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Abstract. Grains are vibrated so as to achieve a granular gas, here regarded as an

archetype for a dissipative Non Equilibrium Steady State (NESS). We report on two

distinct and concordant experimental measures of the system effective temperature.

To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains,

behaves as a driven 1D Brownian rotator which is used as both actuator and sensor,

simultaneously. On the one hand, the Gallavotti-Cohen Fluctuation Theorem (FT),

which involves a measure of the asymmetry of the energy exchanges between the rotator

and the NESS reservoir, provides a first effective temperature. On the other hand,

the Fluctuation-Dissipation Theorem (FDT), which involves the relation between the

spontaneous fluctuations and the response to a weak perturbation, defines a second,

independent, effective temperature. Both methods, even though they are based on

drastically different ideas, give nicely concordant results.

1. Introduction

The interpretation of the velocity fluctuations of a granular flow in terms of

’temperature’ appeared relatively late in the study of granular matter, in the end of the

seventies (see for instance [1], and other references in the review papers by Goldhirsch

[2, 3]). The reason is probably that former studies of granular matter concentrated on

dense phases, mainly for the purpose of soil mechanics, in which velocity fluctuations

are not relevant. In the limit case of a granular packing at rest, a temperature, based

on the concept of the entropy of configuration, has been introduced [4, 5, 6]. In

the present article, we deal with dynamical situations in which velocity fluctuations

play a fundamental role. The theoretical idea of introducing a temperature, inspired

from statistical mechanics, was very soon put to use in constructing kinetic theories of

granular gases, since the beginning of the eighties. The study of granular matter from

the viewpoint of kinetic and hydrodynamic theories has been improved since then, in

most of the cases by relying on the concept of granular temperature [7]. One must

note that the granular temperature, defined as the (ensemble) average of the squared

velocity fluctuations, differs from the internal (thermodynamic) temperature of the

grains. Nevertheless, it characterizes the fluctuations of the grains velocity, alike the

thermodynamic temperature in molecular liquids or gases.
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Although theories developed since then use extensively the concept of granular

temperature, this quantity remains difficult to assess. Video tracking can be used,

but only in 2D flows [8]. In 3D however, high-end techniques have been used such as

positron-emission particle tracking [9] or magnetic resonance [10]. But, in general, the

comparison of theories is possible only with numerical simulations.

We propose in this article to investigate the temperature indirectly. As indirect

temperature measurement, one can consider a forced Brownian-like harmonic oscillator

in a fluidized granular bath, which gives access to granular viscosity and effective

temperature [11], thanks to the Fluctuation-Dissipation Theorem (FDT) [12]. Another

experiment based on an harmonic oscillator in a rarefied granular gas makes use of

the Gallavotti-Cohen Fluctuation Theorem [13, 14] to define and measure a granular

effective temperature [15]. Actually, both studies suppose that the oscillating object is

thermalized with the bath. A recent study showed that this hypothesis deserves longer

discussion, especially for very low densities [16]. A different, indirect, approach was

introduced in simulations of a 2D granular gas by Aumâıtre et al. [17]. These authors

investigate the fluctuations of the power provided to the granular gas to compensate

dissipation. Thanks to the FT again, they define and measure a global effective granular

temperature, proportional to the mean kinetic energy of the beads. Just to mention,

the specific case of a single grain can be analyzed the same way [18, 19].

The present article reports on simultaneous measurements of two effective

temperatures in a rarefied granular gas, thanks to the heuristic use of the FDT on the

one hand, and of the FT on the other hand. To perform measurements, we make use of

a small DC motor, that can be used as both sensor and actuator. For the FDT-based

measurements, we present an original spectral method, that makes possible to obtain

simultaneously the free fluctuations and the susceptibility to an imposed perturbation.

The method provides a first estimate of the granular temperature. For comparison, a

second estimate of the granular temperature is obtained by using the same set of data

and a FT-based method.

