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Abstract

In this paper, we investigate the link between the joint law of a d-dimensional random
vector and the law of some of its multivariate marginals. We introduce and focus on a
class of distributions, that we call projective, for which we give detailed properties. This
allows us to obtain conditions that are easy to verify, to ensure that a given construction
is projective. We illustrate our results on elliptical distributions on the first hand, and on
a new class of distribution having given bivariate exponential margins on the other hand.
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1 Introduction

Multivariate analysis is now a cornerstone in probability theory. Constructing multivariate
distributions from given marginals is mathematically interesting on its own, but also has huge
impact in practical problems.

Let d ≥ 1 be an integer and let X1, . . . , Xd be continuous random variables with cumulative
distribution functions (CDFs) F1, . . . , Fd, respectively. Sklar’s theorem [25] states that the joint
distribution H of (X1, . . . , Xd) can be written, for all (x1, . . . , xd) ∈ Rd in the form

H(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd) = C
(
F1(x1), . . . , Fd(xd)

)
,

where C is a copula function, i.e. the cumulative distribution function of a probability measure
on Rd whose marginals are uniform on [0, 1]. Copula models have shown their interest in
particular because, as it can be seen from the previous equation, they separate the study of the
margins and the study of the dependence structure.

In this paper, we want to investigate the link between the joint law of a d-dimensional random
vector and the law of its multivariate marginals. For any subset K = (j1, . . . , jk) of {1, . . . , d}
with cardinal k, and any random vector X = (X1, . . . , Xd), we will write XK the random vector
with values in Rk given by (Xj1 , . . . , Xjk) and FK the cumulative distribution function of XK .
We will abuse notations and call FK a probability distribution on Rk. Let n ≤ 2d be a positive
integer and let K1, . . . ,Kn be n subsets of {1, . . . , d} with cardinals k1, . . . , kn.
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A question that has been extensively studied in the literature is the following: given n
probability measures P1, . . . , Pn such that Pi is a probability measure on Rki , is it possible to
construct a probability measure F on Rd such that

FKi = Pi for each i = 1, . . . , n? (1.1)

The existence of such a measure F is not guaranteed. In the case where the subsets {Ki, i =
1, . . . , n} are disjoint, the product distribution guarantees its existence. One could also try to
extend the notion of Copula function to the case of non overlapping multidimensional marginals:
Genest & al. [10] showed that this approach is useless, since it only allows to model the product
distribution. More precisely, they proved that if

H(x1, . . . , xm, y1, . . . , yn) = C
(
F (x1, . . . , xm), G(y1, . . . , ym)

)
defines a proper (m+n)-dimensional distribution function (with m+n ≥ 3) for every F and G
with respective dimensions m and n, then C(u, v) = u · v.

When the subsets {Ki, i = 1, . . . , n} are not disjoint, an obvious necessary condition is that
the prescribed measures {Pi, i = 1, . . . , n} have the same marginals on common subspaces. But
this condition is not sufficient : Kellerer [18] gave a necessary and sufficient condition only
involving the structure of the sets {Ki, i = 1, . . . , n}. We refer to [15] (in particular, chapters 3
and 4) and [7] and the references therein for further details and related problems, in particular
extremal distributions with fixed multidimensional marginals and related optimization problems.

The question of uniqueness is also tricky. In [11], it is proved that if µ is a probability measure
on Rd with a density f with respect to the Lebesgue measure, then there exists a subset U of Rd
such that all the lower dimensional projections of the uniform distribution on U coincide with
the lower dimensional projections of µ. This shows, at least in the case where measures have a
density, that there is in general no hope for uniqueness of a measure with prescribed projections.

Possible explicit constructions of distribution functions F satisfying (1.1) have been given in
[5], [23], [24], [6], [12], [13], [14], [21], [19], [20], [9] for overlapping or non-overlapping marginals.

All these constructions are very useful, in particular in statistics. Indeed, when the dimension
d is large, one can first estimate all the bivariate marginals, since fitting a 2-dimensional copula
is doable, and then construct a valid d-dimensional vector having the prescribed 2-dimensional
margins. One problem of this approach is that it may not provide a unique d-dimensional
distribution, but as pointed out in [15], one can then use entropy maximization techniques
to choose a distribution among all those that have the prescribed marginals. By comparison,
directly fitting the right copula in large dimension is however quite difficult and often makes use
of recent research developments (nested, hierarchical or vine copulas, see [22], [4], [16], including
pair-copula constructions or copulas with prescribed bivariate projections [1], [2], [8]).

