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NisB=NisW -Towards a fair benchmark for iterative optimisers

 we have defined the Nearer is Better degree of a function, defined in [0, 1]. We use it here as a measure of how difficult it is to find the position of the minimum of a function by using an iterative optimiser. The function is said to be deceptive when the degree is greater than 0.5, neutral for value 0.5, and nice for smaller values.

We will show, either formally (mainly for dimension one) or experimentally, that the cardinality of the set of neutral functions is negligible and that there are as many deceptive functions as nice ones. We also show that deceptive functions are not necessarily "monstrous".

We define a taxonomy of all possible functions, according to four criteria: degree of difficulty, presence of plateaus, number of global minima, and modality (unimodal or not).

It appears that the structures of two classical benchmarks (CEC 2005 and CEC 2011) are far from this taxonomy. In particular they contain almost no deceptive functions.

As all iterative optimisers assume, either implicitly or explicitly, that the functions they work on are nice, it means their efficiency on such benchmarks is not a good estimate of their performance on other functions.

Motivation

All iterative optimisation algorithms, except pure random search, do assume to some extent that the landscape has the Nearer is Better (NisB) property [START_REF] Clerc | When Nearer is Better[END_REF]. If they know two positions, a "good" one and a "bad" one, they more often draw a third position closer to the good position that the bad one.

And, indeed, these algorithms do work well on many functions, at least when the landscape has no plateau. However, it is easy to define some functions (particularly with plateaus, but other examples can also be constructed) on which these same algorithms fail dramatically (i.e. are worse than random search). So it would be useful to define benchmarks which are more representative of the set of possible functions, or if possible, even the set of the real world functions.

In order to do that we have to build a taxonomy of this set, according to some structural features. For this first attempt we have chosen the following: the formal degree of difficulty, the presence of plateaus, the number of global minima, and the modality.

Note that this paper is clearly a work in progress, for at least two reasons:

• the taxonomy could be defined with more criteria;

• some results are formally proved, but some others are just conjectures.

Taxonomy

We consider here the set F N of all functions from I N = 0, 1 N -1 , 2 N -1 , • • • , 1 to I N , and its limit F when N tends to infinity, i.e. all one dimensional functions from I to I, where I is the limit of I N . Typically, on a digital computer, we have N = 2 K-1 + 1 where K is an integer like 32, 64, 128, or even more . 

NisB, NisW or Neutral triplets

A triplet is a set {x 1 , x 2 , x 3 } , x i ∈ I , for which x 1 = x 2 , x 1 = x 3 , and x 2 = x 3 . Let A N be the set of all triplets of I N .

We define three other sets of triplets. In the set definitions below, we implicitly assume "all elements of A N so that ...". Let f be a function from I N to I N . To simplify the notation, we do suppose below that any triplet is sorted so that f (x 1 ) ≤ f (x 2 ) ≤ f (x 3 ).

The "Nearer is Better" triplets:

B N := f (x 2 ) < f (x 3 ) |x 1 -x 2 | < |x 1 -x 3 |
The "Nearer is Worse" triplets:

W N := f (x 2 ) < f (x 3 ) |x 1 -x 2 | > |x 1 -x 3 | L N := All
the other triplets are called "Neutral". This is the union of two sets, i.e. L N = L 1,N ∪ L 2,N , with L 1,N := f (x 2 ) = f (x 3 ), and L 2,N := |x 1 -x 2 | = |x 1 -x 3 |. These sets are represented in the figure 1. The subscript N is omitted, for the above definitions are still valid when N tends to infinity, a case we will study after the finite case.

A finite probability measure µ N is defined on A N by µ N (X N ) = X N A N , for any subset X N , where . is the counting measure. By definition µ N (A N ) = 1 and{B N , W N , L N } is a partition of A N . When N goes to infinity this measure can be replaced by1 µ (X) = lim sup

N →∞ X∩A N A N .
When a triplet is in B, we may sometimes just say "it is NisB", just "it is NisW" if it is in W , and just "it is L" if in L.

Nice, Deceptive or Neutral functions

Dimension D = 1

Let us define a partition of the set of all functions F:

Table 1: N = 5.
Here the triplets are the ranks of the values (1 for 0, 2 for 1 N -1 , etc.). For each triplet we count how many times it is NisB (resp. NisW, L) over the N N functions. • F b , for which µ (W ) < µ (B). These functions are called here "nice";

Triplet N N n=1 B N,F(n) N N n=1 W N,F(n) N N n=1 L N,F(n)
• F w , for which µ (W ) > µ (B), called here "deceptive";

• F l = F -F b -F w , called here "neutral" ("l" is for "left").

