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Abstract

In the context of human-robot manipulation interaction for service or indus-

trial robotics, the robot controller must be able to quickly react to unpre-

dictable events in dynamic environments. In this paper, a FIR filter-based

trajectory generation methodology is presented, combining the simplicity

of the analytic second-order trajectory generation, i.e. acceleration-limited

trajectory, with the flexibility and computational efficiency of FIR filtering,

to generate on the fly smooth jerk-constrained trajectories. The proposed

methodology can generate synchronized (fixed-time) and time-optimal jerk-

limited trajectories from arbitrary initial velocity and acceleration conditions

within 20 microsecond. Other jerk-constrained trajectories such as jerk-time

fixed trajectories, which are particularly suitable for vibration reduction, can

be easily generated. Experimental validations carried out on a seven axis

Kuka LBR iiwa are presented.
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1. Introduction

Jerk limitation of robotic systems trajectories is a well-established method

for smoothing the dynamic behaviour, reducing the vibrations and the sys-

tem wear and improving the trajectory tracking performances (Macfarlane

and Croft (2003)). Initially used in industrial handling and manufacturing

robotics, the jerk-bounded trajectories can be advantageously exploited in

mobile robotics (Broquere et al. (2008); Yin et al. (2012)), in human-robot

collaboration and in human motion reproduction (Johnson et al. (2012);

Frisoli et al. (2013); Dinh et al. (2015)). One notes that in these more re-

cent areas, the trajectory generation problem have to be solved with online

capability. Indeed robots attempt to instantaneously react to unpredicted

events originating from the environment and potentially from the physical

human-robot interaction.

Among the significant amount of efficient and elegant solutions to the

jerk-bounded trajectory generation that can be found in the literature (Gas-

paretto and Zanotto (2008); Boryga and Grabos (2009); Macfarlane and

Croft (2003); Liu et al. (2013)), jerk-limited profile with piecewise constant

jerk function is a widespread solution used by the motion systems of machine-

tools and industrial robots (Lange and Albu-Schffer (2016)). A jerk-limited

trajectory can be defined as the time-optimal solution to the problem of jerk

limited rigid body control with velocity, acceleration and jerk constraints and

can be generated using several approaches.

In the first works, jerk-limited trajectories were usually defined analyt-

ically by computing optimal profiles offline, and implemented with some a

priori information about the systems trajectories (Erkorkmaz and Altintas
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(2001)). More recently, analytic solutions to the time-optimal and time-fixed

jerk-limited online profile generation problem were proposed (Jeong et al.

(2005); Haschke et al. (2008); Knierim et al. (2012)). The computing time

of such algorithms is about 350 microseconds for a single trajectory, which

can be a significant limitation for multi-axis systems during one control cycle

(typically 1 millisecond). In Kroger et al. (2006); Kroger and Wahl (2010),

Kroger introduce an elegant framework based on the current state of the

system and acceleration-limited trajectories. The time-optimal jerk-limited

solution is presented, but not detailed, in Kroger (2011). This algorithm be-

longing to the well-known Reflexxes Motion Library is efficient for multi-axis

system. One notes that this library is no longer freely available for robotics

research.

Another interesting approach to naturally comply with the online capa-

bility of the trajectory generation consists in using a filter-based approach. In

Lu (2008), the author presents an original jerk-limited time-optimal control

(JCTOC) scheme, i.e. a dynamic filtering or closed-loop filtering approach.

The proposed controller is time-optimal according to the constrained jerk

and is, by definition, adapted to real-time use, but the kinematic constraints

on the maximum values of the velocity and acceleration are not considered.

A similar approach, but with enhanced capabilities, is described in Gerelli

and Guarino (2010). The proposed dynamic filter-based trajectory gener-

ation can handle freely assignable bounds on the velocity, the acceleration

and the jerk, but the time-fixed solution and consequently the multi-axis

synchronization problem is not taken into consideration in this approach.

A simpler approach consists in using FIR (Finite Impulse Response) filters
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properties to shape the trajectory according to a given set of kinematic, time

and frequency constraints. This open-loop approach conducts to less com-

plex algorithms, which can be naturally adapted to the real-time trajectory

generation. In Olabi et al. (2010), a FIR filter-based approach is exploited

to generate the tool feedrate of a machining robot with limited jerk. The

jerk-limited trajectory is obtained offline by convolving a pre-calculated low

complexity acceleration-limited profile with a moving average filter, i.e. a

FIR filter with all weight coefficients set equal to one. In Biagiotti and Mel-

chiorri (2012), the FIR filter-based approach is generalized for the online

trajectory generation. Starting from a rough step input, a cascade of n FIR

filters generates a trajectory of order n respecting the kinematic constraints.