The previously mentioned constructions all make use of the joint CDF, or the joint den-
sity. There are however other functions characterizing the joint distribution, for instance the
characteristic function. We will call any such function a characterizing function. In this pa-
per, we assume that a characterizing function m is given, and that there is a linear explicit
decomposition of the characterizing function of the d-dimensional vector with respect to the
characterizing functions of certain of its multi-dimensional marginals (Definition 2.1). We will
say that a probability distribution satisfying Definition 2.1 is in a projective class. The main
result of the paper is a complete analysis of the coefficients appearing in a decomposition of a
projective class. Indeed, the distributions satisfying our Definition 2.1 are stable by projection,
in the sense that they are such that all their multidimensional marginals also satisfy the same
Definition 2.1. This allows us to give precise, and simple necessary conditions for a sequence of
coefficients to generate a probability distribution on Rd having fixed multidimensional marginals
and belonging to a projective class. In particular, a necessary condition is that a matrix con-
taining these coefficients is idempotent (Proposition 2.2). Notice that the linear form of the
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decomposition in a projective class is not as restrictive as one would initially imagine, since one
could first apply a bijective non linear transformation to a characterizing function, and then
obtain a linear relation in the form of (2.1). The case of Elliptical random vectors illustrates
well this last point.

In Section 2 we define the projective classes that we are going to work with, and in Section
3 we give and analyse examples of elements of this classes.

2 Projective class of random vectors

Let D = {1, . . . , d} and t ∈ Rd, consider a random vector X = (Xi)i∈D. For K ∈ P(D) a subset
of D, we denote by XK = (Xi)i∈K the subector of X, and by tK = (ti)i∈K the subvector of t.

We assume the existence of a link between the joint distribution of X and the joint distribu-
tions of its projections XK . In general this link could be derived from the characteristic function
of X, from its CDF, or from some other quantity. We thus define a function m for which the
link will be investigated.

We will denote by Xd the space of Rd-valued random variables that we will work with
(with k ≤ d). In the rest of the paper, the quantities involved (and our constructions) will
only depend on the distributions of the random variables, and not on the random variables
themselves. Because it has no impact on our results, we will nonetheless use random variables.

Assumption 2.1 (Characterizing function) We assume that there exists a function m :
Rd ×Xd × P(D) 7→ R such that for any non-empty K ∈ P(D):

1. {m(t,X,K)}t∈Rd characterizes the joint distribution of XK , i.e. m(t,X,K) = m(t,Y,K)
for all t ∈ Rd if and only if XK and YK have the same distribution.

2. there exists a ∈ R such that for all t ∈ Rd, m(PKt,X, D) = m(t,X,K), where

(PKt)i :=

{
ti if i ∈ K
a if i /∈ K.

In the rest of the paper, to simplify notations, we will denote m(t,X,K) by m(t,XK).

Remark 2.1 Assumption 2.1 2. implies that P∅,Dt = (a)i∈D =: a, and that m(t,X, ∅) =
m(a,X, ∅) for all t. For simplicity, we will write this quantity m0 := m(a,X, ∅), or abuse
notation and write m(t,X∅) = m0.

Remark 2.2 Such a function m always exists. Typically, m can be given by m(t,XK) =

E
[
eit
>
KXK

]
, with a = 0 and m0 = 1. Another example is m(t,XK) = FK(tK), the CDF of XK ,

with a = +∞ and m0 = 1. A third example is m(t,XK) = φ−1 ◦ FK(tK) where φ : R+ → [0, 1]
is an invertible Archimedean generator, with a = +∞ and m0 = 0. Direct transformations of
these functions, as entropy or survival functions, are also suitable characterizing functions.

Remark 2.3 Assumption 2.1 2. says that to study the marginal distribution of X on the subset
K, it is enough to study the distribution of X, with the characterizing function m restricted to
PKt. However, notice that every function characterizing the distribution of random variables
does not satisfy this Assumption. Let us give the example of the potential function ([3]). Define
the potential kernel v on Rd as follows:

v(x) = − |x| , d = 1, v(x) = − log |x| , d = 2, v(x) = |x|−d+2
, d ≥ 3.
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Then the potential UX of a random vector X on Rd is defined by

UX(t) = E [v(X − t)]

when the expectation exists. We have that UX = UY if and only if X and Y have the same
distribution, but the potential function does not satisfy Assumption 2.1 2.