On F we define the measure of the subset Y by

ν (Y) = lim sup N→∞ Y ∩ F N F
Here, for our 1D analysis, we have F = N N . We want to estimate the proportions of each kind of functions (nice, deceptive, neutral).

Remember that by definition a triplet (x 1 , x 2 , x 3 ) is so that the x i are all pair-wise different.

To simplify the notation we consider the ranks of the values in I N instead of the values themselves. For example the triplet 0, 1 N -1 , 1 N -2 can be encoded as [START_REF] Clerc | When Nearer is Better[END_REF][START_REF] Conway | The Book of Numbers[END_REF][START_REF] Das | Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems[END_REF]. Actually, for this analysis we could consider that I N is in fact {1, 2, • • • , N }. We have three cases:

1. The triplet is (n, n + k, n + 2k). This can be symbolically noted x 1

x 2 x 3 , meaning that

x 2 -x 1 = x 3 -x 2 . 2. The triplet is (n, n + k, n + k + k ) with k < k. Symbolically x 1 x 2 x 3 , i.e. x 2 -x 1 > x 3 -x 2 . 3. The triplet is (n, n + k, n + k + k ) with k > k. Symbolically x 1 x 2 x 3 .
From experiments (see for example the Table1 ) it seems that over all functions there are as many NisB triplets as NisW ones

N N n=1 B N,F(n) = N N n=1 W N,F(n) (1) 
where

B N,F(n) (resp. W N,F(n) )
is the set of triplets that are NisB (resp. NisW) for the function F (n) from I N to I N . We also define L N,F(n) as the set of triplets that are neither

B N,F(n) nor W N,F(n) .
Finding the exact formulae is not really difficult but tedious. Table 2 summarises the results. As in practice (on a computer) N = 2 K-1 + 1, we give here only the results when N is odd. For the three last columns the sum is the sum of the three cases weighted by the number of triplets of each case. 

N N n=1 B N,F(n) N N n=1 W N,F(n) N N n=1 L N,F(n) x1 x2 x3 (N -1) 2 4 N N -2 (2N 2 -3N +1) 6 N N -2 (2N 2 -3N +1) 6 N N -2 (N 2 +3N +1) 6 x1 x2 x3 N (N -1)(N -2) 12 - (N -1) 2 8 N N -1 (N -1) 2 
N N -2 (N -1) 2 2 N N -2 (3N -1) 2 x1 x2 x3 N (N -1)(N -2) 12 - (N -1) 2 8 N N -2 (N -1) 2 2 N N -1 (N -1) 2 
N N -2 (3N -1) 2 
(weighted) sum

N (N -1)(N -2) 6 sB = N N -2 (N -1) 2 (4N 3 -12N 2 +7N -1) 48 sW = N N -2 (N -1) 2 (4N 3 -12N 2 +7N -1) 48 sL = N N -2 (8N 4 -27N 3 +27N 2 -9N +1)
Table 3: Some rates and their limits. The equidistant triplets become negligible compared to the other ones. σ B is always smaller than σ W , but the difference quickly becomes very small. And the set of functions for which the triplets, on the whole, are neutral, becomes negligible.

Finite N Limit

number of x1 x2 x3 2×number of x1 x2 x3 3 N -1 2N 2 -7N +3 0 σ B (N -1) 2 (2N 2 -5N -1) 4N 3 (N -2) 1 2 σ W (N -1) 2 (2N -1) 4N 3 1 2 σ L 1 -B -w 0 σ B σ W 2N 2 -5N -1 (2N -1)(N -2)
1

On a powerful computer infinity can be used to approximate some results when N is very high. So, from now on, we work on rates, for example σ B = s B s B +s W +s L . From table 3 we can immediately draw interesting conclusions. For example • As for the "neutral" triplets, the rate

N N n=1 L N,F(n) A N F N is equal to 8N 3 -19N 2 +8N -1 4N 3 (N -2)
; it tends to zero like 2 N when N goes to infinity. It implies that on I (the limit of I N ) the set of neutral functions F l is negligible.

Let us now consider the rates of functions that are nice (i.e. for which the µ (B) > µ (W )), deceptive and neutral, respectively B , W , and L . We do not have (yet) exact formulae dependent on N , but we can nevertheless derive some other conclusions when N → ∞.

