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In the context of human-robot manipulation interaction for service or industrial robotics, the robot controller must be able to quickly react to unpredictable events in dynamic environments. In this paper, a FIR filter-based trajectory generation methodology is presented, combining the simplicity of the analytic second-order trajectory generation, i.e. acceleration-limited trajectory, with the flexibility and computational efficiency of FIR filtering, to generate on the fly smooth jerk-constrained trajectories. The proposed methodology can generate synchronized (fixed-time) and time-optimal jerklimited trajectories from arbitrary initial velocity and acceleration conditions within 20 microsecond. Other jerk-constrained trajectories such as jerk-time fixed trajectories, which are particularly suitable for vibration reduction, can be easily generated. Experimental validations carried out on a seven axis Kuka LBR iiwa are presented.

Introduction

Jerk limitation of robotic systems trajectories is a well-established method for smoothing the dynamic behaviour, reducing the vibrations and the system wear and improving the trajectory tracking performances [START_REF] Macfarlane | Jerk-Bounded Manipulator Trajectory Planning: Design for Real-Time Applications[END_REF]). Initially used in industrial handling and manufacturing robotics, the jerk-bounded trajectories can be advantageously exploited in mobile robotics [START_REF] Broquere | Soft motion trajectory planner for service manipulator robot[END_REF]; Yin et al. (2012)), in human-robot collaboration and in human motion reproduction [START_REF] Johnson | Robotic reactive motion with jerk reduction[END_REF]; [START_REF] Frisoli | A new bounded jerk on-line trajectory planning for mimicking human move-ments in robot-aided neurorehabilitation[END_REF]; [START_REF] Dinh | An approach to integrate human motion prediction into local obstacle avoidance in close human-robot collaboration[END_REF]). One notes that in these more recent areas, the trajectory generation problem have to be solved with online capability. Indeed robots attempt to instantaneously react to unpredicted events originating from the environment and potentially from the physical human-robot interaction.

Among the significant amount of efficient and elegant solutions to the jerk-bounded trajectory generation that can be found in the literature [START_REF] Gasparetto | A technique for time-jerk optimal planning of robot trajectories[END_REF]; [START_REF] Boryga | Planning of manipulator motion trajectory with higher-degree polynomials use[END_REF]; [START_REF] Macfarlane | Jerk-Bounded Manipulator Trajectory Planning: Design for Real-Time Applications[END_REF]; [START_REF] Liu | Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints[END_REF]), jerk-limited profile with piecewise constant jerk function is a widespread solution used by the motion systems of machinetools and industrial robots [START_REF] Lange | Path-Accurate Online Trajectory Generation for Jerk-Limited Industrial Robots[END_REF]). A jerk-limited trajectory can be defined as the time-optimal solution to the problem of jerk limited rigid body control with velocity, acceleration and jerk constraints and can be generated using several approaches.

In the first works, jerk-limited trajectories were usually defined analytically by computing optimal profiles offline, and implemented with some a priori information about the systems trajectories (Erkorkmaz and Altintas (2001)). More recently, analytic solutions to the time-optimal and time-fixed jerk-limited online profile generation problem were proposed [START_REF] Jeong | Jerk limited velocity profile generation for high speed industrial robot trajectories[END_REF]; [START_REF] Haschke | On-line planning of time optimal, jerk-limited trajectories[END_REF]; [START_REF] Knierim | Real-time trajectory generation for three-times continuous trajectories[END_REF]). The computing time of such algorithms is about 350 microseconds for a single trajectory, which can be a significant limitation for multi-axis systems during one control cycle (typically 1 millisecond). In [START_REF] Kroger | Towards on-line trajectory computation[END_REF]; [START_REF] Kroger | On-line trajectory generation: Basic concepts for instantaneous reactions to unforeseen events[END_REF], Kroger introduce an elegant framework based on the current state of the system and acceleration-limited trajectories. The time-optimal jerk-limited solution is presented, but not detailed, in [START_REF] Kroger | Opening the Door to New Sensor-Based Robot Applications -The Reflexxes Motion Libraries[END_REF]. This algorithm belonging to the well-known Reflexxes Motion Library is efficient for multi-axis system. One notes that this library is no longer freely available for robotics research.