We aim at defining the whole distribution of X, using only some of its projections, i.e. using
only the laws of XK for K ∈ S, where S is a given subset of P(D). For example, S can gather
some subsets of cardinal 3, their subsets, and some singletons, or S can gather only subsets
of cardinal 1, as in copula theory. We assume that S is decreasing, in the sense that for all
K ⊂ J , J ∈ S implies K ∈ S: knowing the distribution of a projection easily allows to know
the distribution of every sub-vector. In the algebraic topology terminology, S is a simplicial
complex [26]. Simplicial complexes can be represented using points, line segments, triangles,
and simplices in higher dimensions, which may ease the understanding of the projections and
the model (see Figure 1 for an illustration).

1

2

3

4

5 6
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Figure 1: Illustration of a multivariate distribution in the dimension 7, knowing the marginal
distribution {3}, the bivariate projection {4, 7}, and the trivariate projections {1, 2, 7} and
{4, 5, 6}. All subsets of these projections also correspond to known marginal distributions.

Definition 2.1 (Projective class) Let S ∈ P(D) be decreasing. We say that a random vector
X ∈ Rd belongs to the projective class FD(S) if there exist some real coefficients αK,D, K ⊂ D,
such that for all t ∈ Rd,

m(t,X) =
∑
K∈S

αK,Dm(t,XK) , (2.1)

Remark that if a random vector X belongs the projective class FD(S), then the set of suit-
able coefficients {αK,D,K ⊂ D} satisfying Equation (2.1) is not necessarily unique. Notice also
that if D ∈ S, any d-dimensional random vector is in FD(S), using for example constant co-
efficients αK,D equal to 1 if K = D and equal to 0 otherwise. This is quite natural, since the
class FD(S) intends to define multivariate distributions that can be fully determined by some
of their projections. This is obviously the case when the initial joint distribution is already in
S.

In the next Proposition, we prove the following projection stability property: if a random
vector belongs to the class FD(S), then any subvector also belong to FD(S), and we compute
the corresponding coefficients.

Proposition 2.1 (Projection stability) Let X be a d-dimensional random vector in FD(S),
with associated coefficients {αK,D, K ∈ S}. Then for any non-empty L ⊂ D, the subvector XL
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belongs to FL(S), where for any non-empty subset J of L, a suitable set of associated coefficients
is given by

αJ,L =
∑

K∈S, K∩L=J

αK,D, (2.2)

which implies in particular that αJ,L = 0 if J 6⊂ L.

Let d0 be an integer such that 1 ≤ d0 ≤ d. When S = {K ⊂ D, |K| ≤ d0}, and when the
coefficients {αJ,L, J ⊂ L} only depend on the subsets cardinals, i.e. αJ,L = αj,` with j = |J | ∈
{1, . . . , d} and ` = |L| ∈ {0, . . . , d}, then a suitable set of associated coefficients is given by

αj,` =

min(d0,d−`+j)∑
k=j

(
d− `
k − j

)
αk,d if j ≤ min(`, d0), (2.3)

and αj,` = 0 otherwise.

Proof. First remark that, due to the second assumption on m(t,X), we have m(t,XK∩L) =
m(PK∩Lt,X) = m(PKPLt,X) = m(PLt,XK). Thus, using (2.1), we have

m(t,XL) = m(PLt,X) =
∑
K∈S

αK,Dm(PLt,XK) =
∑
K∈S

αK,Dm(t,XK∩L)

=
∑
K∈S

αK,D
∑

J=K∩L
m(t,XJ)

=
∑
J⊂L

∑
K∈S, K∩L=J

αK,Dm(t,XJ) .

By assumption, K ∈ S implies that J = K ∩ L ∈ S. Setting αJ,L =
∑
K∈S, K∩L=J αK,D as in

Equation (2.2) we finally get

m(t,XL) =
∑

J⊂L,J∈S
αJ,Lm(t,XJ) , (2.4)

hence XL belongs to FL(S).
Eventually remark that K ∩ L = J if and only if J ⊂ L and J ⊂ K and K ∩ L ⊂ J . As a
consequence, if J 6⊂ L, the sum in (2.2) is empty and αJ,L = 0.

We prove now the second part of the Proposition. When S = {K ⊂ D, |K| ≤ d0}, we have
using (2.2)

αJ,L =
∑

K′⊂D\L,|K′|≤d0−|J|

αK′∪J,D.

