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On a construction of multivariate distributions given some

multidimensional marginals.∗

Nabil Kazi-Tani † Didier Rullière ‡

01/03/2019

Abstract

In this paper, we investigate the link between the joint law of a d-dimensional random
vector and the law of some of its multivariate marginals. We introduce and focus on a class
of distributions, that we call projective, for which we give detailed properties. This allows
us to obtain necessary conditions for a given construction to be projective. We illustrate
our results by proposing some theoretical projective distributions, as elliptical distributions
or a new class of distribution having given bivariate margins. In the case where the data do
not necessarily correspond to a projective distribution, we also explain how to build proper
distributions while checking that the distance to the prescribed projections is small enough.
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1 Introduction

Multivariate analysis is now a cornerstone in probability theory. Constructing multivariate
distributions from given marginals is mathematically interesting on its own, but also has huge
impact in practical problems.

Let d ≥ 1 be an integer and let X1, . . . , Xd be continuous random variables with cumulative
distribution functions (CDFs) F1, . . . , Fd, respectively. Sklar’s theorem [36] states that the joint
distribution H of (X1, . . . , Xd) can be written, for all (x1, . . . , xd) ∈ Rd in the form

H(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) = C
(
F1(x1), . . . , Fd(xd)

)
,

where C is a copula function, i.e. the cumulative distribution function of a probability measure
on Rd whose marginals are uniform on [0, 1]. Copula models have shown their interest in
particular because, as it can be seen from the previous equation, they separate the study of the
margins and the study of the dependence structure.

In this paper, we want to investigate the link between the joint law of a d-dimensional random
vector and the law of its multivariate marginals. For any subset K = (j1, . . . , jk) of {1, . . . , d}
with cardinal k, and any random vector X = (X1, . . . , Xd), we will write XK the random vector
with values in Rk given by (Xj1 , . . . , Xjk) and FK the cumulative distribution function of XK .
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We will abuse notations and call FK a probability distribution on Rk. Let n ≤ 2d be a positive
integer and let K1, . . . ,Kn be n subsets of {1, . . . , d} with cardinals k1, . . . , kn.

A question that has been extensively studied in the literature is the following: given n
probability measures P1, . . . , Pn such that Pi is a probability measure on Rki , is it possible to
construct a probability measure F on Rd such that

FKi = Pi for each i = 1, . . . , n? (1.1)

The existence of such a measure F is not guaranteed. In the case where the subsets {Ki, i =
1, . . . , n} are disjoint, the product distribution guarantees its existence. One could also try to
extend the notion of Copula function to the case of non overlapping multidimensional marginals:
Genest & al. [15] showed that this approach is useless, since it only allows to model the product
distribution. More precisely, they proved that if

H(x1, . . . , xm, y1, . . . , yn) = C
(
F (x1, . . . , xm), G(y1, . . . , ym)

)
defines a proper (m+n)-dimensional distribution function (with m+n ≥ 3) for every F and G
with respective dimensions m and n, then C(u, v) = u · v.

When the subsets {Ki, i = 1, . . . , n} are not disjoint, an obvious necessary condition is that
the prescribed measures {Pi, i = 1, . . . , n} have the same marginals on common subspaces. But
this condition is not sufficient : Kellerer [24] gave a necessary and sufficient condition only
involving the structure of the sets {Ki, i = 1, . . . , n}. We refer to [21] (in particular, chapters
3 and 4, and section 3.4.3 to 3.7, for some compatibility conditions) and [8] and the references
therein for further details and related problems, in particular extremal distributions with fixed
multidimensional marginals and related optimization problems.

The question of uniqueness is also tricky. In [16], it is proved that if µ is a probability measure
on Rd with a density f with respect to the Lebesgue measure, then there exists a subset U of Rd
such that all the lower dimensional projections of the uniform distribution on U coincide with
the lower dimensional projections of µ. This shows, at least in the case where measures have a
density, that there is in general no hope for uniqueness of a measure with prescribed projections.

Possible explicit constructions of distribution functions F satisfying (1.1) have been given in
[6], [34], [35], [7], [18], [19], [20], [27], [25], [26], [10] for overlapping or non-overlapping marginals.

All these constructions are very useful, in particular in statistics. Indeed, when the dimension
d is large, one can first estimate all the bivariate marginals, since fitting a 2-dimensional copula
is doable, and then construct a valid d-dimensional vector having the prescribed 2-dimensional
margins. One problem of this approach is that it may not provide a unique d-dimensional
distribution, but as pointed out in [21], one can then use entropy maximization techniques
to choose a distribution among all those that have the prescribed marginals. By comparison,
directly fitting the right copula in large dimension is however quite difficult and often makes use
of recent research developments (nested, hierarchical or vine copulas, see [29], [4], [22], including
pair-copula constructions or copulas with prescribed bivariate projections [1], [2], [9]).

The previously mentioned constructions all make use of the joint CDF, or the joint den-
sity. There are however other functions characterizing the joint distribution, for instance the
characteristic function. We will call any such function a characterizing function. In this pa-
per, we assume that a characterizing function m is given, and that there is a linear explicit
decomposition of the characterizing function of the d-dimensional vector with respect to the
characterizing functions of certain of its multi-dimensional marginals (Definition 2.1). We will
say that a probability distribution satisfying Definition 2.1 is in a projective class. The main
result of the paper is a complete analysis of the coefficients appearing in a decomposition of a
projective class. Indeed, the distributions satisfying our Definition 2.1 are stable by projection,
in the sense that they are such that all their multidimensional marginals also satisfy the same
Definition 2.1. This allows us to give precise, and simple necessary conditions for a sequence of
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coefficients to generate a probability distribution on Rd having fixed multidimensional marginals
and belonging to a projective class. In particular, a necessary condition is that a matrix con-
taining these coefficients is idempotent (Proposition 2.3). Notice that the linear form of the
decomposition in a projective class is not as restrictive as one would initially imagine, since one
could first apply a bijective non linear transformation to a characterizing function, and then
obtain a linear relation in the form of (2.2). Said otherwise, given a family of probability dis-
tributions, if some linearity can be found in the expression of one of its characterizing function,
then our approach allows to exploit this linearity to construct multi-dimensional distributions.
The case of Elliptical random vectors illustrates well this last point.

In Section 2 we define the projective class that we are going to work with, and in Section 3
we give and analyse examples of elements of this class.

2 Projective class of random vectors

2.1 Definitions

Let D = {1, . . . , d}, t ∈ R̄d, and denote by P(D) the power set of D. Consider a random vector
X = (Xi)i∈D; for K ∈ P(D) a subset of D, we denote by XK = (Xi)i∈K the subector of X, and
by tK = (ti)i∈K the subvector of t.

We assume the existence of a link between the joint distribution of X and the joint distribu-
tions of its projections XK . In general this link could be derived from the characteristic function
of X, from its CDF, or from some other quantity. We thus define a function m for which the
link will be investigated.

We will denote by Xd the space of Rd-valued random variables that we will work with
(with k ≤ d). In the rest of the paper, the quantities involved (and our constructions) will
only depend on the distributions of the random variables, and not on the random variables
themselves. Because it has no impact on our results, we will nonetheless use random variables.

Assumption 2.1 (Projective characterizing function) We assume that there exists a func-
tion m : R̄d ×Xd × P(D)→ R such that for any non-empty K ∈ P(D):

1. {m(t,X,K)}t∈R̄d characterizes the joint distribution of XK , i.e. m(t,X,K) = m(t,Y,K)
for all t ∈ R̄d if and only if XK and YK have the same distribution.

2. there exists a ∈ R such that for all t ∈ R̄d, m(PKt,X,D) = m(t,X,K), where

(PKt)i :=

{
ti if i ∈ K
a if i /∈ K. (2.1)

In the rest of the paper, to simplify notations, we will denote m(t,X,K) by m(t,XK).

Remark 2.1 Assumption 2.1 2. implies that P∅t = (a, . . . , a) =: a ∈ R̄d, and that m(t,X, ∅) =
m(a,X, ∅) for all t. For simplicity, we will write this quantity m0 := m(a,X, ∅), or abuse
notation and write m(t,X∅) = m0.

Remark 2.2 Such a function m always exists. Typically, m can be given by m(t,XK) =

E
[
eit
>
KXK

]
, with a = 0 and m0 = 1. Another example is m(t,XK) = FK(tK), the CDF of XK ,

with a = +∞ and m0 = 1. A third example is m(t,XK) = φ−1 ◦ FK(tK) where φ : R+ → [0, 1]
is an invertible Archimedean generator, with a = +∞ and m0 = 0. Direct transformations of
these functions, as entropy or survival functions, are also suitable characterizing functions.
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Remark 2.3 Assumption 2.1 2. says that to study the marginal distribution of X on the subset
K, it is enough to study the distribution of X, with the characterizing function m restricted to
PKt. However, notice that not every function characterizing the distribution of random variables
satisfies this Assumption. Let us give the example of the potential function ([3]). Define the
potential kernel v on Rd as follows:

v(x) = − |x| , d = 1, v(x) = − log |x| , d = 2, v(x) = |x|−d+2
, d ≥ 3.