The time-fixed trajectory generation problem and multi-axis synchronization

can be solved using this approach. However, the proposed online generator

can only deal with symmetric kinematic constraints and the time-optimality

of the trajectory is not assured between via-point. Moreover, it is not pos-

sible to specify on the fly desired values of time-derivative of the position

(velocity, acceleration and jerk) different from zero at the via points. On the

other hand, the strength of the previous FIR-filter based approach relies on

the fact that the smooth online trajectory generation can be efficiently com-

bined with the interesting properties of FIR filters in the frequency domain

for vibration reduction.

On this subject, previous works exploiting the FIR filter-based approach

(Olabi et al. (2010); Bearee and Olabi (2013)) demonstrated that the FIR

filter time, i.e. the constant jerk-time for a jerk-limited trajectory, can be

tuned to cancel the motion-induced vibrations of an undamped system. In
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Bearee (2014), the author proposes an improvement by using asymmetric jerk

profiles, i.e. by using non-equal FIR filter coefficients, to take into account

the damping coefficient of the flexible system. This approach was general-

ized and improved in Biagiotti et al. (2016) by using trajectories based on

an exponential jerk profile and by deriving analytically the new FIR filter

parameters that guarantee the residual vibration suppression.

In this work, we propose a trajectory generator that exploits the FIR

filtering approach to generate on the fly jerk-constrained trajectories, i.e.

jerk-limited trajectories or jerk-time fixed trajectories (with constant jerk-

time). The trajectories are obtained by the convolution of FIR filters with

low computational complexity acceleration-limited trajectories. The analyt-

ical formulation of the initial acceleration-limited trajectory takes account of

the FIR filter time and the system trajectories can be modified during execu-

tion time while ensuring velocity and acceleration continuity. The following

properties regarding time-constraints, multi-dimensional case and vibration-

constraints can be chosen online:

• time-optimal jerk-limited trajectory;

• time-fixed jerk-limited trajectory and multi-axis synchronization;

• jerk-time fixed solution for systems sensitive to low-frequency vibration.

The next section presents the methodology adopted for the generation of

jerk-limited trajectories. Sections 3 and 4 detail the procedure to generate

respectively online jerk-time fixed trajectories and time-optimal jerk-limited
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trajectories. In Section 5, a fixed-time solution for multi-axis motion syn-

chronization is proposed. Experimental results obtained with a collaborative

7 axis robot are presented in Section 6. Conclusions are drawn in Section 7.

2. FIR filter-based Jerk-constrained trajectory generation

In the remainder of this paper, the subscript f stands for “filtered”, i.e.

denotes the variables of the jerk-limited profile, which is the output of the

algorithm. Moreover, for the online trajectory generation, it is assumed that

the final velocity and acceleration are zeros, since if no new set-point is given,

the goal is reached and the motion stops.

2.1. Proposed methodology for the trajectory generation

The generation of time-optimal acceleration-limited trajectories for a rigid

system, i.e. the time-optimal control problem for a double integrator sub-

mitted to kinematic limitations on the first and second time derivative of

the position, can be easily solved analytically. This low computational com-

plexity approach is well adapted for online trajectory generation, but results

in unsmooth profiles with step accelerations (bang-bang or bang-cruise-bang

type control) and triangular or trapezoidal shaped velocity. Considering a

FIR filter defined for implementation as

af ,k =
1

N

N∑

i=1

ci · ak−i+1, (1)

with respectively af ,k and ak the acceleration output and input value of the

filter at time k.Te (Te being the sampling time of the signal), N the number

of taps of the filter calculated as the integer part of Tj/Te, Tj the filter time
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(Tj is practically chosen as a multiple integer of Te) and ci = {c1, . . . , cN}

the filter coefficients. Convolving an acceleration step function of value amax

with a sliding average FIR filter (ci = 1, i ∈ {1, . . . , N}) produces a ramp

function with ending value amax and a slope value, i.e. a jerk value noted

jmax, given by

jmax = amax/Tj. (2)