Now, let j = |J | and ` = |L|. If j > `, it is clear that J 6⊂ L and that αJ,L = 0. As K ′ ⊂ D \ L
and |K ′| ≤ d0 − |J |, we get 0 ≤ |K ′| ≤ min(d0 − j, d− `). Thus when J ⊂ L,

αJ,L =

min(d0−j,d−`)∑
k=0

∑
K′⊂D\L,|K′|=k

αK′∪J,D (2.5)

and if the coefficients αJ,L do only depend on the cardinals,

αj,` =

min(d0−j,d−`)∑
k=0

∑
K′⊂D\L,|K′|=k

αk+j,d =

min(d0−j,d−`)∑
k=0

(
d− `
k

)
αk+j,d . (2.6)

Hence the second result. �
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Remark 2.4 (case of ∅) Notice that ∅ necessarily belongs to S. In the case where m(t,X∅) 6=
0, Equation (2.1) may involve a constant α∅,D, and implies that

∑
K⊂D,K∈S αK,D = 1. In

this case, it becomes useful to determine the coefficients α∅,L. For any non-empty L, the Equa-
tion (2.2) writes

α∅,L =
∑

K⊂D\L,K∈S

αK,D . (2.7)

When L = ∅, the Equation (2.1) remains valid for D = ∅ if one defines α∅,∅ = 1.

Corollary 2.1 (Given projections up to dimension d0) Let X be a d-dimensional random
vector in FD(S). Assume that all projections of X are given up to a dimension d0, so that
S = {K ⊂ D, |K| ≤ d0}. Assume that the associated coefficients {αJ,L, J ⊂ L} only depend
on the subsets cardinals, i.e. αJ,L = αj,` with j = |J | ∈ {1, . . . , d} and ` = |L| ∈ {0, . . . , d}.
Assume furthermore that αk,k = 1 for all k ≤ d0. Then the coefficients αd0−z,d can be obtained
recursively, using

αd0−z,d = 1−
z∑
i=1

(
d− d0 + z

i

)
αi+d0−z,d , (2.8)

for z = 1, . . . , d0, starting with αd0,d = 1. In particular for 2 ≤ d0 ≤ d, we get αd0,d = 1,
αd0−1,d = −(d− d0), αd0−2,d = 1 + d−d0+2

2 (d− d0 − 1).

When d0 ≥ 3, αd0−3,d = 1− (d− d0 + 3){1− d−d0+2
2

(
1− d−d0+1

3

)
}. For higher orders, one

can check by induction that these coefficients do only depend on d − d0, but their expression is
omitted here.

Proof. This follows directly from Proposition 2.1, by writing Equation (2.3) in the case where
j = ` ≤ d0, and setting i = k − j, j = d0 − z. �

The case where all bivariate projections are given is a very natural and interesting case: in
practical applications, bivariate projections can be graphically visualized, and the estimation of
the dependence structure among each pair of random variable is still tractable. The following
Remark shows that in this case, under some simple conditions, the coefficients αJ,L can be
computed explicitly.

Remark 2.5 (Given bivariate projections) Consider the same assumptions as in Corol-
lary 2.1 and assume that all bivariate projections of a multivariate distribution are given, so
that d0 = 2 and S = {J ⊂ D, |J | ≤ 2}. Then for all non-empty L ⊂ D, we can reformulate
equation (2.1) as follows:

m(t,XL) = α0,|L|m0 − (|L| − 2)
∑

J⊂L,|J|=1

m(t,XJ) +
∑

J⊂L,|J|=2

m(t,XJ) , (2.9)

where α0,0 = 1, α0,` = 1 + 1
2`(`− 3), ` ≥ 1 and where m0 = m(t,X∅) is defined in Remark 2.1.

Let X ∈ Rd be a random vector in FD(S). Since D = {1, . . . , d} is a finite set, the set of
subsets of D is also finite, so that we can define the following matrix, indexed by the subsets of
D:

A = (αJ,L)J⊂D,L⊂D. (2.10)

We will write A.,L for the column vector relative to the subset L.

Proposition 2.2 The coefficients in the matrix A satisfy the following constraints:
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1. If the set of associated coefficients {αJ,L} is unique, then the matrix A defined in (2.10)
is idempotent: A2 = A.

2. If furthermore the coefficients do only depend on the subset’s cardinal, i.e. αJ,L = αj,`
with j = |J | and ` = |L|, we get for 0 ≤ j ≤ ` ≤ d :

αj,` =

min(d0,`)∑
k=j

(
`− j
k − j

)
αj,kαk,` . (2.11)

Now define sj,` :=
(
`−2
j−2

)
αj,` when j ≥ 2. The previous equation writes, when j ≥ 2,

sj,` =

min(d0,`)∑
k=j

sj,ksk,` . (2.12)

Proof. Let L ⊂ D, |L| ≥ 1. From Proposition 2.1,

m(t,XL) =
∑

K⊂L,K∈S
αK,Lm(t,XK)