Another interesting approach to naturally comply with the online capability of the trajectory generation consists in using a filter-based approach. In [START_REF] Lu | Smooth speed control of motor drives with asymptotic disturbance compensation[END_REF], the author presents an original jerk-limited time-optimal control (JCTOC) scheme, i.e. a dynamic filtering or closed-loop filtering approach.

The proposed controller is time-optimal according to the constrained jerk and is, by definition, adapted to real-time use, but the kinematic constraints on the maximum values of the velocity and acceleration are not considered.

A similar approach, but with enhanced capabilities, is described in [START_REF] Gerelli | A Discrete-Time Filter for the On-Line Generation of Trajectories with Bounded Velocity, Acceleration, and Jerk[END_REF]. The proposed dynamic filter-based trajectory generation can handle freely assignable bounds on the velocity, the acceleration and the jerk, but the time-fixed solution and consequently the multi-axis synchronization problem is not taken into consideration in this approach.

A simpler approach consists in using FIR (Finite Impulse Response) filters properties to shape the trajectory according to a given set of kinematic, time and frequency constraints. This open-loop approach conducts to less complex algorithms, which can be naturally adapted to the real-time trajectory generation. In [START_REF] Olabi | Feedrate planning for machining with industrial six-axis robots[END_REF], a FIR filter-based approach is exploited to generate the tool feedrate of a machining robot with limited jerk. The jerk-limited trajectory is obtained offline by convolving a pre-calculated low complexity acceleration-limited profile with a moving average filter, i.e. a FIR filter with all weight coefficients set equal to one. In Biagiotti and Melchiorri (2012), the FIR filter-based approach is generalized for the online trajectory generation. Starting from a rough step input, a cascade of n FIR filters generates a trajectory of order n respecting the kinematic constraints.

The time-fixed trajectory generation problem and multi-axis synchronization can be solved using this approach. However, the proposed online generator can only deal with symmetric kinematic constraints and the time-optimality of the trajectory is not assured between via-point. Moreover, it is not possible to specify on the fly desired values of time-derivative of the position (velocity, acceleration and jerk) different from zero at the via points. On the other hand, the strength of the previous FIR-filter based approach relies on the fact that the smooth online trajectory generation can be efficiently combined with the interesting properties of FIR filters in the frequency domain for vibration reduction.

On this subject, previous works exploiting the FIR filter-based approach [START_REF] Olabi | Feedrate planning for machining with industrial six-axis robots[END_REF]; Bearee and Olabi (2013)) demonstrated that the FIR filter time, i.e. the constant jerk-time for a jerk-limited trajectory, can be tuned to cancel the motion-induced vibrations of an undamped system. In Bearee (2014), the author proposes an improvement by using asymmetric jerk profiles, i.e. by using non-equal FIR filter coefficients, to take into account the damping coefficient of the flexible system. This approach was generalized and improved in [START_REF] Biagiotti | Optimal Trajectories for Vibration Reduction Based on Exponential Filters[END_REF] by using trajectories based on an exponential jerk profile and by deriving analytically the new FIR filter parameters that guarantee the residual vibration suppression.

In this work, we propose a trajectory generator that exploits the FIR filtering approach to generate on the fly jerk-constrained trajectories, i.e. jerk-limited trajectories or jerk-time fixed trajectories (with constant jerktime). The trajectories are obtained by the convolution of FIR filters with low computational complexity acceleration-limited trajectories. The analytical formulation of the initial acceleration-limited trajectory takes account of the FIR filter time and the system trajectories can be modified during execution time while ensuring velocity and acceleration continuity. The following properties regarding time-constraints, multi-dimensional case and vibrationconstraints can be chosen online:

• time-optimal jerk-limited trajectory;

• time-fixed jerk-limited trajectory and multi-axis synchronization;

• jerk-time fixed solution for systems sensitive to low-frequency vibration.

The next section presents the methodology adopted for the generation of jerk-limited trajectories. Sections 3 and 4 detail the procedure to generate respectively online jerk-time fixed trajectories and time-optimal jerk-limited trajectories. In Section 5, a fixed-time solution for multi-axis motion synchronization is proposed. Experimental results obtained with a collaborative 7 axis robot are presented in Section 6. Conclusions are drawn in Section 7.