Therefore, as illustrated in Fig. 1, an acceleration-limited profile may be

turned into a jerk-limited profile by FIR filtering. Unfortunately, FIR fil-

tering of a time-optimal acceleration-limited trajectory does not necessarily

produce a time-optimal jerk-limited trajectory. Indeed, the jerk limitation

given by (2) could be exceeded and moreover, the initial acceleration and

velocity conditions being not explicitly taken into account, there is no guar-

antee that the desired position will be reached. Fig. 2 shows the trajectories

resulting from FIR filtering (averaging filter) of different acceleration-limited

profiles and illustrates the need for the adaptation of the initial acceleration-

limited profile in view of producing the expected jerk-constrained trajectory

(time-optimal or time-fixed or jerk-time fixed).

The methodology detailed in this paper for the online generation of jerk-

constrained trajectories is based on the convolution of the adapted version

of an acceleration-limited trajectory with a time-varying FIR filter (with

coefficients, number of taps and initial state that can change over time)

inducing the final jerk-constrained trajectory. The adaptation stage ensures

the compliance of the filtered output trajectory with the initial conditions and

the selected property, i.e. the time-optimal or the time-fixed or the jerk-time
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Figure 1: FIR filtering principle for jerk limitation of an acceleration-limited profile.

fixed solution. The principle of the proposed algorithm is described in Fig. 3.

An event, which can be triggered by a new reference coming from a sensor,

from a manual control or from a given dataset of via points, is defined as a

new set of inputs for the algorithm. The inputs are the new set-point qe, the

associated kinematics limits (vmax, amax, dmax, jmax) and the current state

of the generator (q0f , v0f , a0f ). The algorithm is divided into two stages.

The first stage consists in generating an analytically-defined acceleration-

limited trajectory, which is adapted for the following FIR filtering stage. The

output of the filtering stage is a jerk-constrained trajectory, which fulfills the

requirements in terms of final position, initial state and kinematic limitations

on the velocity, acceleration and jerk. As detailed in the remainder of this

paper, the adaptation of the initial acceleration-limited trajectory is based on

simple analytical relations. According to the current state of the trajectory

and the selected property for the new trajectory, this adaptation process may

be repeated iteratively according to a decision tree. The maximum number

of iterations is 2 for the time-optimal trajectory case.
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Figure 2: Examples of trajectories resulting from FIR filtering (averaging filter) of different

acceleration-limited profiles. Solid and dashed lines indicate respectively the filtered and

the initial profiles, dotted lines represent the kinematic constraints (set-point qe = 0.1m,

vm = 1m/s, v0f = 0.4m/s, am = dm = 16m/s2, jm = 250m/s3. a) Filtered trajectory

resulting from a time-optimal acceleration-limited profile, b) the initial acceleration profile

is adapted to generate jerk-time fixed trajectory (Tj = am/jm = 0.064ms), c) the initial

profile is adapted to generate time-optimal jerk-limited profile, d) the initial profile is

adapted to generate time-fixed jerk-limited trajectory (T = 0.25s)
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Figure 3: Proposed online trajectory generation algorithm based on FIR filtering of

adapted acceleration-limited profile.

The main notations used in this document are defined in the Table 1

below.

2.2. Time-optimal acceleration-limited trajectory generation

The basis of the methodology consists in generating an acceleration-

limited trajectory, which respects the following kinematic constraints and

boundary conditions:

|v(t)| ≤ vmax,

−dmax ≤ a(t) ≤ amax.
(3)

The generic acceleration-limited profile, presented in Fig. 4, can be divided

into three stages: first an acceleration stage with constant acceleration value

noted ar and duration time Ta; second a constant velocity stage with duration

time Tv and constant velocity value vr; finally, a deceleration stage with

constant acceleration value noted dr and duration time Td. The initial values

of the position and velocity are noted q0 and v0 and the final position is qe.

For time-optimality reasons, the reached value ar and dr are set equal to
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Symbol description

Ta, Tv and Td Duration of the stages of the AL profile

q0f , v0f and a0f Initial conditions of the jerk-limited trajectory

q0 and v0 Adapted initial conditions for the AL profile

qe Position set-point

s Direction (sign) of the trajectory

vmax, amax, dmax and jmax Kinematic bounds

vr, ar and dr Reached values of velocity and acceleration

Tj , Tja, Tjv and Tjd Length of the constant jerk stages (FIR filter time)

Table 1: Main notations

their respective bounds amax and dmax.