2. Methods

We propose in Fig. 1a a sketch of the experimental setup. The granular gas is

composed of N ' 340 stainless steel beads of diameter 3 mm and mass m ' 0.1 g

placed in an aluminum vessel (5 cm in diameter and 6 cm in height). The vessel,

whose inner bottom is slightly cone-shaped (angle ' 10◦) in order to favor the transfer

from vertical to horizontal momentum, is vibrated vertically. The electromechanical

shaker (Brüel & Kjær, 4809), which insures the vibration, is fed with the current from

a power amplifier (Kepco, BOP 36-6M) driven by a sine at 40 Hz from a waveform

generator (Keysight, 35500B). Changing the excitation power (of a few Watts), we

tune the maximum vertical acceleration of the vessel which is always of a few times

the acceleration due to gravity. In the stationary regime, the granular gas is in

a dissipative Non-Equilibrium Steady State (NESS) as the energy provided by the
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shaker compensates the continuous energy losses (mainly due to the collisions). In

the following, this steady-state granular-gas will be regarded as the thermostat over

which measurements are performed.

(a) (b)
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Figure 1. (a) Sketch of the experimental setup – The grains, placed in a vessel, are

vibrated vertically by means of an electomechanical shaker. A blade fastened to the

shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian

rotator which is used as both actuator and sensor, simultaneously. (b) Electrical circuit

associated to the probe – The motor is modeled by the combination of an ideal voltage

source e (∝ θ̇, the angular velocity of the blade) and of an internal resistance r.

A steel blade (20 × 20 mm2, thickness 0.5 mm), fastened to the shaft of a DC

micro-motor (Maxon RE 10 118386), immersed in the gas, will be our sensor (Fig. 1a).

The micro-motor (10 mm in diameter) is attached to the upper cover of the vessel, its

shaft being vertical, along the symmetry axis of the setup. Concerning the mechanical

characteristics of the sensor, the moment of inertia of the {rotor + blade} ensemble

is J ' 3.33 10−8 kg m2. Concerning its electrical characteristics, the micro-motor is a

permanent magnet, coreless, brushed DC motor of nominal power 0.75 W and nominal

voltage 6 V, exhibiting an internal resistance of r ' 21.2 Ω.

The original and fruitful feature of our experiment relies on the astute way to make

use of the electromechanical symmetry of the DC motor. Indeed, a DC motor is usable

as both motor and generator, reversibly. When it is used as a motor, a current I is

converted into a mechanical torque Γ = α I applied to the rotor. When it is used as

a generator, an angular velocity θ̇ of the rotor results in a voltage difference e = α θ̇

between the terminals. The key point for our study is that the same coefficient α couples

the torque and the current as a motor, and the voltage and the angular velocity as a

generator. Because of this peculiar property, in the following, the same device is used

as both actuator and sensor without any need of calibration.

During the experiments, the blade is immersed in the granular gas and the motor

is fed, through a resistor R = 23 Ω, with the current I(t) from a programmable wave
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generator (Agilent 33522A, Fig. 1b). At the same time, the voltages u0 and u1 at the

terminals of R are recorded simultaneously by a 24-bit acquisition board (NI-PXI 4462)

at sampling frequency fs = 1024 Hz. On the one hand, the current I supplied to the

motor induces a torque Γ that tends to rotate the blade in the granular gas. At any

time t, I(t) is obtained from u0(t) and u1(t) by using the relation I = (u0 − u1)/R. An

angular velocity θ̇ (= e/α) results from the combined effects of the torque Γ and of the

interaction with the gas. We get e(t) from the measured voltages u0(t) and u1(t) by

using the relation e = u1−rI (The internal resistance of the motor, r, must be precisely

known. We checked that the effects of the inductance of the motor, L ' 0.184 mH, are

negligible in our experimental conditions).
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Figure 2. (a) Time series of: Red, the injected current I(t) (mA); blue, the voltage

e(t) (V). (b) Corresponding power spectral density (PSD) of: Red, I(t). The 15 chosen

frequencies are clearly revealed by the large peaks; Blue: e(t). The injected current

I(t) results in the appearance of 15 tiny peaks above the base line which corresponds

to the free fluctuations (Acceleration a = 2.7 g).