From Proposition 2.1, we also have m(t,XK) =
∑
J⊂K,J∈S αJ,Km(t,XJ), so that finally

m(t,XL) =
∑

K⊂L,K∈S

∑
J⊂K,J∈S

αJ,KαK,Lm(t,XJ)

=
∑

J⊂L,J∈S

∑
K⊂L,K∈S

αJ,KαK,Lm(t,XJ) ,

as αJ,K = 0 if J 6⊂ K. Then for all t,

m(t,XL) =
∑

J⊂L,J∈S

 ∑
K⊂L,K∈S

αJ,KαK,L

m(t,XJ)

so that, using the unicity of the set of coefficients {αJ,L},

αJ,L =
∑

K⊂L,K∈S
αJ,KαK,L

and thus A is idempotent.

Let us now focus on the second part of the proposition. For a subset L ⊂ D with cardinal `
and k ≤ `, define [L]k := {K ⊂ L such that |K| = k}. Assume that when K ⊂ L the coefficients
αK,L do only depend on the cardinals k = |K| and ` = |L| of the considered sets, and assume
αK,L = 0 if K /∈ S, i.e. αk,` = 0 if k > d0. Then

m(t,XL) =
∑
K⊂L

αK,Lm(t,XK)

=

min(d0,`)∑
k=0

αk,`
∑

K∈[L]k

m(t,XK)

=

min(d0,`)∑
k=0

αk,`
∑

K∈[L]k


min(d0,k)∑
j=0

αj,k
∑

J∈[K]j

m(t,XJ)
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Notice that, by a simple combinatorial argument, for j ≤ k,∑
K∈[L]k

∑
J∈[K]j

m(t,XJ) =

(
`− j
k − j

) ∑
J∈[L]j

m(t,XJ) ,

which entails that

m(t,XL) =

min(d0,`)∑
k=0

min(d0,k)∑
j=0

αk,`αj,k

(
`− j
k − j

) ∑
J∈[L]j

m(t,XJ) .

On the other hand we have

m(t,XL) =

min(d0,`)∑
j=0

αj,`
∑
J∈[L]j

m(t,XJ)

so that for all t, for all j ≤ k,

αj,` =

min(d0,`)∑
k=j

(
`− j
k − j

)
αj,kαk,`

and the second result holds. �

Remark 2.6 Notice that due to the projection stability property of Proposition 2.1, any column
of the matrix A can be deduced from the last one by multiplication by a matrix with values in
{0, 1}: A.,L = P (L)A.,D, where the 2d × 2d matrix P (L) is defined by its components

P
(L)
J,K =

{
1 if J = K ∩ L and K ∈ S
0 otherwise.

,

for J,K,L subsets of D. Indeed, we have from Proposition 2.1:

αJ,L =
∑

K∈S,K∩L=J

αK,D =
∑
K∈S

P
(L)
J,KαK,D. (2.13)

3 Examples

3.1 Elliptical random vectors

Recall [15] that d-dimensional elliptical distributions are characterized by the fact that their
characteristic function can be written in the following form: for any t ∈ Rd,

E
[
eit
>(X−µ)

]
= φ

(
t>Σt

)
(3.1)

for a given function φ : R+ → R which is called the generator of the distribution, and where µ
is the mean of the vector X and Σ is a non-negative definite matrix. We assume here that the
generator φ does not depend on the dimension d of the random vector, i.e. that the elliptical
distribution is consistent in the sense of [17].

Let us first remark that when one considers a centered multivariate elliptical distribution,
the distribution is fully characterized by all components σij of the matrix Σ, that is to say by
all bivariate elliptical projections of the distribution (it does not mean that the multivariate
elliptical distribution is the only one having those projections).
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It is thus quite natural to analyse, in the case of elliptical distributions, the links between the
matrix Σ and a given set of submatrices ΣK1

, . . .ΣKn , for K1, . . . ,Kn subsets of D = {1, . . . , d}.
This is easier to do using the matrix Σ rather than its inverse Σ−1. It thus seems easier to work
with characteristic functions or entropy (which are expressed using Σ) rather than densities of
cumulative distribution functions (which are expressed using Σ−1).

We will try to express the quantity t>Σt as a linear combination of products t>KΣKtK ,
where K belongs to known projections indexes in S.