Then the potential UX of a random vector X on Rd is defined by

UX(t) = E [v(X − t)]

when the expectation exists. We have that UX = UY if and only if X and Y have the same
distribution, but the potential function does not satisfy Assumption 2.1 2.

We aim at defining the whole distribution of X, using only some of its projections, i.e. using
only the laws of XK for K ∈ S, where S is a given subset of P(D). For example, S can gather
some subsets of cardinal 3, their subsets, and some singletons, or S can gather only subsets
of cardinal 1, as in copula theory. We assume that S is decreasing, in the sense that for all
K ⊂ J , J ∈ S implies K ∈ S: knowing the distribution of a projection easily allows to know
the distribution of every sub-vector. In the algebraic topology terminology, S is a simplicial
complex [37]. Simplicial complexes can be represented using points, line segments, triangles,
and simplices in higher dimensions, which may ease the understanding of the projections and
the model (see Figure 1 for an illustration).

1

2

3

4

5 6

7

Figure 1: Illustration of a multivariate distribution in the dimension 7, knowing the marginal
distribution {3}, the bivariate projection {4, 7}, and the trivariate projections {1, 2, 7} and
{4, 5, 6}. All subsets of these projections also correspond to known marginal distributions.

Definition 2.1 (Projective class) Let S ∈ P(D) be decreasing. For a given characterizing
function m, we say that a random vector X ∈ Rd belongs to the projective class FD(S) if there
exist some real coefficients αK,D, K ⊂ D, such that for all t ∈ R̄d,

m(t,X) =
∑
K∈S

αK,Dm(t,XK) , (2.2)

Remark that if a random vector X belongs the projective class FD(S), then the set of suit-
able coefficients {αK,D,K ⊂ D} satisfying Equation (2.2) is not necessarily unique. Notice also
that if D ∈ S, any d-dimensional random vector is in FD(S), using for example constant coeffi-
cients αK,D equal to 1 if K = D and equal to 0 otherwise. This is quite natural, since the class
FD(S) intends to define multivariate distributions that can be fully determined by some of their
projections. This is obviously the case when the initial joint distribution is already in S.
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The projective class explicitly depends on the set S of given projections. It also depends
implicitly on the choice of the characterizing function m, but for the sake of simplicity, it will
not be indexed by m. A distribution (e.g. a centered Gaussian distribution) can be projective
for a characterizing function m1 (e.g. the logarithm of the characteristic function), but not for
a characterizing function m2 (e.g. the cumulative distribution function). At last, notice that
a priori, the coefficients αK,D may also depend on the choice of the characterizing function m,
but for the sake of simplicity they will not be indexed by m. We will show however that under
some simple conditions, one can find coefficients that do not depend on of the choice of m (see
further Remark 2.6).

It is not trivial to assess the compatibility conditions between arbitrary characterizing func-
tions of the projections: given arbitrary m(t,XK) in Equation (2.2), determining if the result-
ing m(t,X) corresponds indeed to a characterizing function is hard. As an example, if m is
a characteristic function, the verification may rely on known criteria as Bochner’s theorem or
multivariate extensions of Pólya’s theorem. If m is a transformation of a cumulative distribution
function, the verification may rely on differentiation of this function using chain rule differen-
tiation and multivariate extensions of Faa Di Bruno’s formula. For known projective families
(see Section 3), the compatibility is ensured, but in practice (see Section 4) it may rely on some
numerical verifications. As in Section 1, we refer to [24, 21, 8] for supplementary material on
the question of projections compatibility.

2.2 Properties

In this subsection, we discuss several properties of projective distributions regarding unique-
ness, stability, and statistical inference. In particular, we provide explicit expressions for the
coefficients appearing in Definition 2.1, in the case of fixed projections up to a given dimension.

Assuming that a distribution is projective, we give here a necessary and sufficient condition
ensuring the uniqueness of the coefficients {αK,D}K∈S , which further implies that the distri-
bution characterized by Equation 2.2 is unique. The condition relies on the given projections
m(t,XK), K ∈ S.

Proposition 2.1 (Condition on the projections for uniqueness) Define S := S if m0 6=
0, and S := S \ {∅} if m0 = 0. Consider a finite set of points T ⊂ R̄d, and denote the matrix
MS(T ) := (m(t,XK))t∈T ,K∈S. Assume that the distribution of X is projective, and denote the
vector of coefficients α := (αK,D)K∈S, then the following results hold:

(i) If there exists a set T with |T | = |S| such that the matrix MS(T ) is invertible, then α is
unique.

(ii) If α is unique, then for every set T of distinct points with |T | = |S|, the matrix MS(T )
is invertible.

(iii) In particular when S = {K ⊂ D, |K| ≤ 2} and m0 = 0, α is unique if there exists t ∈ R̄d
such that for all K ∈ S, m∗K(t) = m(t,XK)−

∑
J⊂K,J 6=K m(t,XJ) > 0.

Remark 2.4 The combination of items (i) and (ii) above implies the following necessary and
sufficient condition for uniqueness: α is unique if and only if there exists a set T with |T | = |S|
such that the matrix MS(T ) is invertible.

Proof. It is clear that if m0 = 0, then α∅,Dm(t,X∅) = 0 whatever the value of α∅,D. Multiplied
by zero, this coefficient has no impact, we thus exclude it from the analysis by setting S = S\{∅}
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in the case when m0 = 0. Let us show the item (i). Write the vector mX(T ) = (m(t, X))t∈T .
The main linear equality of Equation (2.2) writes:

mX(T ) = MS(T ) ·α (2.3)

so that when MS(T ) is invertible, α = [MS(T )]
−1

mX(T ) is uniquely determined.

To prove item (ii), consider a set T of distinct points with |T | = |S|. Again, equation (2.2)
can be written as (2.3). This linear system of |S| equations admits either no solution, which is
excluded by the assumption that the distribution of X is projective, either an infinite number
of solutions, which is excluded by the assumption that α is unique, or a unique solution, which
is the only possible case. This implies, by the Rouché-Capelli theorem, that the rank of the
matrix MS(T ) is equal to |S|, or equivalently that this matrix is invertible.

For the last part of the proposition, item (iii), write S = {K1, . . . ,Ks}, set t ∈ R̄d and set
T = {tK ,K ∈ S}. Write P the matrix with components Pij = 1 if Ki ⊂ Kj or 0 otherwise.
One can check that the component i, j of the matrix MS(T ) writes:

(MS(T ))ij = m(tKi ,XKj ) = m(t,XKi∩Kj ) (2.4)

For any set L, K = L if and only if K is a subset of L but not a strict subset of L, thus

(MS(T ))ij =
∑

K∈S,K⊂Ki∩Kj

m(t,XK)−
∑

K∈S,K$Ki∩Kj

m(t,XK) . (2.5)

By assumption, for all K ∈ S, |K| ≤ 2. The following equality holds for |L| = 1, since both
the left and right hand terms are equal to 0 in this case. The equality also holds for |L| = 2,
because in the right hand side, K ∈ S, J ⊂ K,J 6= K implies |J | = 1 and |K| = 2, and K ⊂ L
with |K| = |L| = 2 implies K = L:∑

K∈S,K$L

m(t,XK) =
∑

K∈S,K⊂L

∑
J⊂K,J 6=K

m(t,XJ) . (2.6)

Finally, for h ∈ {1, . . . , s}, as Kh ⊂ Ki ∩Kj if and only if PhiPhj = 1,

(MS(T ))ij =
∑

Kh∈S,Kh⊂Ki∩Kj

m∗Kh(t) =
∑
Kh∈S

Phi ·m∗Kh(t) · Phj (2.7)

so that MS(T ) = P>DP , where D is the diagonal matrix with diagonal {m∗K(t),K ∈ S}. When
S = {K ⊂ D, |K| ≤ 2}, up to a rearrangement, P is an upper triangular matrix with ones on
its diagonal. Thus det(P ) = 1 and finally det(MS(T )) = det(D). Under the assumption of (iii),
det(D) > 0 and the result holds. �

In the next Proposition, we prove the following projection stability property: if a random
vector belongs to the class FD(S), then any subvector also belong to FD(S), and we compute
the corresponding coefficients.