The idea is to assess simultaneously the free fluctuations of the blade and the

response to a perturbation. In absence of imposed current I(t), the voltage e(t)

fluctuates because of the collisions between the grains and the blade. In order to

assess the response to a perturbation, we impose that the current I(t) follows a

periodic pattern, consisting of the sum of 15 sine functions of different frequencies fe,

logarithmically distributed over the range 0.1 ≤ fe ≤ 400 Hz (Fig. 2). This range

covers the low-frequency flat-part of the Lorentzian-like spectrum of the spontaneous

fluctuations of the blade velocity, and goes beyond the corner frequency ωc above which

the amplitude of the spontaneous fluctuations significantly decreases (Fig. 2b). In

addition, in order to ensure that we only weakly perturb the system, we choose the

amplitude of each of the sine functions such that its contribution appears as peak of

small relative amplitude in the power spectrum (Fig. 2b). Finally, the relative phases of

the different components are randomized, such as to avoid stiff variation of the current

caused by unfortunate interferences.

After the experiment is started, a few hours are necessary to reach a stationary

regime (constant variances). The internal resistance r of the motor is measured both

before and after the experiment in order to detect undesired drifts and to ensure the
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use of the appropriate value when calculating e. The experimental results are obtained

from the adequate analysis of the temporal series of the voltages u0 and u1, recorded

during 20 to 40 h in order to collect enough statistics.

3. Experimental results

3.1. Energy exchanges: effective temperature from the Fluctuation Theorem

In this first experimental section, we use the Fluctuation Theorem (FT) to estimate a

first effective temperature, as we previously did for a similar granular system [15].

Consider the mechanical power exchanged between the blade and the granular gas,

ẇ ≡ Γ θ̇. Noticing that ẇ = I e in terms of current I and voltage e (Sec. 2), we easily

get the temporal series of ẇ from the set of data {u0, u1} obtained experimentally.

The power ẇ, although positive on the average because of the dissipative nature of the

system, presents frequent negative fluctuations. We define the coarse-grained work rate

ẇτ (t) = 1
τ

∫ t+τ
t

e(t′)I(t′)dt′ (the average over the time τ) and denote P the probability

density function of this new variable. In our experimental conditions, the probability of

negative ẇτ remains non zero for all τ .
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Figure 3. (a) Probability density function P of the power ẇτ – The time τ is increased

from 10 s to 60 s by steps of 10 s, from black to light gray. The mean power exchanged

is here 〈ẇτ 〉 = 2.5 10−7 W. (b) Corresponding asymmetry function δ. The continuous

line shows the asymptotic slope at the origin (Acceleration a = 2.7 g).

For a more quantitive characterization of the asymmetry of the energy exchanges,

let us consider the asymmetry function δ(ẇτ ) ≡ 1
τ

log P (ẇτ )
P (−ẇτ )

. The Fluctuation Theorem

(FT), which accounts for the irreversibility of the exchanges for a chaotic system in

contact with an equibrium thermostat at temperature T through a relation for the rate

of entropy production ṡτ ≡ ẇτ/T , states that, in the limit of large τ :

P (ẇτ )

P (−ẇτ )
= eβτẇτ . (1)

In this framework, the well-defined exponent β = 1/kBT , where kB is the Boltzmann

constant (kB ' 1.38 10−23J K−1) and T is the temperature of the reservoir [13, 14]. In

Fig. 3b, we display δ(ẇτ ) for various τ . We observe that δ(ẇτ ) is almost proportional
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to ẇτ such that Eq. (1) is almost satisfied by our system. Letting aside the question

of the applicability of the FT when the reservoir is a NESS, we adjust the asymmetry

function δ(ẇτ ) to a line over the lower 3/4 of the whole range of ẇτ (statistically the most

relevant). We report in Fig. 4, the inverse of the slope 1/β against the time τ and observe

that 1/β reaches a plateau at large τ . We interpret the plateau value as the effective

temperature kTeff. of the granular gas, which plays the role of the thermostat in our

experimental configuration. Note that, the Boltzmann constant being irrelevant for our

macroscopic system, we consider here an energy scale kTeff. rather than a temperature.