The first step of the trajectory generation consists in expressing the dis-

tance noted ∆q,stop, which represents the minimum stopping distance. ∆q,stop

can be calculated as the traveled distance starting from the initial velocity

v0 to full stop with the maximum deceleration value:

∆q,stop =
v20

2 · dmax

. (4)

Posing ∆q = qe − q0 the distance to be traveled, if |∆q| ≤ ∆q,stop, then a

full stop trajectory is required and the trajectory generation can be repeated

with the new starting conditions v0new = 0 and q0new = q0 +sign(v0) ·∆q,stop.

A second specific case has to be checked if |v0| > vmax. In this special case,

which may occur if the constraint vmax is changed on the fly, the velocity

has to be reduced to vmax as fast as possible and the trajectory generation

can be repeated just as before posing v0new = sign(v0) · vmax and q0new =

q0 + sign(v0) ·∆q,v0 , with ∆q,v0 = (|v0| − vmax)
2 /(2dmax). One notes that the
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Figure 4: Generic acceleration-limited profile.

resulting trajectory is a double deceleration case. Finally, the last verification

consists in defining the shape of the velocity profile (trapezoidal or triangular)

according to the fact that the maximum velocity is reached or not. The

minimum distance for which the maximum velocity is reached, noted ∆q,vmax
,

can be easily calculated considering Tv = 0 (see Fig. 4) and expressed as

∆q,vmax
=

(vmax + v0) · Ta + vmax · Td

2

=
v2max − v20
2amax

+
v2max

2dmax

.

(5)

Then, if |∆q| ≥ ∆q,vmax
, the maximum velocity is reached and the velocity

profile is trapezoidal. Defining s = sign (∆q) the sign of the motion, the

resulting trajectory parameters ar, vr, dr, Ta, Tv and Td are given by

ar = s · amax; dr = s · dmax; vr = s · vmax, (6)

Ta =
vr − v0

ar
; Td =

vr
dr
; Tv =

∆q − s ·∆q,vmax

vr
. (7)

Otherwise, if |∆q| < ∆q,vmax
, the velocity profile is triangular and Tv = 0 in

the previous equation. The reached velocity vr can be calculated replacing
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∆q,vmax
and vmax in (5) by ∆q and vr. The trajectory parameters are

ar = s · amax; dr = s · dmax; vr = s ·

√

2 · amax · dmax ·∆q − dmax · v20
amax + dmax

, (8)

Ta =
vr − v0

ar
; Td =

vr
dr
; Tv = 0. (9)

3. Adaptations for jerk-time fixed trajectory

This section is concerned with the definition of the initial acceleration-

limited profile in view of producing, after FIR filtering, a jerk-time fixed

trajectory, i.e. a trajectory with the constant jerk stages equal to a desired

value Tj, as described in Fig. 2(b). Hence, for this kind of trajectory the

filter time Tj is fixed (constant number of taps of the filter) and the initial

condition of the filter is given by the current acceleration a0f .

3.1. Handling initial conditions

As previously seen in Fig. 2(a), if initial velocity (or acceleration) are

different from zero, the filtered time-optimal acceleration-limited trajectory

does not respect the final position. Hence, the parameters (q0; v0) used to

generate the initial acceleration-limited profile have to be adjusted according

to the real current state (q0f ; v0f ; a0f ). Fig. 5 illustrates the definition of the

acceleration-limited profile according to the initial conditions. Deriving the

difference between the non-filtered and filtered velocity and position profiles,

the analytical relationship between the initial parameters can be given as.

v0 = v0f + δv, q0 = q0f + δq, (10)

with

δv =

∫

af (t)dt−

∫

a(t)dt, (11)

13



a
c
c amax

a0f

Tj Tj

Tj Tj

v
e
l

vmax

Tj

dmax

Tj

v0
v0f

δv

δv

v
e
l

vmax

v0

v0f

δv

p
o
s qe

q0

q0f

δq

Tj

a)

b)

p
o
s qe

q0

q0f

δq

c)

v0=v0f+ v

v0=v0f+ v

q0=q0f+ q

+ 

initial velocity

 value

+ 

initial position

 value

Figure 5: Principle of initial conditions definition for trajectory FIR filtering. a) Influence
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δv = a0f ·
Tj