Proposition 2.2 (Projection stability) Let X be a d-dimensional random vector in FD(S),
with associated coefficients {αK,D, K ∈ S}. Then for any non-empty L ⊂ D, the subvector XL

belongs to FL(S), where for any non-empty subset J of L, a suitable set of associated coefficients
is given by

αJ,L =
∑

K∈S, K∩L=J

αK,D, (2.8)

which implies in particular that αJ,L = 0 if J 6⊂ L.
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Let d0 be an integer such that 1 ≤ d0 ≤ d. When S = {K ⊂ D, |K| ≤ d0}, and when the
coefficients {αJ,L, J ⊂ L} only depend on the subsets cardinals, i.e. αJ,L = αj,` with j = |J | ∈
{1, . . . , d} and ` = |L| ∈ {0, . . . , d}, then a suitable set of associated coefficients is given by

αj,` =

min(d0,d−`+j)∑
k=j

(
d− `
k − j

)
αk,d if j ≤ min(`, d0), (2.9)

and αj,` = 0 otherwise.

Proof. First remark that, due to the second assumption on m(t,X), we have m(t,XK∩L) =
m(PK∩Lt,X) = m(PKPLt,X) = m(PLt,XK). Thus, using (2.2), we have

m(t,XL) = m(PLt,X) =
∑
K∈S

αK,Dm(PLt,XK) =
∑
K∈S

αK,Dm(t,XK∩L)

=
∑
J⊂L

∑
K∈S, K∩L=J

αK,Dm(t,XJ) .

By assumption, K ∈ S implies that J = K ∩ L ∈ S. Setting αJ,L =
∑
K∈S, K∩L=J αK,D as in

Equation (2.8) we finally get

m(t,XL) =
∑

J⊂L,J∈S
αJ,Lm(t,XJ) , (2.10)

hence XL belongs to FL(S).
Eventually remark that K ∩ L = J if and only if J ⊂ L and J ⊂ K and K ∩ L ⊂ J . As a
consequence, if J 6⊂ L, the sum in (2.8) is empty and αJ,L = 0.

We prove now the second part of the Proposition. When S = {K ⊂ D, |K| ≤ d0}, we have
using (2.8)

αJ,L =
∑

K′⊂D\L,|K′|≤d0−|J|

αK′∪J,D.

Now, let j = |J | and ` = |L|. If j > `, it is clear that J 6⊂ L and that αJ,L = 0. As K ′ ⊂ D \ L
and |K ′| ≤ d0 − |J |, we get 0 ≤ |K ′| ≤ min(d0 − j, d− `). Thus when J ⊂ L,

αJ,L =

min(d0−j,d−`)∑
k=0

∑
K′⊂D\L,|K′|=k

αK′∪J,D (2.11)

and if the coefficients αJ,L do only depend on the cardinals,

αj,` =

min(d0−j,d−`)∑
k=0

∑
K′⊂D\L,|K′|=k

αk+j,d =

min(d0−j,d−`)∑
k=0

(
d− `
k

)
αk+j,d . (2.12)

Hence the second result. �

Remark 2.5 (case of ∅) Notice that ∅ necessarily belongs to S. In the case where m(t,X∅) 6=
0, Equation (2.2) may involve a constant α∅,D, and implies that

∑
K⊂D,K∈S αK,D = 1. In this

case, it becomes useful to determine the coefficients α∅,L. For any non-empty L, the Equa-
tion (2.8) writes

α∅,L =
∑

K⊂D\L,K∈S

αK,D . (2.13)

When L = ∅, the Equation (2.2) remains valid for D = ∅ if one defines α∅,∅ = 1.
As previously noticed, the coefficients αK,D and α∅,L may depend on the choice of the character-
izing function m. However, one can check that using m̃(t,X) = cm(t,X) for a positive constant
c leads to m̃(t,X∅) = cm(t,X∅) and to unchanged coefficients α̃K,D = αK,D.
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Corollary 2.1 (Given projections up to dimension d0) Let X be a d-dimensional random
vector in FD(S). Assume that all projections of X are given up to a dimension d0, so that
S = {K ⊂ D, |K| ≤ d0}. Assume that the associated coefficients {αJ,L, J ⊂ L} only depend
on the subsets cardinals, i.e. αJ,L = αj,` with j = |J | ∈ {1, . . . , d} and ` = |L| ∈ {0, . . . , d}.
Assume furthermore that αk,k = 1 for all k ≤ d0. Then the coefficients αd0−z,d can be obtained
recursively, using

αd0−z,d = 1−
z∑
i=1

(
d− d0 + z

i

)
αi+d0−z,d , (2.14)

for z = 1, . . . , d0, starting with αd0,d = 1. In particular for 2 ≤ d0 ≤ d, we get αd0,d = 1,
αd0−1,d = −(d− d0), αd0−2,d = 1 + d−d0+2

2 (d− d0 − 1).

When d0 ≥ 3, αd0−3,d = 1− (d− d0 + 3){1− d−d0+2
2

(
1− d−d0+1

3

)
}. For higher orders, one

can check by induction that these coefficients do only depend on d − d0, but their expression is
omitted here.

Proof. Under the assumption αk,k = 1 for all k ≤ d0, this follows directly from Proposition 2.2,
by writing Equation (2.9) in the case where j = ` ≤ d0, and setting i = k − j, j = d0 − z: we
get αd0,d = 1 when z = 0, and Equation (2.14) when z ≥ 1. �

Remark 2.6 (Explicit coefficients) The fact that αk,k = 1 for all k ≤ d0 means that if we
are given a k-dimensional marginal, we do not try to retrieve it from the given lower dimen-
sional marginals. Under this assumption, and under the assumption that the coefficients in the
projective decomposition only depend on the subsets cardinals, the previous Corollary provides a
set of suitable coefficients {αj,`} which are explicitly given, independently of the choice of m.

The case where all bivariate projections are given is a very natural and interesting case: in
practical applications, bivariate projections can be graphically visualized, and the estimation of
the dependence structure among each pair of random variable is still tractable. The following
Remark shows that in this case, under some simple conditions, the coefficients αJ,L can be
computed explicitly.

Remark 2.7 (Given bivariate projections) Consider the same assumptions as in Corol-
lary 2.1 and assume that all bivariate projections of a multivariate distribution are given, so
that d0 = 2 and S = {J ⊂ D, |J | ≤ 2}. Then for all non-empty L ⊂ D, we can reformulate
equation (2.2) as follows:

m(t,XL) = α0,|L|m0 − (|L| − 2)
∑

J⊂L,|J|=1

m(t,XJ) +
∑

J⊂L,|J|=2

m(t,XJ) , (2.15)

where α0,0 = 1, α0,` = 1 + 1
2`(`− 3), ` ≥ 1 and where m0 = m(t,X∅) is defined in Remark 2.1.

Let X ∈ Rd be a random vector in FD(S). Since D = {1, . . . , d} is a finite set, the set of
subsets of D is also finite, and we can define the following matrix, indexed by the subsets of D:

A = (αJ,L)J⊂D,L⊂D. (2.16)

We will write A.,L for the column vector relative to the subset L.

Proposition 2.3 The coefficients in the matrix A satisfy the following constraints:

1. If the set of associated coefficients {αJ,L} is unique, then the matrix A defined in (2.16)
is idempotent: A2 = A.
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2. If furthermore the coefficients do only depend on the subset’s cardinal, i.e. αJ,L = αj,`
with j = |J | and ` = |L|, we get for 0 ≤ j ≤ ` ≤ d :

αj,` =

min(d0,`)∑
k=j

(
`− j
k − j

)
αj,kαk,` . (2.17)

Now define sj,` :=
(
`−2
j−2

)
αj,` when j ≥ 2. The previous equation writes, when j ≥ 2,

sj,` =

min(d0,`)∑
k=j

sj,ksk,` . (2.18)

Proof. Let L ⊂ D, |L| ≥ 1. From Proposition 2.2,

m(t,XL) =
∑

K⊂L,K∈S
αK,Lm(t,XK)

From Proposition 2.2, we also have m(t,XK) =
∑
J⊂K,J∈S αJ,Km(t,XJ), so that finally

m(t,XL) =
∑

K⊂L,K∈S

∑
J⊂K,J∈S

αJ,KαK,Lm(t,XJ)

=
∑

J⊂L,J∈S

∑
K⊂L,K∈S

αJ,KαK,Lm(t,XJ) ,

as αJ,K = 0 if J 6⊂ K. Then for all t,

m(t,XL) =
∑

J⊂L,J∈S

 ∑
K⊂L,K∈S

αJ,KαK,L

m(t,XJ)

so that, using the uniqueness of the set of coefficients {αJ,L},

αJ,L =
∑

K⊂L,K∈S
αJ,KαK,L

and thus A is idempotent.