From table 3 we have σ L → = lim

N →∞ σ L = 0 and σ B → = σ W → = 1 
2 . We also have the linear system

   σ B → = a B → + (1 -a) W → σ W → = (1 -d) B → + d W → with 1 ≥ a > 1 2 and 1 ≥ d > 1 2 . It implies        B → = 1 a+d-1 dσ B → + (a -1) σ W → W → = 1 a+d-1 (d -1) σ B → + aσ W → so W → -B → = 1 a + d -1 σ W → -σ B → = 0,
which gives us the following theorem Figure 2: For this discrete function defined on 11 points, the difficulty degree is 0.58.

Theorem 1. Half of functions from I to I are deceptive, and half are nice.

Dimension D ≥ 2

We do not have any formula yet, so we just experiment by using a Monte-Carlo method. For a given dimension, we generate at random a huge number of functions, check how many are NisB, and then estimate their proportion. The process is simple, but very long. The results suggest the following conjecture :

Conjecture 1. For any dimension D half of functions from I to I D are deceptive, and half are nice.

As seen, it has been proved for dimension one. For higher dimensions, in addition to the experimental results, there is also a strong intuitive "ergodic" reasoning in favour of this conjecture :

• any triplet can be rearranged so that x 1 -x 2 ≤ x 1 -x 3 ;

• we can neglect the triplets for which there is equality, i.e. we have x 1 -x 2 = x 1 -x 3 ;

• if we draw at random the values f (x 1 ), f (x 2 ), and f (x 3 ), and if we consider all cases (like

(f (x 1 ) > f (x 2 ))∧ (f (x 2 ) < f (x 3 )) ∧ (f (x 3 ) < f (x 1 )
) then it appears that the probability to be NisB for this triplet is 0.5.

No-plateau functions

Dimension D = 1

Theorem 2. A no-plateau function can be deceptive

We just have to show an example. For a small finite N (and remember that on a digital computer N is always finite) it is easy to find deceptive no-plateau functions. See for example figure 2.

Even a discrete unimodal function can be deceptive, as seen in figure 3. It seems counter intuitive, but do not forget that with N points, only N (N -1)(N -2)

6
triplets can be defined. For example, the number of triplets is 165 for N = 11, so we indeed easily have µ (B) < µ (W ). Note that relatively small N is always the case when the "positions" are bit strings. It is then not that difficult to define functions that are hard for classical optimisers ( [START_REF] Goldberg | Construction of high-order deceptive functions using low-order Walsh coefficients[END_REF]).

More examples are given in section 5.3), including a continuous inverted parabola. However experiments suggest the following conjecture: Conjecture 2. For a given dimension, the difficulty degree of a no-plateau Lipschitzian function is bounded above by a constant. Another question is "How many deceptive functions are there amongst the no-plateau ones?". So, let us count again. It is possible to find formulae like the ones shown in the Table 2. We only have to replace the N N factor by another one. For example, for triplets (1, 2, 3) the number of functions for which it is NisB is now

(N -1) N -3 N N 2 -3N + 2 3
and, for triplets like (1, 3, 5) it is

(N -2) 2 (N -1) N -5 N N 2 -3N + 2 3
But more kinds of triplets have to be taken into account. However the point is that, again, s B and s W are polynomials in N of order N 3 (and with the same first coefficient), as the order for s L is only N 2 . So (though it may seem a bit strange) we still have σ B and σ W tending to 1 2 with N , and still with σ B < σ W . The only difference is that the rates of increase are slower than the ones for all functions.

So, on the whole, even no-plateau functions are not particularly nice.

Theorem 4. Most functions have at least one plateau

In the finite case the definition space (x 1 , x 2 , . . . , x N ) and the value space have both N points. A 2-points plateau on x k is defined by

([x k , x k+1 ] , f (x k )) if f (x k+1 ) = f (x k ).
Having at least one plateau is equivalent to having at least one 2-points plateau. Let us study this case.

The probability p that f

(x k+1 ) = f (x k ) is p = N N 2 = 1 N . So the probability of having no 2-points plateau for any k ∈ {1, 2, . . . , N -1} is 1 -1 N N -1 .
Finally the probability of having at least one 2-points plateau is

S N = 1 -1 - 1 N N -1 (2) 
Said differently, the number of no-plateau functions is N (N -1) N -1 . For N = 2 the value of the probability S N is of course 0.5, and then it rapidly increases to its limit, as shown in the figure 4.