FIR filter-based Jerk-constrained trajectory generation

In the remainder of this paper, the subscript f stands for "filtered", i.e. denotes the variables of the jerk-limited profile, which is the output of the algorithm. Moreover, for the online trajectory generation, it is assumed that the final velocity and acceleration are zeros, since if no new set-point is given, the goal is reached and the motion stops.

Proposed methodology for the trajectory generation

The generation of time-optimal acceleration-limited trajectories for a rigid system, i.e. the time-optimal control problem for a double integrator submitted to kinematic limitations on the first and second time derivative of the position, can be easily solved analytically. This low computational complexity approach is well adapted for online trajectory generation, but results in unsmooth profiles with step accelerations (bang-bang or bang-cruise-bang type control) and triangular or trapezoidal shaped velocity. Considering a FIR filter defined for implementation as

a f , k = 1 N N i=1 c i • a k-i+1 , (1) 
with respectively a f , k and a k the acceleration output and input value of the filter at time k.T e (T e being the sampling time of the signal), N the number of taps of the filter calculated as the integer part of T j /T e , T j the filter time (T j is practically chosen as a multiple integer of T e ) and c i = {c 1 , . . . , c N } the filter coefficients. Convolving an acceleration step function of value a max with a sliding average FIR filter (c i = 1, i ∈ {1, . . . , N }) produces a ramp function with ending value a max and a slope value, i.e. a jerk value noted j max , given by

j max = a max /T j . (2) 
Therefore, as illustrated in Fig. 1, an acceleration-limited profile may be turned into a jerk-limited profile by FIR filtering. Unfortunately, FIR filtering of a time-optimal acceleration-limited trajectory does not necessarily produce a time-optimal jerk-limited trajectory. Indeed, the jerk limitation given by (2) could be exceeded and moreover, the initial acceleration and velocity conditions being not explicitly taken into account, there is no guarantee that the desired position will be reached. fixed solution. The principle of the proposed algorithm is described in Fig. 3.

An event, which can be triggered by a new reference coming from a sensor, from a manual control or from a given dataset of via points, is defined as a new set of inputs for the algorithm. The inputs are the new set-point q e , the associated kinematics limits (v max , a max , d max , j max ) and the current state of the generator (q 0f , v 0f , a 0f ). The algorithm is divided into two stages.

The first stage consists in generating an analytically-defined accelerationlimited trajectory, which is adapted for the following FIR filtering stage. The output of the filtering stage is a jerk-constrained trajectory, which fulfills the requirements in terms of final position, initial state and kinematic limitations on the velocity, acceleration and jerk. As detailed in the remainder of this paper, the adaptation of the initial acceleration-limited trajectory is based on simple analytical relations. According to the current state of the trajectory and the selected property for the new trajectory, this adaptation process may be repeated iteratively according to a decision tree. The maximum number of iterations is 2 for the time-optimal trajectory case. The main notations used in this document are defined in the Table 1 below.
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Time-optimal acceleration-limited trajectory generation

The basis of the methodology consists in generating an accelerationlimited trajectory, which respects the following kinematic constraints and boundary conditions:

|v(t)| ≤ v max , -d max ≤ a(t) ≤ a max .
(3)

The generic acceleration-limited profile, presented in Fig. 4, can be divided The first step of the trajectory generation consists in expressing the distance noted ∆ q,stop , which represents the minimum stopping distance. ∆ q,stop can be calculated as the traveled distance starting from the initial velocity v 0 to full stop with the maximum deceleration value:

∆ q,stop = v 2 0 2 • d max . ( 4 
)
Posing ∆ q = q e -q 0 the distance to be traveled, if |∆ q | ≤ ∆ q,stop , then a full stop trajectory is required and the trajectory generation can be repeated with the new starting conditions v 0new = 0 and q 0new = q 0 + sign(v 0 ) • ∆ q,stop .