This estimate of the effective temperature of the thermostat being obtained by the use

of the FT will be later denoted kTFT.
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Figure 4. Inverse of the slope 1/β vs. time τ . We consider the value of 1/β reached

at large τ (dashed line) as an estimate of the effective temperature kTeff. ' 1.15 10−6 J

of the granular gas which plays the role of the thermostat in our experimental

configuration (Acceleration a = 2.7 g).

3.2. Response to a perturbation: the Fluctuation-dissipation relation

The Fluctuation-Dissipation Theorem (FDT) has a seminal importance in statistical

mechanics, specifically in the framework of linear response theory. It is based on the

assumption that the response of a system, slightly driven off-equilibrium, relaxes in

the same way whether the cause is a spontaneous internal fluctuation or an external

perturbation. The FDT states that the two-point correlation function C(τ) = 〈θ(t +

τ)θ(t)〉t of any extensive variable θ is proportional to the response function R(τ) of

the variable θ to its conjugate intensive variable Γ. To a numerical constant, the

prefactor is nothing but the equilibrium temperature of the thermostat. The FDT

thus provides an absolute definition of the temperature under a twofold equilibrium

hypothesis: the system under consideration is in equilibrium with the thermostat, and

the thermostat itself is in equilibrium [12]. Note that, if the two conjugate variables

are both independently accessible to experiment, verifying the FDT gives an operational

way to measure temperature. Cugliandolo and Kurchan proposed in 1997 to extend this

approach to off-equilibrium systems, like slowly relaxing (quasi steady state) or driven
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(steady state) systems, in order to define a non-equilibrium effective temperature [20].

This method has been implemented experimentally in a variety of non-equilibrium

situations such as amorphous materials below the glass transition [21, 22], jammed

granular materials [23], systems close to a critical point [24], soft matter [25], turbulence

[26, 27] and, even, active matter [28].

Let us consider our experimental configuration where the system is an externally

driven rotator immersed in a granular gas. The two conjugate variables relevant for this

system are the torque Γ and the angle θ. We write the angle θ(t) as the response to the

torque Γ: θ(t) =
∫ t
−∞R(t− t′) Γ(t′) dt′. In the Fourier space, R̃ = θ̃/Γ̃ where .̃ denotes

Fourier transform. Introducing the power spectral density (PSD) S̃2
θ ≡ 〈| θ̃ |2〉, which

equals the Fourier transform of the correlation function C(τ) = 〈θ(t + τ)θ(t)〉t, we can

express the fluctuation dissipation relation in the form:

S̃2
θ

4 Im(R̃)
= kTeff.. (2)

The imaginary part of the response, Im(R̃), that appears in the denominator stands

for the dissipative part of the response. Eq. (2) would express the FDT, if it were

applying. However, in the present case, the product kBT of the Boltzmann constant kB,

and thermostat temperature T , which is to be considered for an equilibrium system,

is replaced by the effective temperature, kTeff.. We remark that, in our experimental

configuration, the observables are the torque Γ and the angular velocity θ̇ of the rotor,

not the angular position θ. The fluctuation-dissipation relation can be reformulated in

these variables by taking into account the response R̃′ = ˜̇θ/Γ̃, instead of R̃. To do

so, the imaginary part Im(R̃) of the response R̃, which accounts for the dissipation in

Eq. (2), is now represented by the real part Re(R̃′) of the response R̃′. In addition,

considering that the torque Γ and the angular velocity θ̇ are proportional to the current

I and voltage e, respectively, we write:

kTeff. =
S̃2
e

4Re(ẽ/Ĩ)
. (3)

Note that, thanks to the reversibility of the probe, the calibration factor α cancels

out. In other words, the measure of the granular temperature kTeff. does not require

any calibration of the probe. In what follows, we describe how the response and the

fluctuations are assessed in practice, separately but from the same data set, in order to

obtain an estimate of the effective temperature kTeff. by using Eq. (3).