Let us now focus on the second part of the proposition. For a subset L ⊂ D with cardinal `
and k ≤ `, define [L]k := {K ⊂ L such that |K| = k}. Assume that when K ⊂ L the coefficients
αK,L do only depend on the cardinals k = |K| and ` = |L| of the considered sets, and assume
αK,L = 0 if K /∈ S, i.e. αk,` = 0 if k > d0. Then

m(t,XL) =
∑
K⊂L

αK,Lm(t,XK)

=

min(d0,`)∑
k=0

αk,`
∑

K∈[L]k

m(t,XK)

=

min(d0,`)∑
k=0

αk,`
∑

K∈[L]k


min(d0,k)∑
j=0

αj,k
∑

J∈[K]j

m(t,XJ)


Notice that, by a simple combinatorial argument, for j ≤ k,∑

K∈[L]k

∑
J∈[K]j

m(t,XJ) =

(
`− j
k − j

) ∑
J∈[L]j

m(t,XJ) ,

9



which entails that

m(t,XL) =

min(d0,`)∑
k=0

min(d0,k)∑
j=0

αk,`αj,k

(
`− j
k − j

) ∑
J∈[L]j

m(t,XJ) .

On the other hand we have

m(t,XL) =

min(d0,`)∑
j=0

αj,`
∑
J∈[L]j

m(t,XJ)

so that for all t, for all j ≤ k,

αj,` =

min(d0,`)∑
k=j

(
`− j
k − j

)
αj,kαk,`

and the second result holds. �

Remark 2.8 Notice that due to the projection stability property of Proposition 2.2, any column
of the matrix A can be deduced from the last one by multiplication by a matrix with values in
{0, 1}: A.,L = P (L)A.,D, where the 2d × 2d matrix P (L) is defined by its components

P
(L)
J,K =

{
1 if J = K ∩ L and K ∈ S
0 otherwise.

,

for J,K,L subsets of D. Indeed, we have from Proposition 2.2:

αJ,L =
∑

K∈S,K∩L=J

αK,D =
∑
K∈S

P
(L)
J,KαK,D. (2.19)

Let us finish this Section with a useful property of our construction for statistical inference.
Assume that we have at our disposal an i.i.d. sequence (X1, . . . ,Xn), where for each i, Xi ∈ Rd.
The following Proposition highlights the fact that if we have estimators with good properties
for the distribution of subvectors XK , then these properties are maintained for the estimator of
the distribution of the whole vector X.

As in Definition 2.1, let S ∈ P(D) be decreasing. For any K in S, assume that we can
construct an estimator m̂n(t, XK) of m(t, XK) using the sample (X1, . . . ,Xn), for t ∈ Rd.
Following the expression (2.2), a natural expression for an estimator m̂n(t,X) of the distribution
of the whole vector X is given by

m̂n(t,X) =
∑
K∈S

αK,D m̂n(t,XK). (2.20)

Proposition 2.4 (Unbiasedness and Consistency) The natural estimator given by (2.20)
preserves unbiasedness and consistency:

1. If for each K, m̂n(t,XK) is unbiased, then m̂n(t,X) is also unbiased.

2. If for each K, m̂n(t,XK) is consistent, then m̂n(t,X) is also consistent.

Proof. Property 1. above is obvious, by the linearity of (2.1) and the linearity of expectation.
To prove the second statement, first suppose that for each K, m̂n(t,XK) converges in prob-

ability to m(t,XK) as n goes to infinity. By Slutsky’s theorem, the vector (m̂n(t,XK))K∈S
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converges in probability to (m(t,XK))K∈S , and by the continuous mapping theorem, any linear
combination of elements of (m̂n(t,XK))K∈S converges in probability to the same linear com-
bination of elements of (m(t,XK))K∈S , which is the desired result. Notice that we are able to
use Slutsky’s theorem, which is a statement about convergence in distribution, because all the
limits are towards real constant values. 2

Remark 2.9 If a central limit theorem (CLT) is available for each m̂n(t,XK), then further
work is needed to obtain a CLT for m̂n(t,X) defined in (2.20). Indeed for K1,K2 ∈ S, K1 ∩K2

is not necessarily empty, which implies that the elements in the linear combination (2.20) are
dependent. A CLT for m̂n(t,X) is thus determined by the strength of this dependence.

3 Examples

3.1 Elliptical random vectors

Recall [21] that d-dimensional elliptical distributions are characterized by the fact that their
characteristic function can be written in the following form: for any t ∈ Rd,

E
[
eit
>(X−µ)

]
= φ

(
t>Σt

)
(3.1)

for a given function φ : R+ → R which is called the generator of the distribution, and where µ
is the mean of the vector X and Σ is a non-negative definite matrix. We assume here that the
generator φ does not depend on the dimension d of the random vector, i.e. that the elliptical
distribution is consistent in the sense of [23].

One interesting feature of families of elliptical distributions is that they allow heavy tails,
while preserving some advantageous properties of multivariate Gaussian distributions. Indeed,
an elliptical distribution has a stochastic representation as a product of two independent ran-
dom elements: a univariate radial distribution and a uniform distribution on an ellipsoid (see
Chapter 2 in [12]). This representation makes possible the analysis of the density functions, the
moments, the conditional distributions, the symmetries, and the infinite-divisibility properties
of elliptical distributions ([13]). Other than multivariate Gaussians, elliptical distributions in-
clude the Student t-distributions, the symmetric generalized hyperbolic distribution, the power
exponential distributions and the sub-Gaussian α-stable distributions among others. Families
of elliptical distributions are widely applied in statistics, in particular in the area of robust
statistics, as a starting point for the development of the M -estimates of multivariate location
and scale (see Chapter 2 in [28]). It is also a rather standard family of distributions in financial
modelling: see [14] and the references therein. Thus, constructing a distribution with given
multivariate elliptical marginals is a useful and interesting problem, this is what we do in this
subsection.

Let us first remark that, for a given generator φ, when one considers a centered multivariate
elliptical distribution, the distribution is fully characterized by all components σij of the matrix
Σ, that is to say by all bivariate elliptical projections of the distribution (it does not mean that
the multivariate elliptical distribution is the only one having those projections).

It is thus quite natural to analyse, in the case of elliptical distributions, the links between the
matrix Σ and a given set of submatrices ΣK1

, . . .ΣKn , for K1, . . . ,Kn subsets of D = {1, . . . , d}.
This is easier to do using the matrix Σ rather than its inverse Σ−1. It thus seems easier to work
with characteristic functions or entropy (which are expressed using Σ) rather than densities or
cumulative distribution functions (which are expressed using Σ−1).

We will try to express the quantity t>Σt as a linear combination of products t>KΣKtK ,
where K belongs to known projections indexes in S.
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Definition 3.1 (S-admissible sequence) Let D ⊂ N, and S be a decreasing subset of D.
A sequence of coefficients αK,D, K ∈ S, is said to be S-admissible if for all matrix Σ, for all t,

t>Σt =
∑

K⊂D,K∈S
αK,D · t>KΣKtK , (3.2)

where ΣK is the submatrix of Σ with indices in K.

The following Lemma provides a characterization of such coefficients:

Lemma 3.1 (Characterization of S-admissible sequence) Let d0 ∈ N be such that 2 ≤
d0 ≤ d, and assume that S = {K ⊂ D, |K| ≤ d0}. Assume furthermore that for any sets K,D,
αK,D = α|K|,|D|. A sequence αd = (αk,d)k≤d of coefficients is S-admissible if and only if it can
be written

α1,d = −
d0∑
k=2

sk
d− k
k − 1

and αk,d = sk/

(
d− 2

k − 2

)
, k = 2, . . . , d0 (3.3)

for some real values s2, . . . , sd0 such that s2 + . . .+ sd0 = 1.
In the particular case where the coefficients are deduced from only two given dimensions, i.e.
if there exists k0 ≥ 2 such that si = 0 whenever i /∈ {1, k0}, we get a particular S-admissible
sequence

α1,d = −d− k0

k0 − 1
and (3.4)

αk,d =
1(
d−2
k0−2

) , if k = k0 and αk,d = 0 otherwise, k = 2, . . . , d0. (3.5)

Furthermore, when d0 = 2, the only S-admissible sequence is

α1,d = −(d− 2) and α2,d = 1 (3.6)

Proof. Assume that αd is S-admissible, and that αK,D does only depend on |K| and |D|. Let
(i0, j0) ∈ D2, i0 6= j0. Isolating the coefficient ti0Σi0,j0tj0 on both sides of Equation (3.2), we
get