To find the limit, we can take logarithms 

   ln (1 -S N ) = (N -1) ln 1 -1 N ∼ -(N -1) 1 N ∼ -1 + 1 N
and therefore we have

ν (F p ) = lim N →∞ S N = 1 -e -1 0.632 (3) 
So, about 63% of the functions of F have at least one plateau. As 50% of the functions are nice, it means that at least 13% of the functions are both nice and have at least one plateau. Said differently, at least 26% of the functions with at least one plateau are nice.

Of course, it is because the proportion of plateaus can be small, and in that case the function is not deceptive. Actually we have the following conjecture Conjecture 3. If the proportion of plateau(s) is greater than a certain value which depends on the dimension, then the function can not be nice.

For example, let us consider the Needle function defined on [0, 1] by

f (x) = x a if x ≤ a 1 otherwise
A triplet is NisB if at least two of its elements are smaller than a. The probability of this case is 3a 2 -2a 3 . So the function is deceptive as soon as this probability is smaller than 1 2 , i.e. as soon as the size of the plateau 1 -a is greater than 1 2 . Remark 1. The probability of having an m-points plateau for a given N is given by

S N,m = 1 -1 - 1 N m-1 N -m+1
It is a decreasing function of m, but when N increases, the limit is the same as for the 2-points case. Let us call "rate of plateau(s)" the measure of the set of points that belong to a plateau. So, a more general question is "How many functions are there with a rate of plateau(s) at least equal to α?". By using the same method as above, we easily find that the limiting value is

ν (F p,α ) = P α = 1 -e -(1-α)
As we can see from the figure 5,as intuitively expected, it decreases when α increases.

Dimension D ≥ 2

For dimensions greater than one the formula 2 becomes slightly different. The probability p of having a plateau on a given "position" (which is a D + 1 polyhedron) is now 1 N D . Remark 2. The number of such polyhedra is 2 D (N -1)

D , and the probability of having at least one plateau is

S N,D = 1 -1 - 1 N D 2 D (N -1) D (4) 
We have then

ν (F p,D ) = lim N →∞ S N,D = 1 -e -2 D ??
Note that this formula can not be applied for D = 1. In practice this probability quickly increases to 1 as D increases. For example ν (F p,3 ) 0.9997.

Single global minimum functions

Dimension D = 1

Let F g,N be the set of functions of F N that have just one global minimum. Note they may have several local minima. The number of such functions is given by

F g,N = N N -1 k=1 (N -k) N -1 = B N (N ) -B N (0)
by the application of a variant of the Faulhaber formula [START_REF] Conway | The Book of Numbers[END_REF], and where B N (m) is the Bernoulli polynomial of degree N evaluated at m. This is because there are N positions of the global minimum of rank k. This rank is in {1, 2, • • • , N -1}, and the N -1 other ranks of the function are in {k + 1, • • • , N }, i.e. have N -k possible values.

The measure of F g is therefore 2

ν (F g ) = lim sup N→∞ Fg,N∩Fg N N = lim N →∞ B N (N ) N N = 1 e-1 0.582 (5)

Dimension D ≥ 2

On dimension D we have

F N = N N D and F g,N = N D N -1 k=1 (N -k) N D -1 = B N D (N ) -B N D (0) so, if D > 1 ν (F g,D ) = lim N →∞ N D k=0 N D ! (N D -k)!N N D -N +k B k k! = 0 (6)
where B k is the k -th Bernoulli's number. Contrary to the case D = 1, single global minimum functions are "infinitely" rare.

Multiple global minima functions

Dimension D = 1

More generally let F m,N be the number of functions of F N that have exactly m global minima. We have

F m,N = N m N -m k=1 (N -k) N -m = N m B N -m+1 (N -m + 1) -B N -m+1 (0) N -m + 1 So ν (F m ) = lim N →∞ F m,N N N = 1 m! (e -1) (7) 
As we can see on the figure 6 it rapidly decreases. Note that we have

ν (F m+1 ) ν (F m ) = 1 m + 1 (8)
2 Sketch of the proof: We have the classical formula

B N (N ) = N k=0 N k B k N N -k ,

and the generating function of the

Bernoulli numbers

B k gives 1 e-1 = ∞ k=0 B k k! . Then B N (N ) N N = N k=0 N ! (N -k)!N k B k
k! , and we note that lim 

N →∞ N ! (N -k)!N k = 1.