3.2.1. Response function – The response function is obtained thanks to the imposed

current I(t) (Sec. 2). We remind here that the current I(t) follows a periodic pattern,

consisting of the sum of 15 sine functions of different frequencies fe, logarithmically

distributed over the range 0.1 ≤ fe ≤ 400 Hz (Fig. 2). The voltage e(t) exhibits

a response at each of the frequencies fe, such that we get estimates of the response

function, ẽ/Ĩ or equivalently of R̃′, in 15 points (Fig. 5).
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Figure 5. (a) Real Re(R̃′) and (b) imaginary Im(R̃′) parts of the response function

R̃′ vs. frequency f – Circles: values directly measured at the frequencies fe [Lines:

interpolation to Eq. (5). Acceleration a = 2.7 g].

The response is noisy and, in order to get a better estimate, we model our mechanical

system. We first assume that the dynamics of the rotator obeys:

J
dθ̇

dt
= −γ θ̇ + Γ(t) + η(t), (4)

where J is the moment of inertia of the {blade + rotor} ensemble. The blade experiences

a drag, assumed to be viscous, −γ θ̇, due to the combined effects of the interaction with

the granular gas and of the internal friction in the motor. The blade undergoes the

random forcing due to the collisions with the grains, η(t). In addition, the blade is

subjected to the torque Γ(t), associated with the imposed current I(t). This formulation

is directly inspired by the theory of Brownian motion, where the interaction between a

Brownian colloid and the surrounding molecules is represented by the sum of a viscous

drag and of a random forcing, in the same equation of motion.

In the Fourier space, from Eq. (4), we easily get the response function R̃′, whose

real and imaginary parts can be written in the form:

Re(R̃′) =
1/γ

1 + (ω/ωc)2
and Im(R̃′) =

ω/γωc
1 + (ω/ωc)2

, (5)

where ω = 2πf is the angular frequency and ωc = γ/J the inverse of the damping time.

The interpolation of the experimental data with Eq. (5), the sole adjustable parameter

being γ (J is known), leads to a reasonnable agreement, specifically for Re(R̃′) which

is the quantity of interest that appears in Eq. (3) (Fig. 5). In what follows, we will use

the values of Re(R̃′) given by this interpolation of the experimental data.

3.2.2. Power spectral density – In order to determine the effective temperature by

using Eq. (3), we need an estimate of the the power spectral density (PSD), associated

to the free fluctuations of the blade, in particular at the frequencies fe. However, at

these specific frequencies, the system is forced. Considering that the PSD is not altered

apart from the peaks, we interpolate the baseline of the power spectrum by a spline

function and estimate the values of the PSD at the fe by continuity (Fig. 6).
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Figure 6. Power spectral density PSD of the voltage e – The peaks correspond to

the response to the imposed current I at the frequencies fe (Blue: experimental data.

Red: interpolation to a spline function apart from the frequencies fe. Acceleration

a = 2.7 g).

3.2.3. Effective temperature – In the two previous sections, we have shown how to

characterize, on the one hand the response function R̃′ and, on the other hand the

power spectral density. We can thus now use Eq. (3), i.e. the fluctuation dissipation

relation, to attempt to determine the effective temperature of the granular thermostat.
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Figure 7. Ratio S̃2
e/[4Re(ẽ/Ĩ)] vs. frequency f – The plateau value provides an

estimate of the effective temperature of the thermostat kTeff. ' 10−6 J. [Squares:

experimental data obtained by using the values of the response function reported in

Fig. 5. Points: data obtained by using the interpolation to Eq. (5). Acceleration

a = 2.7 g].

In Fig. 7, we report the ratio S̃2
e/[4Re(ẽ/Ĩ)], thus supposedly kTeff., versus the

frequency f . We expect the quantity not to depend on f . Indeed, one can observe a

plateau at small f , although a drastic decrease at large f is observed. The decrease at

large f is due to the fact that the blade, because of its inertia, cannot fluctuate rapidly

(Eq. 5). Nevertheless, the plateau value can be regarded as an estimate of the effective
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temperature of the thermostat kTeff.. The latter, obtained by the use of the fluctuation

dissipation relation, will be denoted kTFDT.