1 =

d0∑
k=2

|{K : K ⊂ D, |K| = k, {i0, j0} ⊂ K}|αk,d =

d0∑
k=2

(
d− 2

k − 2

)
αk,d

Denoting sk = αk,d
(
d−2
k−2

)
for all k, we get

∑d0
k=2 sk = 1. Now considering the coefficient

ti0Σi0,i0ti0 on both sides of Equation (3.2), we get

1 =

d0∑
k=1

αk,d |{K : K ⊂ D, |K| = k, i0 ∈ K}| = α1,d +

d0∑
k=2

(
d− 1

k − 1

)
αk,d

Now as sk = αk,d
(
d−2
k−2

)
for all k,

1 = α1,d +

d0∑
k=2

sk

(
d−1
k−1

)(
d−2
k−2

) = α1,d +

d0∑
k=2

sk
d− 1

k − 1

Finally, using 1 =
∑d0
k=2 sk, Equation (3.3) holds. The rest of the proposition are direct appli-

cations of this last equation. �
A direct application of such S-admissible sequence is given in the following Proposition. As

a consequence, the further defined distance to admissibility (see subsection 4.1) is always 0 for
elliptical distributions.
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Proposition 3.1 (Elliptical distributions are projective) Consider a d-dimensional ran-
dom vector X having elliptical distribution with mean µ, matrix Σ and invertible generator φ.
Let D = {1, . . . , d} and [D]k = {K ⊂ D, |K| = k}. Consider that all projections are given up
to a dimension d0, 2 ≤ d0 ≤ d, so that S = {K ⊂ D, |K| ≤ d0}. Then for any S-admissible
sequence αd = (α1,d, . . . , αd0,d), the following equality holds

φ(t>Σt) = φ

 d0∑
k=1

αk,d
∑

K∈[D]k

t>KΣKtK

 , (3.7)

where ΣK is the submatrix of Σ with indices in K. In other words, setting m(t,X) = φ−1
(

E
[
eit
>(X−µ)

])
,

and S = {K ⊂ D, |K| ≤ 2}, we have
X ∈ FD(S) (3.8)

In particular, when d0 = 2 (i.e. starting from all bivariate projections), the admissible sequence
is α1,d = −(d− 2) and α2,d = 1.

Proof. By definition, for any S-admissible sequence, t>Σt =
∑d0
k=1 αk,d

∑
K∈[D]k t>KΣKtK .

One can also check that the functions m are suitable characterizing functions satisfying As-
sumption 2.1 with a = 0 and m0 = φ−1(1) = 0. Hence the result. �

Remark 3.1 (Matrix A in the elliptical case, d0 = 2) Consider the elliptical case with
d0 = 2. Then we get by Lemma 3.1,

αJ,L =

 0 if J 6⊂ L ,
−(|L| − 2) if |J | = 1 and J ⊂ L ,
1 if |J | = 2 and J ⊂ L .

In particular, if d = 3 and D = {1, 2, 3}, the matrix A = (αJ,L)J⊂D,L⊂D is

A =



1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0


, (3.9)

where the seven raws and columns correspond to successive subsets of D:

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

As m0 = 0 in the elliptical case, it is not necessary to compute the coefficients αJ,L for J = ∅
or L = ∅ (see Remark 2.5). One easily check that we can apply Proposition 2.3 to deduce that
A is idempotent, which can also be verified by hand in this example.

Consider a centered elliptical random vector with zero mean and covariance matrix Σ. As
seen before, its distribution is thus projective, so that for all t ∈ Rd,

t>Σt =
∑

K⊂D,K∈S
αK,D · t>KΣKtK , (3.10)

Let us denote by DK the d× d diagonal matrix having ones only at indices in K. We can write

t>Σt = t>

 ∑
K⊂D,K∈S

αK,D(DK)>ΣDK

 t (3.11)
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so that this holds for all t if and only if

Σ =
∑

K⊂D,K∈S
αK,DExtD (ΣK) , (3.12)

where ExtD (ΣK) is the extension of the matrix ΣK to the dimension d × d, i.e. the matrix
having components (ΣK)ij for all i, j ∈ K and 0 when i 6∈ K or j 6∈ K. Now assume that for

all K ∈ S, one has a given estimator Σ̂K of the covariance matrix of XK . From the previous
equation, a natural estimator of the full covariance matrix Σ is defined as

Σ̂ :=
∑

K⊂D,K∈S
αK,DExtD

(
Σ̂K

)
. (3.13)

Now assume that classical estimators Σ̂K are also available for any K ⊂ D, then we get the
following result: if for all K ∈ S, Σ̂K is the submatrix of Σ̂D for indices in K, then

Σ̂ = Σ̂D. (3.14)

This can be checked using Equation (3.10), when choosing t the vector having 0 everywhere
except for two given components i and j.

In particular, consider for example a centered Gaussian random vector, if Σ̂K are Maximum
Likelihood Estimators, K ⊂ D, it is well known that they are directly proportional to the sample
covariance matrix, so that all Σ̂K are submatrices of Σ̂D, and thus Σ̂ = Σ̂D. This also holds
for many shrinkage estimators. On the contrary, when Σ̂K are built by inverting an estimated
precision matrix, Σ̂D and Σ̂ may differ. The study of all possible estimators of Σ is however out
of the scope of the present paper.
When the generator φ is unknown, another interesting perspective is to use the underlying
linearity of the projective class in order to build a non parametric estimator of φ.

3.2 Vectors built from bivariate distributions

Assume that a family (µi,j)(i,j)∈D2 of probability measures on R2 is given, for some non-negative
parameters θi, θj and θi,j specific to each couple (i, j) ∈ D2, and that each µi,j satisfies:

µi,j((t,+∞), (u,+∞)) := ψ(θit+ θju+ θi,jtu), (t, u) ∈ R2
+, (3.15)

where ψ is a given appropriate function.

Thanks to our previous results, we can construct a random variable X, with values in Rd+,
such that the survival function of each subvector (Xi, Xj) is given by the right hand side of
equation (3.15).

Let us first analyze the copula function associated to (Xi, Xj). To do so, assume that
ψ is a decreasing bijection from R+ to (0, 1], such that ψ(0) = 1 and that derivatives of ψ
exist up to the order d. Denote by ψ−1 the inverse function of ψ. Let t = (ti, tj) ∈ R2

+ and
Sij(t) = ψ(θiti + θjtj + θijtitj). The one-dimensional survival functions are then given by
Si(t) = ψ(θiti), from which we get θiti = ψ−1(Si(t)), so that finally

Sij(t) = ψ

(
ψ−1(Si(t)) + ψ−1(Sj(t)) +

θij
θiθj

ψ−1(Si(t))ψ
−1(Sj(t))

)
.

Therefore we can write
Sij(t) = CSij (Si(t), Sj(t)),

where the survival copula CSij is given by

CSij (u, v) = ψ

(
ψ−1(u) + ψ−1(v) +

θij
θiθj

ψ−1(u)ψ−1(v)

)
, (u, v) ∈ [0, 1]2. (3.16)
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Example 3.1 Examples of survival functions in the form of Equation(3.15), or Equation (3.18)
in the d-dimensional case, include the following particular cases:

1. If ψ(x) = exp(−x), then (3.16) reduces to

CSij (ui, uj) = uiuj exp

(
− θij
θiθj

lnui lnuj

)
,

which is the survival copula associated with Gumbel’s bivariate exponential distribution
(see [31], copula (4.2.9)).

2. In the case where θi,j = 0 for every (i, j) ∈ D2 and if the generator ψ is d-monotone (see
Definition 3.2), we obtain a survival copula which is Archimedean with generator ψ. It is
clear that in this specific case, the multivariate distribution in higher dimension will still
have an Archimedean survival copula with the same generator, as it will appear further in
Equation (3.18).

3. In the case where θi,j = 0 for every (i, j) ∈ D2 and all the coefficients θi are equal,
we obtain the class of Schur constant vectors, studied for example in [32]. In that case
the function ψ correspond to the generator of the Schur constant vector, which has an
Archimedean survival copula in the bivariate case, whose generator is given by ψ−1.

Let us now explicitly construct a distribution on Rd+, with the given bivariate marginals.
Given the form (3.15) of these marginals, we choose the following characterizing function:

m(t,X) = ψ−1 (P(Xi > ti, i ∈ D)) . (3.17)

With the assumptions we made for ψ, it is clear that the function m satisfies Assumption 2.1,
with constant a = +∞ and m0 = m(t, ∅) = 0. The function m is thus a suitable characterizing
function.

Now consider the decreasing set S = {J ⊂ D, |J | ≤ 2}, and assume that m belongs to the
class FD(S) in Definition 2.1: each multivariate distribution is assumed here to depend only on
its bivariate projections. Assume furthermore that the associated coefficients αJ,K in Defini-
tion 2.1, J ⊂ K, do only depend on cardinals j = |J | and k = |K|, so that αJ,K = αj,k.