Dimension D ≥ 2

The general formula for any dimension D is

F m,N = N D m N -m k=1 (N -k) N D -m = N D m B N D -m+1 (N -m + 1) -B N D -m+1 (0) N -m + 1
and we have

ν (F m,D ) = 1 m! lim N →∞ B N D -m+1 (N -m+1) (N -m+1)N N D.-m = = ν (F m,D ) = 1 m! lim N →∞ N D -m+1 k=0 N D ! (N D -k)!N N D -N +m-1+k B k k! = 0 (9) 
When considered for each m separately, the set of functions is negligible, but of course the infinite union of these sets is the entire F itself. The interesting point is that the formula 8 is still valid

ν (F m+1,D ) ν (F m,D ) = 1 m + 1 (10) 
Now, let us consider on the one hand F 1,D and, on the other hand, the union F * ,D = ∞ m=2 F m,D . We have therefore the relative proportion (because

∞ m=1 1 m! = e) ν (F * ,D ) = (e -1) ν (F 1,D ) (11) 
2.6 Unimodal functions

Dimension D = 1

Contrary to what one may think, the difficulty degree of unimodal functions is not 0, except for strictly monotonic ones. See a direct calculus in the Appendix. But anyway Theorem 5. Unimodal functions are negligible.

An unimodal function is either concave or convex. Let us consider the convex ones. There are N possible positions x min for the minimum. For each possible minimum value v min between 1 and N -1 the possible maximum values v max are between v min + 1 and N , and there are v max -v min -1 possible intermediate values (possibly zero), whose positions are in [1, x min [. And the same holds for the positions in ]x min , N ].

On the whole, if we count the symmetrical functions twice, and as there are as many concave functions as convex ones, the number of unimodal functions is then smaller than

2N N -1 vmin=1 N vmax=vmin+1 vmax-vmin-1 k=0 v max -v min -1 k
with the convention m 0 = 1 for any integer m. The last sum is equal to 2 vmax-vmin-1 . So we can write

F l ∩F N F N < 2 N N -1 N -1 vmin=1 N vmax=vmin+1 2 vmax-vmin-1 < 2 N N -1 N -1 vmin=1 2 N -vmin -1 < 2 N N -1 2 N -2 -N (N -1) 2 ν (F u ) ≤ lim N →∞ 2 N +1 N N -1 = 0
This result is not surprising. Intuitively, the unimodal functions are very rare compared to the multimodal ones.

Dimension D ≥ 2

Actually the theorem is valid for any dimension D. Indeed the set of these functions is included into the ones of single global optimum functions, and, as we have seen, this set is negligible for D ≥ 2 (but not for D = 1, that is why a specific proof is needed).

Benchmarks

Structure of a representative benchmark

According to what we have seen, let us summarise in table 4 a possible taxonomy of all possible functions. As the sum of the proportions is greater than 100% it implies that some functions are, for example, both deceptive and with plateaus.

A finite benchmark can not have a structure perfectly similar to this taxonomy. For example, as seen, unimodal functions are negligible. So it should not contain any. But in practice it is useful to have one, to be sure that the optimiser we test is at least able to find the minimum of such a simple function. Note though that all unimodal functions are equivalent (see the Appendix).

Also, except for dimension one, the proportion of functions with m global minima should be zero for any m value. This is of course impossible for a finite benchmark. So, a possible compromise could be to have a proportion τ 1 of functions with just one global optimum, a proportion τ 2 τ1 2! of functions with two global optima, and so on up to a given m according to the formula 10. The constraint is that

M m=1 τ m = 100%.
Actually this is also valid for dimension one, except we do not need to force an arbitrary non-null τ 1 for we can use the theoretical one (58%).

About plateaus note that on a digital computer a function almost always have at least a small one. Let ε be the ε -machine of the computer and D the dimension of the definition space. Let us suppose there exists D + 1 points (x i , x j ) so that x i , x j ≤ Dε and for which the definition of the function implies |f (x i ) -f (x j )| < ε. In practice, the computer assigns the same value to these "adjacent" points, which are therefore seen as a small plateau.

We can then propose a reasonable structure for a representative benchmark (see table 5). To build such a benchmark we need deceptive functions that are not too "monstrous", in the hope that similar ones may indeed exist in the real world. Examples of such functions are given in the Appendix. Let us now check if the selection of functions in two of the classical benchmarks is more or less compatible with the proposed structure.

