parameter into account (e.g. for
allocating memory).

This formalization of data streams allows for represent-
ing a large spectrum of different signals, event streams, and
numeric annotations. For example:

• mono or multi-channel audio signals are represented
as scalars or multi-dimensional vectors of a constant
frame rate

• real or complex frames of spectral data are repre-
sented as single column vectors or matrices of two
columns (i.e. labeled ’real’ and ’imag’), usually of a
constant frame rate

• multi-dimensional motion capture data streams are
represented as multi-dimensional row-vectors (e.g.
labeled ’x’, ’y’, ’z’) that may be time-tagged or of a
constant frame rate

• onset markers are represented as time-tagged frames
without numeric data (i.e. an empty matrix)

• segments are represented as time-tagged frames with
a row-vector of data including a ’duration’ column
and, optionally, multiple columns of values describ-
ing the segment (e.g. ’pitch’, ’intensity’, ’category’)

• harmonics are represented as two-dimensional ma-
trices with variable number of rows, one row for
each harmonic, with multiple columns (’frequency’,
’amplitude’, ’phase’) of a constant frame rate

From the host’s point of view, once constructed, an ar-
bitrary chain of modules is defined by the stream it pro-
duces as a function of the input stream provided by the
host. Before starting the actual stream processing by send-
ing frames into the chain, the host retrieves the attributes
of the output stream that can be used, for example, to al-
locate memory or bandwidth and automatically determine
display options as well as to configure and generate other
interactions with connected sub-systems or users.

2.2 Chains of Modules

As mentioned above, PiPo modules have a single input and
output and can be connected to chains. Hereby, a chain of
modules — conceptually as well as by implementation —
may appear as a single module communicating with its en-
vironment (i.e. a host or connected modules) through a
single in- and output and an error channel.

Apart from the stream attributes of its incoming stream,
each module is configured and controlled by a set of typed
module parameters that are explicitly declared through the
PiPo API. Possible parameter types are single values of 64-
bit float, 32-bit integer, string, and declared enumerated
types as well as fixed or variable sized arrays of values
of these types and heterogeneous variable sized arrays. In
addition to its type, a module parameter is declared with a
name, a short description, and a flag whether changing a
given module parameter requires the reinitialization of the
module — and consequently of the following modules in a
chain.

An important feature of the design of the API is that
it allows for implementing modules of virtually any com-
plexity and for composing chains of modules of any
granularity. An extractor of MEL cepstrum coefficients
(MFCCs), for example, may be implemented as a single
monolithic module or composed of a chain of modules that
include the successive calculation of STFT frames, MEL
coefficients, and DFT coefficients.

2.3 Graphs Beyond Chains

The construction of certain algorithms from basic modules
requires more complex graphs of modules. For example,
the extraction of a set of basic audio descriptors shown
in figure 3 requires to split and merge the processing of
the implied data streams. While the first split allows for
processing the same audio frames in time and frequency
domain, the second applies the calculation of a loudness
descriptor and a spectral centroid to the same frequency
domain frames produced by the STFT. The final set of esti-
mated descriptor values (i.e. pitch, periodicity, AC1, loud-
ness, and spectral moments) is merged to a single vector at
the output of the sub-graph.

As described in section 2.2, any chain (or sequence) of
modules can be considered as a single module. In the for-

PiPo descr

slice scalesum

moments

yin
f0, periodicity, ac0, ac1

fft power spectrum

spectral moments

loudness
windowed frames

f0,
periodicity,
ac0, ac1,
loudness,
spectral
moments

audio
samples

Figure 3. A complex graph of PiPo modules for calculat-
ing 9 basic audio descriptors.

sequence module

module 1 module 2 module n. . .

parallel module

module 1

module 2

module n

.

.

.

Figure 4. Any number of modules connected in sequence
or in parallel can be reduced to a single module.

malization of graphs in the PiPo API, parallel modules can
also be reduced to a single module. These two rules, il-
lustrated by figure 4, provide a consistent basis to build a
large variety of complex PiPo graphs.

Figure 5 shows the structure of the pipo.descrmod-
ule expressed in terms of sequence and parallel compo-
nents.

2.4 Hosts

In summary, a PiPo host has to provide the following func-
tionalities:

• constructing a single or a graph of modules

• parametrizing the modules

scalesum

fft

yin

mo-
ments

slice

sequence
parallel

Figure 5. Decomposition of the pipo.descr module
into sequence and parallel elements.