Definition 3.1 (S-admissible sequence) Let D ⊂ N, and S be a decreasing subset of D. A
sequence of coefficients αK,D, K ∈ S, is said to be S-admissible if for all matrix Σ, for all t,

t>Σt =
∑

K⊂D,K∈S
αK,D · t>KΣKtK , (3.2)

The following Lemma provides a characterization of such coefficients:

Lemma 3.1 (Characterization of S-admissible sequence) Let d0 ∈ N be such that 2 ≤
d0 ≤ d, and assume that S = {K ⊂ D, |K| ≤ d0}. Assume furthermore that for any sets K,D,
αK,D = α|K|,|D|. A sequence αd = (αk,d)k≤d of coefficients is S-admissible if and only if it can
be written

α1,d = −
d0∑
k=2

sk
d− k
k − 1

and αk,d = sk/

(
d− 2

k − 2

)
, k = 2, . . . , d0 (3.3)

for some real values s2, . . . , sd0 such that s2 + . . .+ sd0 = 1.
In the particular case where the coefficients are deduced from only two given dimensions, i.e.
if there exists k0 ≥ 2 such that si = 0 whenever i /∈ {1, k0}, we get a particular S-admissible
sequence

α1,d = −d− k0

k0 − 1
and (3.4)

αk,d =
1(
d−2
k0−2

) , if k = k0 and αk,d = 0 otherwise, k = 2, . . . , d0. (3.5)

Furthermore, when d0 = 2, the only S-admissible sequence is

α1,d = −(d− 2) and α2,d = 1 (3.6)

Proof. Assume that αd is S-admissible, and that αK,D does only depend on |K| and |D|. Let
(i0, j0) ∈ D2, i0 6= j0. Isolating the coefficient ti0Σi0,j0tj0 on both sides of Equation (3.2), we
get

1 =

d0∑
k=2

|{K : K ⊂ D, |K| = k, {i0, j0} ⊂ K}|αk,d =

d0∑
k=2

(
d− 2

k − 2

)
αk,d

Denoting sk = αk,d
(
d−2
k−2

)
for all k, we get

∑d0
k=2 sk = 1. Now considering the coefficient

ti0Σi0,i0ti0 on both sides of Equation (3.2), we get

1 =

d0∑
k=1

αk,d |{K : K ⊂ D, |K| = k, i0 ∈ K}| = α1,d +

d0∑
k=2

(
d− 1

k − 1

)
αk,d

Now as sk = αk,d
(
d−2
k−2

)
for all k,

1 = α1,d +

d0∑
k=2

sk

(
d−1
k−1

)(
d−2
k−2

) = α1,d +

d0∑
k=2

sk
d− 1

k − 1
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Finally, using 1 =
∑d0
k=2 sk, Equation (3.3) holds. The rest of the proposition are direct appli-

cations of this last equation. �
A direct application of such S-admissible sequence is the following one:

Proposition 3.1 (Elliptical distributions are projective) Consider a d-dimensional ran-
dom vector X having elliptical distribution with mean µ, matrix Σ and invertible generator φ.
Let D = {1, . . . , d} and [D]k = {K ⊂ D, |K| = k}. Consider that all projections are given up
to a dimension d0, 2 ≤ d0 ≤ d, so that S = {K ⊂ D, |K| ≤ d0}. Then for any S-admissible
sequence αd = (α1,d, . . . , αd0,d), the following equality holds

φ(t>Σt) = φ

 d0∑
k=1

αk,d
∑

K∈[D]k

t>KΣKKtK

 . (3.7)

In other words, setting m(t,X) = φ−1
(

E
[
eit
>(X−µ)

])
, and S = {K ⊂ D, |K| ≤ 2}, we have

X ∈ FD(S) (3.8)

In particular, when d0 = 2 (i.e. starting from all bivariate projections), the admissible sequence
is α1,d = −(d− 2) and α2,d = 1.

Proof. By definition, for any S-admissible sequence, t>Σt =
∑d0
k=1 αk,d

∑
K∈[D]k t>KΣKKtK .

One can also check that the functions m are suitable characterizing functions satisfying As-
sumption 2.1 with a = 0 and m0 = φ−1(1) = 0. Hence the result. �

Remark 3.1 (Matrix A in the elliptical case, d0 = 2) Consider the elliptical case with d0 =
2. Then we get by Lemma 3.1,

αJ,L =

 0 if J 6⊂ L ,
−(|L| − 2) if |J | = 1 and J ⊂ L ,
1 if |J | = 2 and J ⊂ L .