2
, (12)

and

δq =

∫







v0f +

∫

af (τ)dτ
︸ ︷︷ ︸

vf (t)








dt−

∫ (

v0 +

∫

a(τ)dτ

)

︸ ︷︷ ︸

v(t)

dt, (13)

δq = v0f ·
Tj

2
+ a0f ·

T 2
j

12
. (14)

3.2. Jerk limitation and adaptations

For a given jerk-time Tj , the maximum jerk value resulting from the FIR

filtering of an acceleration step of value amax will be given by the relation

(2). Now, considering a jerk-time fixed trajectory, the maximum jerk value

could depend on the initial acceleration value a0f too (the first acceleration

step being ar − a0f ). Hence, the maximum jerk value that can be reached

for a jerk-time fixed trajectory can be expressed as

jmax = max

{
|ar − a0f |

Tj

,
|ar|

Tj

,
|dr|

Tj

}

. (15)

To generate a jerk-time fixed trajectory, each stage of the initial acceleration-

limited trajectory has to be low-bounded by Tj. Hence, if Ti < Tj for

i ∈ {a, v, d}, the adaptation consists in re-generating the acceleration-limited

profile with a lower value of vr calculated by imposing Ti = Tj in (7) or (9)

according to the fact that the maximum velocity value is reached or not.

For instance, Fig. 6 illustrates such adaptation. Based on the desired

position, the initial conditions and the kinematic constraints, the initial

acceleration-limited trajectory calculated using the relations (5) to (9) leads

to Ta, Tv and Td lower or equal to the FIR filter time Tj. The resulting
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Figure 6: Example of adaptation of the initial acceleration-limited profile (dotted line) for

the generation of jerk-time fixed trajectory (∆qf = 0.5 m, a0f = −4 m/s2, v0f = 1 m/s,

amax = 10 m/s2, dmax = 6 m/s2, vmax = 1.5 m/s and Tj = 0.25 s ). a) non-adapted

initial profile with Ta, Tv and Td lower or equal to the FIR filter time Tj . b) adapted

profile, Tv = Ta = Td = Tj and |vr| < vmax consequently.
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filtered trajectory reached the maximum velocity, but is not jerk-time fixed

(left plot in Fig. 6). Then, imposing each stage of the initial acceleration-

limited trajectory to be equal to the desired filter time Tj, i.e. posing

Tv = Ta = Td = Tj in (7), leads to the following new values of the reached

velocity vr = (∆q − v0 · Tj)/2Tj , acceleration ar = (vr − v0)/Tj and decelera-

tion dr = vr/Tj for the definition of the adapted initial acceleration-limited

profile (right plot in Fig. 6).

3.3. Advantage of fixed Jerk-time for vibration compensation

As mentioned in the introduction, online jerk-time fixed trajectories can

be useful for vibration reduction. Indeed, similarly to input shaping method-

ology, the jerk-time (filter-time) and the jerk-shape (filter coefficients) can

be calculated to reduce vibration. Hence, for an undamped dominating vi-

bratory mode with natural period noted T0, constant jerk stage Tj with time

equal to an integer multiple of T0 will suppress vibration (see Fig. 7). For

a dominating low-damped vibration, the damping coefficient ζ can be taken

into account by modifying the jerk shape using damped-jerk shape described

in Bearee (2014) or exponential jerk shape detailed in Biagiotti et al. (2016).

Considering a jerk-time fixed trajectory, the number N and the values of

filter coefficients ci in (1) can be fixed according to the modal parameters

T0 and ζ. For instance, damped-jerk trajectory (see Bearee (2014)) is ob-

tained by setting Tj = N.Te and ci = (N − 1 + ζπ(N + 1 − 2i))/(N − 1)

with N = ⌈T0 (1 + 0.083ζ + 0.047ζ2 + 7.1ζ3) /Te⌉ . This kind of online tra-

jectory generation can be advantageously exploited to reduce the vibrations

of a flexible robotic arm or the vibrations of the payload during motion.
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4. Adaptations for time-optimal jerk-limited trajectories