• connecting a terminating sink to the output of the
chain

• acquiring the input stream

• initializing the modules by sending the input stream
attributes into the chain

• handling initialization errors emitted by the modules

• sending the frames of the input stream into the chain
and handling the frames of the output stream

• allowing for real-time parametrization of the mod-
ules (if applicable)

The PiPo API includes abstractions that support the im-
plementation of hosts.

3. IMPLEMENTATION

PiPo is an API that essentially consists of a single C++
header file. This file defines the base PiPo class, and its
declared parameters. 10 .

3.1 The PiPo API

The minimal module must inherit from the class PiPo
and implement at least the streamAttributes and
frames methods:

In streamAttributes, all initialisation can be
done, as all input stream attributes are known. The
output stream attributes are passed on to the receiv-
ing module via propagateStreamAttributes. In
frames, only data processing and, when needed, buffer-
ing should be done. Output frames are passed on with
propagateFrames.

If the module can produce additional output data af-
ter the end of the input data (e.g. filters), it must im-
plement finalize, from within which more calls to
propagateFrames can be made, followed by a manda-
tory call to propagateFinalize.

If the module keeps internal state or buffering, it should
implement the reset method to put itself into a clean
state.

A segmentation module calls the method
propagateSegment to signal the onset, offset and
exact boundaries of a new segment to following temporal
modeling modules (which implement segment).

The utility function signalError can be used to pass
an error message to the host.

3.2 Module Parameters

The template class PiPo::Attr permits to define scalar,
enum, or variable or fixed size vector parameters of a pipo
module that are exposed to the host environment.

They are initialised in the module constructor with a
short name, a description, a flag if a change of value means
the fundamental stream parameters must be reset (if true,

10 https://github.com/Ircam-RnD/pipo-sdk/tree/master/include

streamAttributes will be called again for the whole
chain), and a default value.

Their value can be queried in streamAttributes
or frames (in real-time hosts, a parameter’s value can
change over time) with PiPo::Attr::get().

3.3 Example of a Minimal PiPo Module
class PiPoGain : public PiPo
{
private:
std::vector<PiPoValue> buffer;

public:
PiPoScalarAttr<double> factor;

PiPoGain (Parent *parent, PiPo *receiver = NULL)
: PiPo(parent, receiver),
factor(this, "factor", "Gain Factor", false, 1.0) { }

∼PiPoGain (void) { }

int streamAttributes (bool hasTimeTags, double rate,
double offset, unsigned int width, unsigned int height,
const char **labels, bool hasVarSize,
double domain, unsigned int maxFrames)

{ // can not work in place, create output buffer
buffer.resize(width * height * maxFrames);

return propagateStreamAttributes(hasTimeTags, rate,
offset, width, height, labels,
hasVarSize, domain, maxFrames);

}

int frames (double time, PiPoValue *values,
unsigned int size, unsigned int num)

{ // get gain factor here, it could change while running
double f = factor.get();
PiPoValue *ptr = &buffer[0];

for (unsigned int i = 0; i < num; i++)
{
for (unsigned int j = 0; j < size; j++)
ptr[j] = values[j] * f;

ptr += size;
values += size;

}

return propagateFrames(time, &buffer[0], size, num);
}

};

3.4 Existing Modules

The list of existing PiPo modules can be organized into the
following categories:

Stream Processing slice (windowing), scale, sum,
select (get columns),

Filtering biquad (biquad filter), mvavrg (moving aver-
age filter), median (median filter), delta (deriva-
tive), finitedif [9], bayesfilter [10]

Segmentation onseg (segments starting at signal onset),
chop (segments of regular intervals), gate (seg-
ments excluding weak sections), sylseg [16]

Temporal Modeling mean, std, meanstd, min, max

Analysis descr (basic audio descriptors), yin (pitch
extractor), moments (centroid, spread, skew-
ness, kurtosis), lpc (linear predictive coding),
lpcformants (formant extraction), psy (pitch
synchronous markers), ircamdescriptor [18]

Frequency Domain Processing fft (FFT from pre-
windowed frames), dct (discrete cosine transform),
bands (MEL bands and similar from power or
amplitude spectrum), mel (MEL bands from au-
dio stream), mfcc (MFCC from audio stream),
wavelet (wavelet transform from audio stream)

They can be instantiated from C++ code us-
ing the precompiled libpipo library, thanks to the
PiPoCollection class defined in the PiPo SDK, or be
used in one of the environments described in 3.6. The
PiPoCollection class acts as a module factory. It is
able to instantiate PiPo graphs from a simple syntax, which
can then be used as simple PiPos in a host environment. It
also allows users of the API to add their own PiPo mod-
ules to the original collection. Once added, more complex
graphs combining modules from libpipo and these new
modules can be instantiated and run inside a PiPo host.