Due to Remark 2.7, if a valid multivariate distribution belongs to the class FD(S), then its
survival function must take the form

F̄K(t) = ψ

−(k − 2)
∑

J⊂K,|J|=1

m(t,XJ) +
∑

J⊂K,|J|=2

m(t,XJ)

 ,

Notice that m(t,X{i}) = θiti and m(t,X{i,j}) = θiti+θjtj+θi,jtitj . Now using
∑
{i,j}⊂K(θiti+

θjtj) = (k − 1)
∑
{i}⊂K θiti we get

F̄K(t) = ψ

 ∑
{i}⊂K

θiti +
∑

{i,j}⊂K

θi,jtitj

 . (3.18)

Proposition 3.2 below shows that under some sufficient conditions this expression is a proper
multivariate survival function. This proposition makes use of the following definition of d-
monotony, as given in [30]:

Definition 3.2 (d-monotone function) A real function f is called d−monotone in (a, b),
where a, b ∈ R̄ and d ≥ 2, if it is differentiable there up to the order d − 2 and the derivatives
satisfy
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(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2,

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and convex in (a, b). For d = 1,
f is called 1−monotone in (a, b) if it is nonnegative and non-increasing over (a, b).

Proposition 3.2 The following three conditions ensure that, for any fixed subset K of size
k := |K|, F̄K(t) is a proper multivariate survival function:

(i) ψ and its derivatives goes fast enough to zero: for every n ≤ k − 1, lim
x→+∞

xψ(n)(x) = 0,

(ii) ψ is k-monotone,

(iii) for all distinct i, j in K, θi,j ∈ [0, θiθjρψ,k],

where ρψ,k = inf
x∈R+, r≤k/2, r odd

γ−1
k,r

∣∣∣ψ(k+1−r)(x)
ψ(k−r)(x)

∣∣∣ and γk,r = 1
r

(
k−2r+2

2

)
.

For example, if |K| = k = 3 and ψ(x) = exp(−x), then ψ is a k-monotone function satisfying
condition (i) and (ii). It also satisfies (iii) with coefficient ρψ,k = 1

3 , and the function F̄K defined
in Equation (3.18) is a valid multivariate survival function if θi,j ≤ θiθj/3 for all i, j ∈ K.
Proof. We have

F̄K(t) = ψ

 ∑
{i}⊂K

θiti +
∑

{i,j}⊂K

θi,jtitj

 = ψ(Q(t)) ,

with
Q(t) =

∑
{i}⊂K

θiti +
∑

{i,j}⊂K

θi,jtitj .

Let us consider without loss of generality K = {1, . . . , k} and t = (t1, . . . , tk). Let us define

fK(t) = (−1)k
∂k

∂t1 · · · ∂tk
F̄K(t).

If fK is a non-negative function whose integral is one, then it will be the density of a random
vector, and F̄K(t) will be a proper multivariate cdf.

Positivity Let us first establish conditions under which fK is a non-negative function. The
multivariate Faa Di Bruno’s formula gives

fK(t) = (−1)k
∑
π∈ΠK

ψ(|π|)(Q(t)) ·
∏
B∈π

∂|B|Q(t)∏
j∈B ∂tj

. (3.19)

where ΠK is the set of all partitions of K. B ∈ π means that B runs through all non-empty

blocks of a considered partition π. In the following, we will write ∂2

∂tB
Q(t) = ∂

∂ti∂tj
Q(t), and

θB = θi,j , where B = {i, j}.
Notice that ∂|B|Q(t) is 0 when |B| ≥ 3. Thus the only partitions π involved in the calculation

contain blocks of 1 or 2 elements only. Hereafter, we denote by Πr
K the partitions in ΠK that

contains exactly r distinct blocks of size 2. For a partition π ∈ Πr
K , these r blocks will be

denoted Bπ1 , . . . , B
π
r . Such a partition π ∈ Πr

K contains r blocks of size 2 and k − 2r blocks of

size 1, so that |π| = k − r. Thus we get (with the convention
∏0
i=1 = 1)

fK(t) = (−1)k
bk/2c∑
r=0

∑
π∈ΠrK

ψ(k−r)(Q(t)) ·
r∏
i=1

∂2Q(t)

∂tBπi

∏
j∈K\∪iBπi

∂Q(t)

∂tj
.

16



If ψ is k-monotone, ψ(k−r) = (−1)k−r
∣∣ψ(k−r)

∣∣, and setting Nk = {0, . . . , bk/2c},

fK(t) =
∑
r∈Nk

∑
π∈ΠrK

∣∣∣ψ(k−r)(Q(t))
∣∣∣ · r∏
i=1

(
−∂

2Q(t)

∂tBπi

) ∏
j∈K\∪iBπi

∂Q(t)

∂tj
.

One can write fK(t) =
∑
r∈Nk ξ(r). Assume that all θi ≥ 0 and θi,j ≥ 0, i, j ∈ K. Under this

assumption, one can check that, when r is even, ξ(r) ≥ 0. As a consequence,∑
r∈Nk

ξ(r) ≥
∑

r∈Nk,r odd

[ξ(r) + ξ(r − 1)] .

Let us try to simplify ξ(r) + ξ(r − 1). First remark that for r ≥ 1,

|Πr
K | =

(
k

2

)
· · ·
(
k − 2(r − 1)

2

)
/r! = 2−rk!/(k − 2r)!r!

and |Πr
K | = γk,r|Πr−1

K |, with γk,r = 1
r

(
k−2r+2

2

)
.

Let us write ξ(r) =
∑
π∈ΠrK

z(B1, . . . , B
π
r ). The term ξ(r − 1) can be written∑

π∈Πr−1
K

z(Bπ1 , . . . , B
π
r−1) = γ−1

k,r

∑
π∈ΠrK

z(Bπ1 , . . . , B
π
r−1) .

and thus
ξ(r) + ξ(r − 1) =

∑
π∈ΠrK

[
z(Bπ1 , . . . , B

π
r )− γ−1

k,rz(B
π
1 , . . . , B

π
r−1)

]
.

As a consequence, a sufficient condition to ensure that fK(t) ≥ 0 is that: for any B = {i, j},
for any odd r, for any t,

−∂
2Q(t)

∂tBi

∣∣∣ψ(k−r)(Q(t))
∣∣∣+ γ−1

k,r

∣∣∣ψ(k+1−r)(Q(t))
∣∣∣ ∂Q(t)

∂ti

∂Q(t)

∂tj
≥ 0

Thus the sufficient condition to ensure the positivity of fK(x).

Absolute continuity Let us now check if the integral of fK is summing to one. If so, F̄K
would be a valid absolutely continuous distribution, without singular component. First assume
that for all integers n ≤ k − 1,

lim
x→+∞

xψ(n)(x) = 0 . (3.20)

Recall that F̄K(u) = ψ(Q(u1, . . . , uk)). We now make use of the multivariate Faa Di Bruno’s
formula as is Equation (3.19). Seen as function of un, the derivative of F̄K(u) with respect to
un+1, . . . , uk writes as a sum of terms ψ(i)(aun + b) · P (un), where P is a polynomial of degree
at most 1 and a, b some real values. Thus under assumption (i), for any u ∈ Rk, for all integer
n ≤ k − 1,

lim
un→+∞

∂k−n

∂un+1 · · · ∂uk
F̄K(u) = 0 . (3.21)

As a consequence, one can show by recursion that in this case

F̄K(t1, . . . , tk) =

∫ +∞

t1

· · ·
∫ +∞

tk

∂k

∂u1 · · · ∂uk
F̄K(u1, . . . , uk)duk · · · du1 . (3.22)

Using the fact that F̄K(0, . . . , 0) = 1, we conclude that the derivative function fK is non-negative
and is integrating to one on the whole domain Rk+. Under chosen assumptions, it thus defines
a proper probability measure and F̄K is a valid multivariate survival function. �
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4 Practical implementation

4.1 Distance to admissibility

We have seen several examples of projective distributions that can be used in practice, as
Elliptically contoured distributions or distributions satisfying Equation (3.18). In the following,
we show that the method is also applicable in situations where the data does not necessarily
come from a projective distribution.

In practice, it can naturally happen that the multivariate distribution of a considered data
is not projective. In such a case, the resulting multivariate function F , obtained from the
characterizing function and from multivariate projections by Equation (2.2), may not be a
proper cdf. However, by construction, this function have exactly the prescribed multivariate
margins.

It is quite a usual problem that estimators do not always satisfy all the required constraints:
among many examples, an empirical copula is not a copula ([11]), some Kaplan-Meier estimated
distributions are defective ([33]), some estimated quantiles do not satisfy monotonicity ([5]),
some nested copulas do not satisfy C-measure positivity on all hyperrectangles ([29, 17]), etc.
Here the obtained F , even when it is increasing on each component, may not satisfy the positivity
of its cross-derivatives. In this Section, we approximate the function F that we obtain by an
admissible cdf.

We show hereafter that, even in the case where the resulting function F is not a cdf, one can
find a proper cdf F+ that is close to F in some sense, and such that its projections are close
to the prescribed ones. Furthermore, we will see in numerical illustrations that the maximal
distance between F and F+ can be easily estimated, and that it is very small in some considered
applications.