This section is concerned with the definition of the initial acceleration-

limited profile in view of producing after FIR filtering a time-optimal jerk-

limited trajectory, as described in Fig. 2(c). Fig. 8 shows the definition of

the parameters for the jerk-limited profile. One can note that for obtaining

this kind of trajectory by FIR filtering, the maximum jerk value should be

fixed instead of the filter time. Hence, the filter time has to be dynamically

switched. The trajectory starts at t = t0 with a filter initialized at a0f and a

filter-time equal to Tja. Then the filter is changed at t = t0 + Ta to a length

Tjv, initialized at the value ar. Finally, at t = t0 + Ta + Tv the length of

the filter is set to Tjd with zero initial condition. According to the Fig. 8

notations, the different filter times can be expressed as

Tja =
|ar − a0f |

jmax

; Tjv =
|ar|

jmax

; Tjd =
|dr|

jmax

. (16)

4.1. Handling initial conditions

The relations (10), (11) and (13) are generic for the filtering of any tra-

jectory, but the expressions (12) and (14) cannot be used for time-optimal

generation since the length of the filter will not be constant in general case.

The new relations are determined by calculating the difference between ini-

tial unfiltered and filtered trajectory with fixed maximum jerk value jmax in

(11) and (13). The resulting δv and δq are given by

δv = s · a0f ·

(
2ar − a0f

jmax

)

,

δq = s ·

(
ar · v0f − (ar + dr) · vr

2jmax

)

+ a20f ·

(
3ar − 2a0f
12j2max

)

.

(17)
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Figure 8: Parameters definition of the time-optimal jerk-limited trajectory.

One notes that the relations (17) depend on the reached velocity, accelera-

tion and deceleration and has to be included in the set of equations (6-9).

Practically, vr, ar and dr are initialized to their bounds and the previous set

of equations is solved iteratively to find the time-optimal profile according

to simple rules described in the following part.

4.2. Decision tree for Time-optimality

As seen for the jerk-time fixed case, the initial constant velocity stage

Tv has to verify Tv ≥ Tjv to ensure that the jerk bound jmax is respected.

For time-optimality, other iterative adaptations of the initial acceleration-

limited profile can be necessary. For instance, if Tja > Ta or Tjd > Td then

the acceleration profile after filtering will saturate at a value lower than its

bounds, respectively amax and dmax, as depicted in Fig. 9 ref fixed. In that

case, the initial acceleration-limited profile should be adapted in order to

produce the desired time-optimal jerk-limited trajectory. Fig. 10 presents the
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decision table and the associated decision tree, used to select the adaptation

to be applied to the acceleration-limited profile. Hence, for the case Tjd > Td

and Tv > Tjv, a Type III-b adaptation is needed and the initial value of dr

cannot be reached. The adapted value of dr is calculated by setting Tjd equal

to Td in (7) and (16), which leads to the following relation

Tjd = Td =⇒
dr
jmax

=
vr
dr
,

=⇒ dr = s ·
√

jmax · |vr|.

(18)

One notes that according to the decision tree (see Fig. 10) the adaptations

are limited to a maximum of 2 iterations.

5. Adaptations for time-fixed jerk-limited trajectories

In the general case, several Degrees-Of-Freedom (DOF) are controlled

simultaneously to reach a targeted system position. Classically, it is wished

that the motion of each DOF ends at the same time. Consequently, for a

motion involving n DOFs, with Tf,i the duration of the time-optimal jerk-

limited trajectory for the i-th DOF, n − 1 trajectories have to be adjusted

to the fixed time constraint Tf,fix given by the slowest DOF

Tf,fix = max
i

(Tf,i) . (19)

This adjustment can be done in several, very different ways. For rest to rest

motion, a simple rescaling of the time evolution can be used, but for non-

zero initial conditions this approach is not sufficient. Here, we propose one

solution to easily compute without any iteration a fixed-time solution for the

jerk-limited profile. First, one notes that after filtering, the resulting trajec-

tory time is increased by the last filter time. Therefore, the relation between
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Figure 9: Example of an adaptation: Type III-b (see Fig. 10). To the left: non-adapted

initial profile with Td < Tjd. To the right, adapted profile with Td = Tjd and dr < dmax.
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Figure 10: Selection table and associated Decision tree for the iterative selection of the

initial acceleration-limited profile.

the duration of the initial acceleration-limited profile for axis i, noted Ti, the

duration of the time-optimal jerk-limited trajectory Tf,i and the duration of

the deceleration stage Tjd,i is given by

Ti = Tf,i − Tjd,i. (20)