3.5 PiPo Graph Construction

Graphs of PiPo modules can be either constructed in C++
code or — within a given host environment — through ex-
pressions of a very simple syntax. For the first case, the
API defines a set of primitives that can be used to con-
struct graphs of any complexity by arranging modules in
sequence and in parallel. In the latter case, these primi-
tives are instantiated by a parser function provided by the
API.

3.5.1 Specific Graph Construction Modules

Additional to the data processing modules listed above,
there are two internal modules that handle the connection
of processing modules in sequence or in parallel.

The sequence module simply connects the upstream
module to the downstream one (i.e. setting the latter as
receiver, so that the API calls get propagated through the
chain). The parallel module essentially consists of an
ordered set of modules that receive the same input stream
and output towards an internal merge module. Each in-
coming frame is processed by each of the parallel modules
in the given order, whereby the merge module concate-
nates the output data column-wise into a single matrix that
is output towards the receiver of the parallel module.

3.5.2 Graph Construction Syntax

The construction of sequences and parallel modules is also
available at the user level via a simple syntax inspired by
FAUST [17], with the following operators:

: (sequence)
< (branch)
, (parallel)
> (merge)

For example, the pipo.descr module de-
scribed in section 2.3 would be written like this:
slice<yin,fft<sum:scale,moments>>

A fifth operator, _ (identity), allows the propagation of
intermediate analysis results to the end of the graph. Fol-

lowing the sequence and parallel reduction rules from sec-
tion 2.3, any PiPo graph is equivalent to a PiPo, and as a
consequence must have a single input and a single output,
which implies that the graph syntax must contain the exact
same number of branch and merge operators.

3.6 Bindings

3.6.1 Max

The PiPo modules are available within the MAX visual
programming environment via the MuBu package, [19]
where they can run in real-time using the pipo∼ and
pipo MAX objects, or offline using the mubu.process
object.

3.6.2 Juce, OpenFrameworks, OpenMusic, Unity3D

PiPo has been integrated into the JUCE 11 framework,
the creative coding framework OPENFRAMEWORKS, 12

the computer-aided composition environment OPEN-
MUSIC [4] and the game development environment
UNITY3D. 13 Most if these developments are based on the
IAE (Interactive Audio Engine) library. [20] The library
allows for loading a sound file as input of a user-specified
PiPo chain and to retrieve the result at the output.

4. CONCLUSIONS AND FUTURE WORK

The PiPo API and modules are in production use in our de-
partment, and with research project partners, and artists in
interactive gesture and music installations and digital in-
struments. We feel it could help a wider community for
easy prototyping and transfer to developed products.

The PiPo API is currently in the process of being in-
tegrated in the RAPIDMIX API, a wider C++ software
ecosystem including machine learning, signal feature ex-
traction and audio processing libraries, as a standardized
way of building modular signal descriptors and machine
learning algorithms, integrating them into a global work-
flow and allowing users of this ecosystem to build sustain-
able code on top of a base collection of algorithms, by pro-
viding a flexible mean of interaction between its software
components.

We made first steps to add an API similar to PiPo to also
integrate the iterative training of machine learning and data
processing easily into the same host environments.

The PiPo SDK that supports the development of mod-
ules as well as hosts, has been published under the
BSD 3-Clause license at https://github.com/Ircam-RnD/
pipo-sdk.

5. ACKNOWLEDGMENTS

The development of the PiPo API has received support
from the RAPID-MIX project (H2020-ICT-2014-1 Project
ID 644862), funded by the European Union’s Horizon
2020 research and innovation programme.

11 https://www.juce.com
12 http://openframeworks.cc
13 http://unity3d.com

6. REFERENCES

[1] X. Amatriain, J. Bonada, A. Loscos, J. Arcos, and
V. Verfaille. Content-based transformations. Journal of
New Music Research, 32(1):95–114, 2003.

[2] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez,
Sankalp Gulati, Perfecto Herrera, Oscar Mayor, Gerard
Roma, Justin Salamon, José Zapata, and Xavier Serra.
Essentia: An open-source library for sound and music
analysis. In Proceedings of the 21st ACM International
Conference on Multimedia, MM ’13, pages 855–858,
New York, NY, USA, 2013. ACM.

[3] W Brent. A Timbre Analysis and Classification Toolkit
for Pure Data. In International Computer Music Con-
ference, New York City, NY, 2010.