In particular, if d = 3 and D = {1, 2, 3}, the matrix A = (αJ,L)J⊂D,L⊂D is

A =



1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0


, (3.9)

where the seven raws and columns correspond to successive subsets of D:

{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

As m0 = 0 in the elliptical case, it is not necessary to compute the coefficients αJ,L for J = ∅
or L = ∅ (see Remark 2.4). One easily check that we can apply Proposition 2.2 to deduce that
A is idempotent, which can also be verified by hand in this example.
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3.2 Vectors built from bivariate exponential distributions

Consider a random variable X distributed in Rd+. Let D = {1, . . . , d} and define

m(t,X) = ψ−1 (P(Xi > ti, i ∈ D)) . (3.10)

where ψ is a decreasing bijection from R+ to (0, 1], such that ψ(0) = 1 and that derivatives of
ψ exist up to the order d. Denote by ψ−1 the inverse function of ψ. It is clear that the function
m satisfies Assumption 2.1, with constant a = +∞ and m0 = m(t, ∅) = 0. The function m is
thus a suitable characterizing function.

Now consider the decreasing set S = {J ⊂ D, |J | ≤ 2}, and assume that m belongs to the
class FD(S) in Definition 2.1: each multivariate distribution is assumed here to depend only on
its bivariate projections. Assume furthermore that the associated coefficients αJ,K in Defini-
tion 2.1, J ⊂ K, do only depend on cardinals j = |J | and k = |K|, so that αJ,K = αj,k.

When all bivariate projections P(Xi > ti, Xj > tj) are given for all i, j ∈ K, K ⊂ D, then a
direct application of Remark 2.5 gives the shape of the candidate multivariate survival function.
As an example, assume that following bivariate survival functions are given:

P(Xi > ti, Xj > tj) = ψ(θiti + θjtj + θi,jtitj) ,

for some given non-negative parameters θi, θj and θi,j , i, j ∈ D. Due to Remark 2.5, if a valid
multivariate distribution belongs to the class FD(S), then its survival function must be written

F̄K(t) = ψ

−(k − 2)
∑

J⊂K,|J|=1

m(t,XJ) +
∑

J⊂K,|J|=2

m(t,XJ)

 ,

Notice that m(t,X{i}) = θiti and m(t,X{i,j}) = θiti+θjtj+θi,jtitj . Now using
∑
{i,j}⊂K(θiti+

θjtj) = (k − 1)
∑
{i}⊂K θiti we get

F̄K(t) = ψ

 ∑
{i}⊂K

θiti +
∑

{i,j}⊂K

θi,jtitj

 . (3.11)

The following Proposition shows that under some sufficient conditions this expression is a proper
multivariate survival function.

Proposition 3.2 The following three conditions ensure that, for any fixed subset K, F̄K(t) is
a proper multivariate survival function:

(i) ψ and its derivatives goes fast enough to zero, i.e. lim
x→+∞

xψ(n)(x) = 0.

(ii) ψ is k-monotone, where k := |K|,

(iii) for all distinct i, j in K, θi,j ∈ [0, θiθjρψ,k],

where ρψ,k = inf
x∈R+, r≤k/2, r odd

γ−1
k,r

∣∣∣ψ(k+1−r)(x)
ψ(k−r)(x)

∣∣∣ and γk,r = 1
r

(
k−2r+2

2

)
.

For example, if |K| = k = 3 and ψ(x) = exp(−x), then ψ is a k-monotone function satisfying
condition (i) and (ii). It also satisfies (iii) with coefficient ρψ,k = 1

3 , and the function F̄K defined
in Equation (3.11) is a valid multivariate survival function if θi,j ≤ θiθj/3 for all i, j ∈ K.
Proof. We have

F̄K(t) = ψ

 ∑
{i}⊂K

θiti +
∑

{i,j}⊂K

θi,jtitj

 = ψ(Q(t)) ,
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with
Q(t) =

∑
{i}⊂K

θiti +
∑

{i,j}⊂K

θi,jtitj .

Let us consider without loss of generality K = {1, . . . , k} and t = (t1, . . . , tk). Let us define

fK(t) = (−1)k
∂k

∂t1 · · · ∂tk
F̄K(t).

If fK is a non-negative function whose integral is one, then it will be the density of a random
vector, and F̄K(t) will be a proper multivariate cdf.