Now, keeping the value of Tjd,i given by the time optimal calculation, noted

T opti
jd,i , we can define the rescaling parameter αi = Tfix/Ti, with Tfix = Tf,fix−

T opti
jd,i . The imposed time evolution of the time-fixed acceleration-limited

profile is expressed as

τa,i = αiTa,i; τv,i = αiTv,i; τd,i = αiTd,i. (21)

Then, the successive filter times are set as follow

Tja,i =
|ar,i − a0f,i|

jmax,i

; Tjv,i =
|ar,i|

jmax,i

; Tjd,i = T opti
jd,i . (22)
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Summarizing, the synchronization approach consists in defining a profile with

the jerk set at its maximum value jmax for the first acceleration stage and pre-

serving the original filter length T opti
jd,i during the deceleration stage. Fig. 11

described the proposed approach, the time rescaling leads to peak accelera-

tion, deceleration and velocity values lower than their bounds. To calculate

the initial time-fixed acceleration-limited trajectory, the only unknown pa-

rameters are the reached acceleration ar,i and deceleration dr,i. These two

parameters can be analytically defined as

dr,i =
s

τd,i
·

(

vof,i + a0f,i ·
Tja,i

2
+ ar,i · (τa,i + Tjv,i/2− Tja,i/2)

)

(23)

with ar,i being solution of

β0 + β1 · ar,i + β2 · a
2
r,i = 0, (24)

with

β0 = q0f,i − qef,i + v0f,i ·

(
Tjd,i

2
+ τa,i +

τd,i
2

+ τv,i

)

−
a30f

6j2max,i

− s · a30f ·
Tjd,i + 2τa,i + τd,i + 2τv,i

4jmax,i

,

β1 =
τa,i
2

· (Tjd,i + τa,i + τd,i + 2τv,i) +
a20f,i

2j2max,i

+ s · a0f ·
Tjd,i + 2τa,i + τd,i + 2τv,i

2jmax,i

,

β2 = −
a0f,i + s · τa,i · jmax,i

2j2max,i

.

Finally, based on the calculated time-optimal trajectory parameters, the

time-fixed jerk-limited solution can be obtained without iteration by con-

volution of the acceleration profile given by the time evolution (21) and
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Figure 11: Methodology for time-fixed jerk-limited solution (b) based on the initial calcu-

lated time-optimal trajectory (a): the time evolution is rescaled, the value of the jerk is

set to jmax for the first acceleration stage and the filter length Tjd is set equal to T opti
jd

for the deceleration stage.

the maximum acceleration and deceleration values (23–24), with the time-

varying FIR filter following the relations (22). Fig. 13 gives an example of

multi-axis synchronisation using the proposed methodology. Axis 2 is here

the slowest axis. In this example, the initial value of axis 3 acceleration a0f,3

is higher than the calculated reached acceleration value ar,3 given by (24) for

the time-rescaled solution. For this special case, discussed in section 2.2, the

fastest physical solution for the acceleration profile is to reached ar,3 as fast

as possible, then the trajectory generation is repeated with this new initial

condition. For this reason, the resulting time-fixed trajectory of axis 3 (see

Fig. 13) includes a double acceleration profile.
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Figure 12: Example of three axis synchronization. Time-optimal trajectories to the left,

time-fixed trajectories to the right.

6. Experimental results

The proposed trajectory generation method was implemented in C++.

To validate its results, all types of configurations (time-optimal, time-fixed,

fixed jerk-time) and initial conditions has been firstly simulated. In any case

the algorithm generates the jerk-time fixed solution in less than 15 µs and

the time-optimal jerk-limited case in less than 20 µs on a regular laptop

i7/2.7GHz running with Windows 7 as operating system. A typical control

cycle time being 1 ms, the proposed algorithm can easily handle any multi-

axis system and save a significant amount of time to the controller for other

tasks, e.g. monitoring, obstacle avoidance, reaction to unforeseen events or

any data processing. Fig. 14 shows the result of five trajectories generated

online with random set-points. Halfway, the kinematic bounds are lowered.

On these trajectories one can observe that the bounds are respected. When

lowering the bounds, the trajectories may be outside their limits because this

online change can not be anticipated. In other words, the instant compliance
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Figure 13: Flowchart summarizing the proposed methodology for the different types of

trajectory: Jerk-time fixed, time-optimal jerk-limited and time-fixed jerk-limited.
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with the new bound can be physically not allowed regarding the current

state of the trajectory. In such case, the generator bring the trajectories

back into their new limits in a time-optimal manner (double acceleration or

deceleration profile).