[4] Jean Bresson, Carlos Agon, and Gérard Assayag.
OpenMusic – Visual Programming Environment for
Music Composition, Analysis and Research. In ACM
MultiMedia (MM’11), Scottsdale, United States, 2011.

[5] Neil Burroughs, Adam Parkin, and George Tzanetakis.
Flexible scheduling for dataflow audio processing. In
Proceedings of the International Computer Music Con-
ference (ICMC), New Orleans, Louisiana, USA, Au-
gust 2006.

[6] Chris Cannam. The VAMP Audio Analysis Plugin
API: A Programmers Guide. http://vamp-plugins.
org/guide.pdf, 2008.

[7] Florian Eyben, Felix Weninger, Florian Gross, and
Björn Schuller. Recent developments in opensmile, the
munich open-source multimedia feature extractor. In
Proceedings of the 21st ACM International Conference
on Multimedia, MM ’13, pages 835–838, New York,
NY, USA, 2013. ACM.

[8] Florian Eyben, Martin Wöllmer, and Björn Schuller.
Opensmile: The munich versatile and fast open-source
audio feature extractor. In Proceedings of the 18th
ACM International Conference on Multimedia, MM
’10, pages 1459–1462, New York, NY, USA, 2010.
ACM.

[9] B. Fornberg. Finite difference method. Scholarpedia,
6(10):9685, 2011. revision #91262.

[10] Jules Françoise. Motion-Sound Mapping by Demon-
stration. PhD thesis, Université Pierre et Marie Curie,
2015.

[11] Tristan Jehan. Musical signal parameter estimation.
Master’s thesis, IFSIC, Université de Rennes, France,
and Center for New Music and Audio Technologies
(CNMAT), University of California, Berkeley, USA,
1997.

[12] Alexander Lerch, Gunnar Eisenberg, and Koen
Tanghe. FEAPI: A Low Level Feature Extraction Plu-
gin API. In 8th International Conference on Digital
Audio Effects (DAFx05, 2005.

[13] M. Malt and E. Jourdan. Zsa. Descriptors: a library for
real-time descriptors analysis. In 5th Sound and Music
Computing Conference, pages 134–137, Berlin, Ger-
many, August 2008.

[14] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques
Prado, and Gaël Richard. YAAFE, an easy to use and
efficient audio feature extraction software. In Proceed-
ings of the International Symposium on Music Infor-
mation Retrieval (ISMIR), 2010.

[15] David Moffat, David Ronan, Joshua D Reiss, et al.
An evaluation of audio feature extraction toolboxes.
In Proceedings of the COST-G6 Conference on Digi-
tal Audio Effects (DAFx), Trondheim, Norway, 2015.

[16] Nicolas Obin, François Lamare, and Axel Roebel. Syll-
o-matic: an adaptive time-frequency representation for
the automatic segmentation of speech into syllables. In
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2013.

[17] Yann Orlarey, Dominique Fober, and Stéphane Letz.
Faust: an efficient functional approach to dsp program-
ming. New Computational Paradigms for Computer
Music, 290, 2009.

[18] Geoffroy Peeters. A large set of audio features for
sound description (similarity and classification) in the
Cuidado project. Technical Report version 1.0, Ircam –
Centre Pompidou, Paris, France, April 2004.

[19] Norbert Schnell, Axel Röbel, Diemo Schwarz, Geof-
froy Peeters, and Ricardo Borghesi. MuBu & friends –
assembling tools for content based real-time interactive
audio processing in Max/MSP. In Proceedings of the
International Computer Music Conference (ICMC),
Montreal, Canada, August 2009.

[20] Norbert Schnell, Diemo Schwarz, Roland Cahen,
and Victor Zappi. IAE & IAEOU. In Roland Ca-
hen, editor, Topophonie research project : Audio-
graphic cluster navigation (2009-2012), Les Carnets
d’Experimentation de l’Ecole Nationale Superieure de
Creation Industrielle, pages 50–51. ENSCI - Les Ate-
liers / Paris Design Lab, December 2012.

[21] Diemo Schwarz. Corpus-based concatenative synthe-
sis. IEEE Signal Processing Magazine, 24(2):92–104,
March 2007. Special Section: Signal Processing for
Sound Synthesis.

[22] Diemo Schwarz and Norbert Schnell. A modular sound
descriptor analysis framework for relaxed-real-time
applications. In Proceedings of the International Com-
puter Music Conference (ICMC), New York, NY, 2010.