4. Discussion

We obtained two independent effective temperatures of the granular gas which we

regarded as the thermostat in our study. First, we recalled and used a method based on

the fluctuation theorem (Sec. 3.1). Second, we implemented and used a method based on

the fluctuation dissipation theorem with the same set of data (Sec. 3.2). We remind that

these two methods are based on drastically different principles. It is thus of particular

interest to verify that the effective temperatures estimated from these two methods

actually coincide. In Fig. 8, we observe that values of the effective temperature measured

by one or the other method are equal to within 10 % on the average. We remark however

that estimated values of kTFT are systematically larger than those kTFDT . Even though

we do not have any explanation for this trend, considering that the difference remains

in the error bars and that the two methods are completely distinct, we conclude that

the two estimates of the temperature nicely coincide.
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Figure 8. kTFT vs. kTFDT – To within the experimental precision, the two estimates

of the effective temperature coincide in the whole experimental range.

Still inspired by the phenomenology of Brownian Motion, one expects the

temperature kTeff. to be linearly related to the kinetic energy of the rotator Ek = 1
2
J〈θ̇2〉.

A linear dependance has already been reported in [15]. This expectation is checked in

Fig. 9. We notice that the dashed line picturing the best linear fit, does not go through

zero and has a slope of about 2.5. The error bars, a few percents, are evaluated as

the remaining error in the fitting process for the method based on FT, and dominated

by the statistical uncertainties for the other method. On the one hand, we conjecture

that the value of kT 0
eff. corresponding to Ek = 0 is the temperature at which beads are

barely energetic enough to reach the blade. Besides, no evident interpretation can be

produced about the slope in such dissipative system. For a 1D-Brownian rotator in an
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equilibrium thermostat, one would expect a slope 2 from the equipartition of energy
1
2
kT = 1

2
J〈θ̇2〉. Note that we assess the fluctuations of the blade angular-position and,

thus strictly speaking, the temperature of the probe which does not necessarily equals

that of the granular gas (We specifically address this delicate issue, which goes beyond

the present study, in [16]). The discrepancy, attributed to dissipation, however preserves

the order of magnitude.
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Figure 9. kTFDT and kTFT vs. kinetic energy of the rotator.

At last, we must point out that both methods are not easy, experimentally. First,

they require enough statistics to approach the long time-limit. Second, the probing

power 〈ẇτ 〉 must remain small enough, on the one hand to favor negative events (FT),

on the other hand not to perturb significantly the granular gas (FT and FDT). But,

the experiments are worth as they prove that both methods lead to the same effective

temperature.

5. Conclusion

We presented in this article an experiment using a few hundreds of beads, maintained in

a gaseous steady state thanks to the external power supplied by a shaker. This granular

gas possesses a large number of degrees of freedom, which guaranties an efficient chaotic

loss of memory. It therefore mimics rather well a real gas, however dissipative (a NESS).

As a probe, a small rotator is immersed in the granular gas, secured on the shaft of a

vertically set micro-motor. Our experimental approach makes possible to measure the

response of the system to a perturbation (at all frequencies), and, what is shrewd, the

free fluctuations of the unperturbed system at the same time.

We made use of the experimental realization to estimate the effective temperature of the

system based on the Fluctuation-Dissipation Theorem (FDT) and to compare the latter

with another estimate obtained from an independent method, based on the Gallavotti-

Cohen Fluctuation Theorem (FT), using the same set of data. Both methods lead to the

same value of the effective temperature (to within the experimental accuracy). From the

theoretical viewpoint, the FDT can be derived from the FT, when the linear response is
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assumed. However, even if linearity is not assured in our experimental system, we can

consider, from now on, that the measurements of the granular effective temperature are

validated and, therefore, that the probe indeed constitutes a thermometer.

We note that in our macroscopic system, the fluctuations are very large compared to

the mean energy exchanged between the probe and the reservoir. This is due to the fact

that the number of degrees of freedom, although large, is far from the thermodynamic

limit. This feature, which would appear in micro- or nano-systems, makes convenient

these techniques based on measurements of fluctuations. Of course, as our system is

dissipative, the analogy is to be considered with caution. But defining a consistent

out-of-equilibrium temperature and showing operational procedures to measure it is

definitely a step forward.
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