Then, to illustrate the effectiveness of the proposed approach, experi-

mental tests have been conducted using the 7 DOF Kuka lightweigth LBR

iiwa. The Fast Robot Interface (FRI) of the KUKA Sunrise.Connectivity

collection of open interfaces was used for real time communication between

the robot controller and the trajectory generation algorithm embedded in an

external computer, with a rate of 1 ms (see. Fig. 15). Fig. 16 and Fig. 17

present samples of two test cases using the time-optimal jerk-limited solu-

tion, respectively with and without multi-axis synchronization. The joint

positions plots originate from the joint encoders measurement and the ve-

locity and acceleration plots are obtained by time differentiation. For both

acceleration plots, the acceleration output of the trajectory generation algo-

rithm (dash-dotted thin black line) is superimposed to the joint acceleration.

For these test cases, the set-points and the associated occurrence times (ver-

tical lines) are predefined and sent as input data to the trajectory generation

algorithm. The current set-point being not reached when a new set-point

is sent, the initial velocity and/or acceleration conditions are different from

zero. In addition, to illustrate the ability to deal with online kinematic con-

straints change, the vertical solid line indicates a new set-point with a new

constraint on the maximum jerk value. As required, the new jerk constraint

is immediately recovered (see the change of the acceleration slope after the

time indicated by the full line), while acceleration and velocity constraints
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Figure 15: Experimental setup for the validation of the jerk-constrained trajectory gener-

ation.

are newly satisfied in minimum-time. The online trajectory generation have

also been tested in a third practical test case with the set-points coming from

a visual exteroceptive system (Basler ace acA640 CDD monocular camera).

Two Kuka iiwa robot were used for this test case. A lemniscate reference

path was initially defined for the end-point of the “master” robot. A visual

marker put on the “master” robot end-point is tracked by the camera and

the measured position is sent to the external computer at a sampling time

of 15 ms, i.e. a frequency of almost 66 Hz. Then, the current reference

set-point for each joint of the “slave” robot, determined using the inverse

kinematics model of the robot, are sent as input to the trajectory generation

algorithm. Fig. 17 presents some results from this test case. For a better

understanding, a video file is given as supplementary data. It emphasizes

that the trajectory generation method is efficient in the context of online

trajectory generation, since the slave robot trajectory efficiently tracks the

target, here the master robot end-point.
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Figure 16: Experimental measurements of the 7 joint positions for the time-optimal jerk-

limited trajectories generation. The vertical dotted and solid lines indicate the occurrence

of a new target positions. The constraint on jmax is modified (lowered) at the vertical

solid line.
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Figure 17: Experimental measurements of the 7 joint positions for the synchronized time-

optimal jerk-limited trajectories generation. The vertical dotted and solid lines indicate

the occurrence of a new target positions. The constraint on jmax is modified (lowered) at

the vertical solid line. The kinematic limits are lowered at 0.75 s: from (100 deg.s-1, 100
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Figure 18: Experimental test case: motion copy between a master and a slave robot. The

upper graph shows the position of the master robot end-point measured with an external

camera. These signal is sent to the computer and converted into joint set-points for the

slave robot using the inverse kinematic model. The lower graphs show the measured

position and acceleration of two joints of the slave robot superimposed to the position

reference coming from the proposed trajectory generation.
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7. Conclusions

In this paper, the proposed trajectory generator is able to generate on-

line time-optimal jerk-limited trajectories from arbitrary initial velocity and

acceleration conditions, while respecting the kinematics constraints of po-

sition, velocity, acceleration and jerk. The methodology used is a hybrid

method which combines the simplicity of the analytic second-order trajec-

tory generation, i.e. the generation of acceleration-limited trajectory, with

the computational efficiency of FIR filtering. An iterative algorithm calcu-

lates an acceleration-limited profile, which is adapted to the FIR filtering

stage in order to output a jerk-constrained trajectory with desired char-

acteristics (time-optimal, time fixed, jerk-time fixed). One notes that the

algorithm generating a trajectory in less than 20 microsecond, it is suitable

for the online trajectory generation of systems with a large number of DOF.

Experimental validations carried out on a seven axis Kuka LBR iiwa demon-

strated the efficiency of the proposed online trajectory generator.
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