Positivity Let us first establish conditions under which fK is a non-negative function. The
multivariate Faa Di Bruno’s formula gives

fK(t) = (−1)k
∑
π∈ΠK

ψ(|π|)(Q(t)) ·
∏
B∈π

∂|B|Q(t)∏
j∈B ∂tj

. (3.12)

where ΠK is the set of all partitions of K. B ∈ π means that B runs through all non-empty

blocks of a considered partition π. In the following, we will write ∂2

∂tB
Q(t) = ∂

∂ti∂tj
Q(t), and

θB = θi,j , where B = {i, j}.
Notice that ∂|B|Q(t) is 0 when |B| ≥ 3. Thus the only partitions π involved in the calculation

contain blocks of 1 or 2 elements only. Hereafter, we denote by Πr
K the partitions in ΠK that

contains exactly r distinct blocs of size 2. For a partition π ∈ Πr
K , these r blocs will be denoted

Bπ1 , . . . , B
π
r . Such a partition π ∈ Πr

K contains r blocs of size 2 and k − 2r blocs of size 1, so

that |π| = k − r. Thus we get (with the convention
∏0
i=1 = 1)

fK(t) = (−1)k
bk/2c∑
r=0

∑
π∈ΠrK

ψ(k−r)(Q(t)) ·
r∏
i=1

∂2Q(t)

∂tBπi

∏
j∈K\∪iBπi

∂Q(t)

∂tj
.

If ψ is k-monotone, ψ(k−r) = (−1)k−r
∣∣ψ(n−r)

∣∣, and setting Nk = {0, . . . , bk/2c},

fK(t) =
∑
r∈Nk

∑
π∈ΠrK

∣∣∣ψ(k−r)(Q(t))
∣∣∣ · r∏
i=1

(
−∂

2Q(t)

∂tBπi

) ∏
j∈K\∪iBπi

∂Q(t)

∂tj
.

One can write fK(t) =
∑
r∈Nk ξ(r). Assume that all θi ≥ 0 and θi,j ≥ 0, i, j ∈ K. Under this

assumption, one can check that, when r is even, ξ(r) ≥ 0. As a consequence,∑
r∈Nk

ξ(r) ≥
∑

r∈Nk,r odd

[ξ(r) + ξ(r − 1)] .

Let us try to simplify ξ(r)+ξ(r−1). First remark that for r ≥ 1, |Πr
K | =

(
k
2

)
· · ·
(
k−2(r−1)

2

)
/r! =

2−rk!/(k − 2r)!r!, and |Πr
K | = γk,r|Πr−1

K |, with γk,r = 1
r

(
k−2r+2

2

)
. Let us write ξ(r) =

∑
π∈ΠrK

z(B1, . . . , B
π
r ).

The term ξ(r − 1) can be written∑
π∈Πr−1

K

z(Bπ1 , . . . , B
π
r−1) = γ−1

k,r

∑
π∈ΠrK

z(Bπ1 , . . . , B
π
r−1) .

and thus
ξ(r) + ξ(r − 1) =

∑
π∈ΠrK

[
z(Bπ1 , . . . , B

π
r )− γ−1

k,rz(B
π
1 , . . . , B

π
r−1)

]
.
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As a consequence, a sufficient condition to ensure that fK(t) ≥ 0 is that: for any B = {i, j},
for any odd r, for any t,

−∂
2Q(t)

∂tBi

∣∣∣ψ(k−r)(Q(t))
∣∣∣+ γ−1

k,r

∣∣∣ψ(k+1−r)(Q(t))
∣∣∣ ∂Q(t)

∂ti

∂Q(t)

∂tj
≥ 0

Thus the sufficient condition to ensure the positivity of fK(x).

Absolute continuity Let us now check if the integral of fK is summing to one. If so, F̄K
would be a valid absolutely continuous distribution, without singular component. First assume
that for all integers n ≤ k − 1,

lim
x→+∞

xψ(n)(x) = 0 . (3.13)

Recall that F̄K(u) = ψ(Q(u1, . . . , uk)). We now make use of the multivariate Faa Di Bruno’s
formula as is Equation (3.12). Seen as function of un, the derivative of F̄K(u) with respect to
uk+1, . . . , ud writes as a sum of terms ψ(i)(auk + b) · P (uk), where P is a polynomial of degree
at most 1 and a, b some real values. Thus under chosen assumption,

lim
un→+∞

∂n

∂un+1 · · · ∂uk
F̄K(u) = 0 . (3.14)

first show that for any u ∈ Rk,for all integer n ≤ k − 1,

lim
un→+∞

∂n

∂un+1 · · · ∂uk
F̄K(u) = 0 . (3.15)

As a consequence, one can show by recursion that in this case

F̄K(t1, . . . , tk) =

∫ +∞

t1

· · ·
∫ +∞

tk

∂k

∂u1 · · · ∂uk
F̄K(u1, . . . , uk)duk · · · du1 . (3.16)

Using the fact that F̄K(0, . . . , 0) = 1, we conclude that the derivative function fK is non-negative
and is integrating to one on the whole domain Rk+. Under chosen assumptions, it thus defines
a proper probability measure and F̄K is a valid multivariate survival function. �
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