In the following we denote [−∞,x] = {(s1, . . . , sd) : s1 ≤ x1, . . . , sd ≤ xd} for any vector
x = (x1, . . . , xd) ∈ Rd.

Proposition 4.1 (Maximal admissibility distance) Let D ⊂ Rd and denote Dx = D ∩
[−∞,x]. Consider a function F : D → [0, 1], and assume that there exists a function f : Rd → R
such that for any x ∈ D, F (x) =

∫
Dx
f(s)ds. Assume furthermore that

∫
D f(s)ds = 1. Denote

D− = {s ∈ D, f(s) < 0} and ∆ =
∫
D−
|f(s)| ds. Then there exists a function F+ : D → [0, 1]

such that

(i) F+ : D → [0, 1] is a proper multivariate cdf,

(ii) dKS(F, F+) ≤ ∆
1+∆ ,

(iii) for any K ⊂ {1, . . . , d}, dKS(FK , F
+
K ) ≤ ∆

1+∆

where FK(x) = F (PKx), F+
K (x) = F+(PKx) and PKx = (p1, . . . , pd) with pi = xi if i ∈ K,

pi = +∞ otherwise, as defined in (2.1). Here dKS(F,G) = supx∈D |F (x)−G(x)| denotes the
Kolmogorov-Smirnov distance between two functions F and G.
Such a function F+ is given by

F+(x) =

∫
Dx

f+(x)dx ,

where f+(x) = 1
1+∆f(x) if x ∈ D \ D− and f+(x) = 0 otherwise.

Proof. Let F+(x) =
∫
Dx
f+(x)dx , where f+ is defined in the Proposition, and let

D+ := D \ D− for simplicity. First, f+ is nonnegative and using
∫
D f(x)dx = 1, we get∫

D+ f
+(x)dx = 1, so that f+ a proper pdf and item (i) holds.
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When ∆ > 0, define α(x) ∈ [0, 1] by

α(x) :=

∫
Dx∩D− |f(x)| dx∫
D− |f(x)| dx

.

and α(x) = 0 otherwise. Notice that α(x) is such that
∫
Dx∩D− f(x)dx = −α(x)∆, and

F+(x) =
1

1 + ∆

∫
Dx∩D+

f(x)dx =
1

1 + ∆

(∫
Dx

f(x)dx−
∫
Dx∩D−

f(x)dx

)
.

From this, we get F (x) − F+(x) = ∆
1+∆ (F (x)− α(x)). As supx∈D |F (x)− α(x)| ≤ 1 the

result (ii) holds for this specific function F+.

As (ii) holds, |F (x)− F+(x)| ≤ ∆
1+∆ for any x ∈ D, and in particular for any x′ = PKx, so

that (iii) holds. �

Notice that ∆ =
∫
D−
|f(s)| ds = −

∫
D−

f(s)ds = −(1 −
∫
D+ f(s)ds) =

∫
D+ f(s)ds − 1, so

that
∫
D+ f(s)ds = 1 + ∆. As a consequence, one can define the following failure ratio

R =

∫
D−
|f(s)| ds∫

D+ |f(s)| ds
=

∆

1 + ∆
, (4.1)

which bounds the errors in Proposition 4.1. This ratio can easily be estimated by a discrete
approximation of each integral, using classical techniques which avoid any normalization of the
integrals.

In the case where m(t, X) = ϕ ◦ F (t) where ϕ is a bijection from (0, 1] to R+, one gets

FL(tL) = ϕ−1

 ∑
J⊂L,J∈S

αJ,L · ϕ ◦ FJ(tJ)

 .

In this case, if ϕ, ϕ−1 and all given projections FK are differentiable up to a sufficient order,
then applying chain differentiation rules and multivariate Faa Di Bruno’s formula, one can show
that F satisfies the assumptions of Proposition 4.1.

One can notice that in practice, depending on the application, and when ∆ is small, one may
use F instead of F+, as the expression of F do not require to compute an integral. In particular,
some sampling procedures like MCMC may be easily adapted to the function F instead of F+.
In the latter case, the produced sample have by definition a valid multivariate cdf.

4.2 Numerical illustration on a real data set

In the following, we give an example on a real data set. First, we illustrate a natural fit procedure
on a trivariate data, by adjusting each marginal distribution, and then each copula. Second, we
show that the proposed construction allows to build a valid trivariate cumulative distribution
with projections close enough to each of the prescribed ones.

Marginals and copulas fit The purpose here is to provide reasonable univariate and bivariate
fits using standard tools, without distorting the data, in order to illustrate the flexibility of our
result and its applicability on some usual data. Surely, better fits can be proposed, but are out
of the scope of the present paper.

We have obtained best univariate fits using classical existing tools in R software, and in
particular the package fitdistrplus. Best copulas were obtained by the package VineCopula.
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(c) cdf margin F3

Figure 2: Univariate margins fits: empirical cdf (discontinuous line, black) and fitted cdf (con-
tinuous line, red) obtained by R software package fitdistrplus.
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(c) copula C23

Figure 3: Copula fits: pseudo observations scatterplot and heatmap of the copula log-density,
obtained by R software package VineCopula.

We present here the results obtained for the data LifeCycleSavings from the standard R
Software library datasets. We have used the first three columns of this data. We do not detail
here the data, as the purpose here is just to build a parametric fit on a multivariate data, with
given projections.

The marginal fits obtained for the considered data are gathered in Figure 2. One can see
that, independently of our method, the fits with usual tools may be sensitive to multimodality
of the data. The copula fit illustrations are presented in Figure 3. All univariate and bivariate
fits are summarized in Table 1.

Concerning both the cdf and the copulas, they exhibit quite different shapes, as it usually
happens on many datasets. It thus seems particularly challenging to propose a trivariate function
having exactly those fitted univariate and bivariate margins. In the next paragraph we show
how to build such a function, using the method proposed in this article.
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object parametric fit
F1 norm(9.671,4.43537653418512)
F2 weibull(4.48356587156989,38.6038169621111)
F3 weibull(1.89863954400289,2.59468797211236)
C12 Rotated BB8 90 degrees(-6,-0.396616316431917)
C13 BB8(6,0.316859224873494)
C23 Rotated BB8 270 degrees(-6,-0.857389852442906)

Table 1: Fits obtained for the considered dataset, obtained by R software packages fitdistrplus
and VineCopula. Parametric expressions of the fits are those indicated in these packages.

Trivariate fit with prescribed bivariate projections For more flexibility, we consider
here a one-parameter class of characterizing functions, in the sense of Definition 2.1. As the
given bivariate fits rely here on copulas, it is easier to deal with multivariate cdf or survival
functions. The considered class is a parametric transformation of multivariate cdf:

m(t,XL) = ϕθ [FXL
(tL)] . (4.2)

For the link function ϕθ, we have chosen some parametric monotone functions such that
ϕθ(1) = 0, detailed hereafter. One can check that in this case,
m0 = m(t,X∅) = ϕθ (FX(+∞, . . . ,+∞)) = 0 as defined in Remark 2.1. Using the proposed
method and the result in Remark 2.7, when |L| = 3 and with tL ∈ R3, we obtain a fitted
trivariate function, denoted Fθ:

Fθ(tL) = ϕ−1
θ

−(|L| − 2)
∑

J⊂L,|J|=1

ϕθ (FXJ
(tJ)) +

∑
J⊂L,|J|=2

ϕθ (FXJ
(tJ))

 . (4.3)

Notice that for some specific link functions and margins, theoretically valid distributions with
this shape are given in Proposition 3.2.

As it was easier to use classical expressions with known parametric inverse functions, we have
used specific link functions ϕθ. We have considered strictly positive and decreasing functions
ϕθ : [0, 1] → R+ of Table 4.1. in [31], that are also known to be Archimedean generators.
We have tried the six first strict generators of this table 4.1. (respectively Clayton, AMH,
Gumbel, Frank, Joe and Hougaard generators). Then, we have selected the generator and its
parameter that was minimizing the estimation of the failure ratio R = ∆

1+∆ in Equation (4.1).
The parameter θ is thus used to reduce the maximal distance between the obtained function
Fθ and a proper multivariate cdf F+

θ , as detailed in Proposition 4.1. We also compared the
trivariate function Fθ and the empirical trivariate cdf Femp of the data, by computing the
average absolute error δ = 1

n

∑n
i=1 |Fθ(xi)− Femp(xi)|, where x1, . . . ,xn are the points in the

dataset. The Figure 4 shows the different values of the estimated failure ratio R and the distance
δ with the empirical cdf. The ratio R was estimated by replacing the integrals by sums over
a regular grid of 1000 points between minimal and maximal values of each component of the
dataset. Whereas the average absolute error δ is quite stable on this data, the failure ratio R
is sensitive to the choice of the parameter θ. We verify hereafter that the results are not too
sensitive to the grid used for the estimation.