CEC 2005 benchmark

In this benchmark the functions are completely artificial [START_REF] Pn Suganthan | Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter Optimization[END_REF]. The difficulty degree has been experimentally estimated. For each function the number of generated triplets was big enough to "stabilise" its third digit. As we can see, almost all functions are nice. Only four may be slightly deceptive, assuming the estimation is precise enough. As expected the Sphere function is the easiest one. On the other hand, a function like the Non-Continuous Rotated Hybrid Composition one, explicitly built to be difficult, is in fact the fifth nicest one.

For this benchmark, the taxonomy of the set of functions is given in the table 7. There are clearly too many unimodal functions. The proportion of deceptive functions is too low, unless we assume this is indeed consistent with what happens for the real world problems. 

CEC 2011 benchmark

Here the functions are supposed to model real-world problems [START_REF] Das | Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems[END_REF]. Note that there is a bug in the downloadable Matlab© code for the functions F5 and F6 (Tersoff potential Si(B) and Si(C)): some positions are not evaluable because of "infinite" intermediate values in the computation. In these cases, we assign a big value, slightly random, to avoid artificially creating plateaus. To generate Table 8 we have taken this big value to be 10 10 + U (0, 1). It shows that all functions are nice. 4 Open questions for future work

The conjectures we have seen generate three open questions. Let us summarise them:

1. For any dimension D half of functions from I to I D are deceptive, and half are nice;

2. For a given dimension the difficulty degree of a no-plateau Lipschitzian function can not exceed a certain value.

3. If the rate of plateaus is greater than a certain value, then the function can not be nice.

But the most important one is probably about the (quasi-) real world problems. As we have seen, in the CEC 2011 benchmark, the functions are not deceptive, except maybe two. Is it still true if we consider more real world problems? If not, i.e. if there do exist deceptive real world problems, a fair benchmark has to include some of them.

And, indeed, it is probably the case, for building simple deceptive functions is easy (see the Appendix 5.3). However the definition of the difficulty degree can be modified. In particular we may consider only triplets like {x * , x 2 , x 3 } in which x * is the position of any global optimum, and estimate amongst them the proportion of NisB ones. With this definition the status (deceptive, nice, neutral) of a function may be modified (see the Appendix for a few examples). 2 , with 0 ≤ a ≤ 1. Actually, the following calculation is valid for any unimodal function (minimum on a) that is a translation of the symmetric form with a = 1 2 . For example (x -a)

2k , or 1 -sin (π (x -a)). By symmetry, we can consider just the case a ≤ 1 2 . If, in a triplet {x 1 , x 2 , x 3 all x i are at least or at most equal to a, then the triplet is necessarily NisB. For the particular case a = 1 2 , because we have

f (x 1 ) ≤ f (x 2 ) ≤ f (x 3 ) we find that µ (W ) = 1 f1=0 1 f2=f1 1 f3=f2 df 3 df 2 df 3 = 1 6 (12) 
Now, for a < 1 2 , W is made of two sets, W 1 , whose triplets are so that the three x i are in [0, a], and W 2 for the others. By similarity with the case a = 1 2 , we have

µ (W 1 ) = 1 6 a 1 2 3 = 4 3 a 3 (13) 
For W 2 the possibilities are constrained by a set of conditions

x 1 ∈ ]a, 2a] x 2 ∈ [max (0, 2a -x 1 ) , ] x 3 ∈ ]2a -x 2 , min (2x 1 -x 2 , 1)] (14) 
They define a polyhedron in I 3 whose vertices are (see the figure 7)

v 1 = (a, 0, 0) v 2 = (2a, 0, 0) v 3 = 4a 3 , 2a 3 , 0 v 4 = min 1 2 , 2a , 0, min (1 -2a, 1) v 5 = (2a, 0, min (1 -2a, 1)) v 6 = min 2a+1 3 , 2a , max 0, 4a-1 3 , min (1 -2a, 1) (15) 
Let us call V its volume. To derive the measure µ from this volume, we just have to multiply it by the rate between the one of I 3 , i.e. 1, and the one of A, the set of all triplets, which is lim 2 , for a ∈ 0, 1 2 . For a > 1 2 we have the symmetrical curve decreasing to zero.

N →∞ 6N 3 N (N -1)(N -2) = 6.
Note that when a ≤ 1 4 the vertices v 4 , v 5 , and v 6 are the same. So, to compute V , a simple way is to consider the two cases a ∈ 0, 1 4 , and a ∈ 1 4 , 1 . In the first case, the polyhedron is a pyramid (triangular basis), and we easily have µ (W 2 ) = 4 3 a 3 , and therefore

µ (W ) = 8 3 a 3 (16) 
In the second case, the polyhedron is a bit more complicated, but it can be seen as the difference of two pyramids, and finally its volume is V = -14 9 a 3 + 4 3 a 2 -a 3 + 1 36 and therefore

µ (W ) = -8a 3 + 8a 2 -2a + 1 6 (17) 
The figure 8 summarises this measure for all a values in 0, 1 2 . For values in 1 2 , 1 the measure can be deduced by symmetry. And we have the following theorem Theorem 6. The difficulty degree of the parabola function f (x) = (x -a)

2 on [0, 1] is at most equal to 1 6 , for a = 1 2 . The classical concept of equivalent functions f and g is in fact a matter of equality: f (x) = g (x) for any x.

Optim-equivalence

But from an optimisation point of view the concept can be extended. Let us suppose we have two bijections ϕ X and ϕ V from I to I, with the following properties:

• ϕ X is continuous3 , strictly monotonic, ϕ X (0) = 0, ϕ X (1) = 1.

• ϕ V is continuous strictly increasing. Note that ϕ -1

V is also strictly increasing. Then the formal definition of optim-equivalence is f ∼ g ⇐⇒ ∀x ∈ I, ϕ V (g (x)) = f (ϕ X (x))

It can be rewritten in a less symmetrical way f ∼ g ⇐⇒ ∀x ∈ I, g (x) = ϕ -1 V (f (ϕ X (x))) which means that g is built by "distorting" f along the definition space and along the value space by keeping the order relations between the values. For example, the two functions of the figure 9 are optim-equivalent, with ϕ X (x) = x 2 and ϕ -1 V (v) = 0.2 + 0.7 √ v. And unimodal functions are obviously all optim-equivalent. An iterative optimisation algorithm that takes into account only the ranks of the function values, and not the values themselves (like, say, a classical Particle Swarm Optimiser), generates the same sequence of sampled points for equivalent functions (assuming, of course, that the random number generator is initialised the same way). where x = (x 1 , . . . , x D ). For a = 0.51 and D = 2 the difficulty degree is about 0.57, and about 0.6 for D = 10. Remark 3. We can see here a drawback of our definition of the difficulty degree: it implicitly assumes that we are looking for a precise global minimum. Here, with a = 1 2 the difficulty degree is still greater than 0.5, but in practice, as the function has then 2 D equivalent global minima, finding any of them is in fact easy for any decent optimiser.

With plateau, single global minimum

We can replace an area of the inverted paraboloid by a plateau where λ defines the "level" of the plateau, and therefore its size. For a = 0.51, and λ = 0.85 the difficulty degree is about 0.98 for D = 2, 0.998 for D = 3, and virtually 1 for higher dimensions.

Figure 1 :

 1 Figure 1: The sets of triplets.

Figure 3 :

 3 Figure 3: For this discrete unimodal no-plateau function with just 11 points, the difficulty degree is 0.57.

Figure 4 :

 4 Figure 4: Probability of having at least one 2-points plateau vs Definition space size N (assuming the value space has also N points).

Figure 5 :

 5 Figure 5: Proportion of functions vs proportion of plateau(s).

Figure 6 :

 6 Figure 6: Rate of functions with m global minima.

Figure 7 :

 7 Figure 7: The polyhedron defining W 2 , for a = 0.4

Figure 8 :

 8 Figure 8: Difficulty degree of the parabola (x -a)2 , for a ∈ 0, 1 2 . For a > 1 2 we have the symmetrical curve decreasing to zero.