Finally, the results for this dataset, using the Hougaard generator ϕθ given by (4.2.9) in
Table 4.1 of [31], are gathered in the following table:

dataset (columns) link function ϕθ (parameter θ) estimation of R distance δ
LifeCycleSavings(1,2,3) (4.2.9) Hougaard (θ = 0.768) 0.000872 0.0332
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Figure 4: Estimated failure ratio R (red solid line) and distance δ to empirical cdf (black dashed
line), as a function of the parameter θ.
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Figure 5: Values of the fitted function Fθ (blue solid line) and the empirical cdf Femp (black
dotted line), on several points of a diagonal line m + a(M −m) in R3, as a function of the
abscissa a.

For the estimation of R, using a more precise grid of 64000 points, in the extended domain
[0.9m, 1.1M] where m and M are the componentwise minimum and maximum of the points
in the data, we obtained quite similar results: an estimated R equal to 0.000984 at θ = 0.766.
Notice that it is usual that some compatibility conditions can only be verified numerically over
a grid of points, see [21], page 75.

One can check that the estimated admissibility of the fitted function Fθ is very good, so that
in practice, as one can see on Figures 5 and 6, it may be unecessary to compute the proper cdf F+

θ

of Proposition 4.1. Indeed, the numerical approximations involved by numerical differentiation
or integration may be greater to the maximal distance ∆ and the failure ratio R ≤ ∆.

Values of the fitted function on given bivariate projections correspond exactly, by construc-
tion, to the prescribed ones so that it is useless to draw these values. One can instead compute
the values of the fitted function for a set of points belonging to a 1D or a 2D diagonal hyper-
plane. The considered data has 3 columns. For each column i in {1, 2, 3}, denote mi the minimal
observed value in this column, over all observations, and Mi the maximal observed value. Let
m = (m1,m2,m3) and M = (M1,M2,M3) (so that the cube [m,M] contains all observations
of the dataset). Let us also define the two points A = (M1,m2,M3) and B = (m1,M2,M3).
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Figure 6: Level curves of the fitted function Fθ (left panel) and the empirical cdf Femp (right
panel), on several points of the diagonal plane m + a(A−m) + b(B−m), as a function of the
abscissa a and the ordinate b (right panel).

Suppose that the true distribution of the data set is given by the law of a vector (X1, X2, X3)
and suppose that we are interested in estimating the cdf of the univariate random variable Z :=
max(X1−m1

M1−m1
, X2−m2

M2−m2
, X3−m3

M3−m3
). In Figure 5, we have drawn the estimated cdf of Z coming from

our construction, using P [Z ≤ a] = P [X1 ≤ m1 + a(M1 −m1), ..., X3 ≤ m3 + a(M3 −m3)].
More precisely, the figure shows the values of the function Fθ that we constructed, evaluated at
several points of a diagonal m + a(M−m), for different values of a. Despite that the fit is not
perfect compared to the empirical values (the fits of the bivariate projections in Figure 2 were
not perfect either), we observe that the estimated univariate cdf behaves normally (starting
from 0 up to 1, and increasing).

Along the same lines, on the right panel of Figure 6, we have drawn values of the fitted
function Fθ for points belonging to a plane m + a(A−m) + b(B−m), for different values of a
and b (left panel), the empirical counterpart is also drawn (right panel).

One can check that, again, the fitted function behaves normally and is increasing over each
component: the admissibility problem can arise even for functions increasing on each compo-
nents, with values in [0, 1], as this requirement is not sufficient to define a cdf having positive
cross derivatives.

At last, we have conducted the same analysis on other datasets of the R Software library
datasets. Results are gathered in the Table 2. For some data (stackloss, rock), the estimated
values of R are not negligible and more investigations are needed: change in the bivariate pro-
jections, in the one-parameter link function ϕθ or in the characterizing function m. For other
datasets, we obtain very good numerical results, with sometimes estimated ratios R of order
10−6, and a data as MathAchieve also leads to a very good global fit of the trivariate distribu-
tion. In our experiments, we did not use the (tedious) parametric expressions of the bivariate
projections density, but instead some numerical differentiation. As a result, the distance be-
tween the proper cdf F+ in Proposition 4.1 and the obtained fitted function would probably be
comparable to the numerical errors induced by the numerical differentiation, so that we did not
build this proper cdf. We have presented here a detailed procedure for a specific one-parameter
class of characterizing functions. Introducing more parameters would logically result in smaller
ratios R.

The proposed method cannot guarantee that the final fitted multivariate function F does
not correspond to a signed measure. However, as a conclusion of this numerical investigation,
the following advantages are of practical utility:
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dataset (columns) link function ϕθ (parameter θ) estimation of R distance δ
MathAchieve(4,5,6) (4.2.1) Clayton (θ = 1.10) 0.00000392 0.006324558

LifeCycleSavings(1,3,5) (4.2.5) Frank (θ = 2.15) 0.000136078 0.075148513
LifeCycleSavings(2,3,5) (4.2.9) Hougaard (θ = 0.66) 0.000243695 0.071234939
LifeCycleSavings(1,2,5) (4.2.9) Hougaard (θ = 0.96) 0.000365772 0.068639313
LifeCycleSavings(1,2,3) (4.2.9) Hougaard (θ = 0.768) 0.000872 0.0332

airquality(1,2,4) (4.2.1) Clayton (θ = 0.61) 0.003274217 0.026502691
airquality(1,3,4) (4.2.5) Frank (θ = -3.57) 0.022312892 0.010637131

mtcars(1,5,6) (4.2.5) Frank (θ = -5.55) 0.032730639 0.026896243
mtcars(3,4,6) (4.2.4) Gumbel (θ = 5.95) 0.033680629 0.034147215
swiss(1,2,3) (4.2.9) Hougaard (θ = 1.12) 0.056176129 0.013166825
trees(1,2,3) (4.2.1) Clayton (θ = 1.24) 0.058231572 0.021837067

stackloss(2,3,4) (4.2.5) Frank (θ = 3.14) 0.076542359 0.037345426
rock(1,2,3) (4.2.6) Joe (θ = 1.00) 0.099751509 0.028614845

Table 2: Final estimated failure ratio R and distance δ to empirical, for different datasets or for
different considered columns Results are sorted by estimated ratio R. Detail of each bivariate
fits are omitted here. The horizontal dashed lines highlights the previously detailed case study.
The horizontal plain line separate the cases with estimated failure ratio greater than 0.05.

(i) The obtained fitted distribution has exactly the prescribed projections, by construction.

(ii) The Kolmogorov-Smirnov distance between the final fitted function and a proper cdf is
bounded by a quantity R that can be estimated, and is small in our experiments. Thus,
the fitted function can be directly used for many practical applications.

(iii) One can build a proper cdf from the final fitted function. In such a case, the projections
of this proper cdf are at maximal distance R from the prescribed ones.

5 Conclusion

We have considered in this paper specific multivariate distributions, belonging to a class which
was called projective. They rely on a linear link between some functional of the considered
distribution and their multivariate margins. The choice of a linear link is is not as restrictive
as one would initially imagine, since it covers a variety of classical distributions, from Elliptical
ones to some natural survival models, as presented in Section 3.

In theory, for those distributions, the compatibility between given multivariate margins and
multivariate distribution is automatically ensured, by definition, and the coefficients linking
multivariate margins with the whole distribution are easily obtained using for example Propo-
sition 2.2, Equation (2.14) and Equation (2.15).

In practice, when dealing with a given data, one possibility is to use a class projective distri-
butions, as those described in Section 3 (Elliptical distributions, specific survival model, etc.),
and estimate its parameters. This way, fitted projections are necessarily compatible with each
other, and the admissibility is ensured for the resulting multivariate construction having pre-
scribed projections. However, the fitted projections are then modeled by the same parametric
family of functions.

Another possibility is to assume the validity of the linearity assumption for some character-
izing functions belonging to a set of functions, as described in Section 4. In that case, given
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a data, fitted multivariate marginals, and a chosen characterizing function m, the coefficients
and the expression of the candidate function for the whole multivariate distribution are easily
obtained. This allows a huge variety of fitted projections. It remains to verify whether the
fitted function with prescribed projections is a valid distribution, as done theoretically in the
Section 3.2 (but it involves many chain rules differentiations), or numerically in Section 4.2.
In the latter case, it is always possible to build a proper multivariate cdf while controlling the
distance to the prescribed projections, as detailed in Section 4.1.

At last, other characterizing functions can be tried, eventually relying on several parameters.
This way, one can build theoretically new classes of projective distributions, or try to satisfy, at
least numerically, the validity of the fitted functions on some data.
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