Figure 9 :

 9 Figure 9: Two optim-equivalent functions. The relative positions and values of the local optima are the same.

Figure 10 :

 10 Figure 10: Inverted 2D paraboloid (a = 0.51). It is quadrimodal and its difficulty degree is about 0.57.

5. 3

 3 Examples of simple deceptive functions 5.3.1 No plateau, single global minimum Even apparently simple functions can be partly deceptive. For example the "inverted" paraboloid defined on[0, 1] D by f (x) = D -

f

  (x) = min λD, D -D d=1 (x d -a) 2

  

Table 2 :

 2 Summary table

	Case	Number of such
		triplets

Table 4 :

 4 Theoretical taxonomy of all possible functions.

	Function type	Proportion for D=1 Proportion for D>1
	Unimodal	0 %	0%
	With plateau(s)	1 -e -1 63%	1 -e -2 D 100%
	Deceptive	50 %	50% (experimental)
	Single global minimum	58%	τ 1 = 0%
	Several global minima	42%	τ * = 100%

Table 5 :

 5 Compromises for a finite representative benchmark of F functions.

	Function type	Proportion for D=1	Proportion for D>1
	Unimodal	1 F %	1 F %
	Deceptive	50 %	50%
	One global minimum	τ 1 = 58%	τ 1 (arbitrary, but should be small)
	2 global minima 3 global minima 4 global minima 5 global minima 6 global minima	29% 10% 2.4% 0.5% 0.1%	τ1 2 τ1 3! τ1 4 τ1 5 τ1 6!

Table 6 :

 6 CEC 2005 benchmark. Difficulty degree of the functions for D = 10.

	Code Name

Table 7 :

 7 Taxonomy of the CEC 2005 benchmark.

	Function type	Proportion for D>1
	Unimodal	20%
	With plateau(s)	0%
	Deceptive	12%
	Single global minimum	τ 1 = 100%
	Several global minima	τ * = 0%

Table 8 :

 8 CEC 2011 benchmark. Difficulty degree of the functions.For this benchmark the taxonomy is given in table 9. Because of symmetries the Lennard-Jones problem has several global minima. On the one hand there are no unimodal functions, similar to the theoretical taxonomy, but, on the other hand, there are no deceptive functions at all, except, maybe the Tersoff Potential for model Si (C) and the Circular Antenna Array Design Problem. Also we should have τ 1

	Code	Name	Dimension Difficulty
	1	Parameter Estimation for Frequency-Modulated (FM) Sound Waves	6	0.448
	2	Lennard-Jones Potential	30	0.490
	3	The Bifunctional Catalyst Blend Optimal Control Problem	1	0.074
	4	Optimal Control of a Non-Linear Stirred Tank Reactor	1	0.175
	5	Tersoff Potential for model Si (B)	30	0.485
	6	Tersoff Potential for model Si (C)	30	0.500
	7	Spread Spectrum Radar Polly phase Code Design	20	0.489
	8	Transmission Network Expansion Planning (TNEP) Problem	7	0.487
	9	Large Scale Transmission Pricing Problem	126	0.453
	10	Circular Antenna Array Design Problem	12	0.503
	11.1	Dynamic Economic Dispatch (DED) instance 1	120	0.435
	11.2	DED instance 2	216	0.455
	11.3	Economic Load Dispatch (ELD) Instance 1	6	0.197
	11.4	ELD Instance 2	13	0.421
	11.5	ELD Instance 3	15	0.361
	11.6	ELD Instance 4	40	0.445
	11.7	ELD Instance 5	140	0.468
	11.8	Hydrothermal Scheduling Instance 1	96	0.469
	11.9	Hydrothermal Scheduling Instance 2	96	0.470
	12	Messenger: Spacecraft Trajectory Optimization Problem	26	0.494
	13	Cassini 2: Spacecraft Trajectory Optimization Problem	22	0.491
	question for real world problems (see the section 4).	τ * 1.7 but this is an open

Table 9 :

 9 Taxonomy of the CEC 2011 benchmark.

	Function type	Proportion for D>1
	Unimodal	0%
	With plateau(s)	0%
	Deceptive	0%
	Single global minimum	τ 1 = 92%
	Several global minima	τ * = 8%

This measure is not sigma-additive, but it is not important here.

Any interval in I contains an infinity of points, so one can define the same kind of continuity as for the real numbers R.

Acknowledgements

I would like to express my deep thanks to Satyaki Mazumder of IISER, Kolkata, India, who pointed out some mathematical mistakes in the previous versions of this paper and helped me bring the idea to its current shape. 

Appendix

Parabola and equivalent functions

Modifying the difficulty degree definition

Lets us call "Difficulty degree δ 1 " the one defined by taken into account all triplets. Now, if we consider only triplets like {x * , x 2 , x 3 } in which x * is the position of any global optimum, we can define the "Difficulty degree δ 2 ". As we can see on the small table 10 these two degrees may be very different on a given function. So, obviously, more investigation is needed to understand why and, maybe, to propose a difficulty degree δ 3 .