A second specific case has to be checked if |v 0 | > v max . In this special case, which may occur if the constraint v max is changed on the fly, the velocity has to be reduced to v max as fast as possible and the trajectory generation can be repeated just as before posing v 0new = sign(v 0 ) • v max and q 0new = q 0 + sign(v 0 ) • ∆ q,v 0 , with ∆ q,v 0 = (|v 0 | -v max ) 2 /(2d max ). One notes that the resulting trajectory is a double deceleration case. Finally, the last verification consists in defining the shape of the velocity profile (trapezoidal or triangular)

according to the fact that the maximum velocity is reached or not. The minimum distance for which the maximum velocity is reached, noted ∆ q,vmax , can be easily calculated considering T v = 0 (see Fig. 4) and expressed as

∆ q,vmax = (v max + v 0 ) • T a + v max • T d 2 = v 2 max -v 2 0 2a max + v 2 max 2d max .
(5)

Then, if |∆ q | ≥ ∆ q,vmax , the maximum velocity is reached and the velocity profile is trapezoidal. Defining s = sign (∆ q ) the sign of the motion, the resulting trajectory parameters a r , v r , d r , T a , T v and T d are given by

a r = s • a max ; d r = s • d max ; v r = s • v max , (6) 
T a = v r -v 0 a r ; T d = v r d r ; T v = ∆ q -s • ∆ q,vmax v r . (7) 
Otherwise, if |∆ q | < ∆ q,vmax , the velocity profile is triangular and T v = 0 in the previous equation. The reached velocity v r can be calculated replacing ∆ q,vmax and v max in (5) by ∆ q and v r . The trajectory parameters are

a r = s • a max ; d r = s • d max ; v r = s • 2 • a max • d max • ∆ q -d max • v 2 0 a max + d max , (8) 
T a = v r -v 0 a r ; T d = v r d r ; T v = 0. ( 9 
)

Adaptations for jerk-time fixed trajectory

This section is concerned with the definition of the initial accelerationlimited profile in view of producing, after FIR filtering, a jerk-time fixed trajectory, i.e. a trajectory with the constant jerk stages equal to a desired value T j , as described in Fig. 2(b). Hence, for this kind of trajectory the filter time T j is fixed (constant number of taps of the filter) and the initial condition of the filter is given by the current acceleration a 0f .

Handling initial conditions

As previously seen in Fig. 2(a), if initial velocity (or acceleration) are different from zero, the filtered time-optimal acceleration-limited trajectory does not respect the final position. Hence, the parameters (q 0 ; v 0 ) used to generate the initial acceleration-limited profile have to be adjusted according to the real current state (q 0f ; v 0f ; a 0f ). Fig. 5 illustrates the definition of the acceleration-limited profile according to the initial conditions. Deriving the difference between the non-filtered and filtered velocity and position profiles, the analytical relationship between the initial parameters can be given as.

v 0 = v 0f + δ v , q 0 = q 0f + δ q , (10) 
with 

δ v = a f (t)dt -a(t)dt, ( 11 
) acc a max a 0f T j T j T j T j vel v max T j d max T j v 0 v 0f δ v δ v vel v max v 0 v 0f δ v pos q e q 0 q 0f δ q T j a) b) pos q e q 0 q 0f δ q c) v 0 =v 0f + v v 0 =v 0f + v q 0 =q 0f + q + initial velocity value + initial position value
δ v = a 0f • T j 2 , (12) 
and

δ q =      v 0f + a f (τ )dτ v f (t)      dt - v 0 + a(τ )dτ v(t) dt, (13) 
δ q = v 0f • T j 2 + a 0f • T 2 j 12 . ( 14 
)

Jerk limitation and adaptations

For a given jerk-time T j , the maximum jerk value resulting from the FIR filtering of an acceleration step of value a max will be given by the relation

(2). Now, considering a jerk-time fixed trajectory, the maximum jerk value could depend on the initial acceleration value a 0f too (the first acceleration step being a r -a 0f ). Hence, the maximum jerk value that can be reached for a jerk-time fixed trajectory can be expressed as

j max = max |a r -a 0f | T j , |a r | T j , |d r | T j . ( 15 
)
To generate a jerk-time fixed trajectory, each stage of the initial accelerationlimited trajectory has to be low-bounded by T j . Hence, if T i < T j for i ∈ {a, v, d}, the adaptation consists in re-generating the acceleration-limited profile with a lower value of v r calculated by imposing T i = T j in (7) or ( 9)

according to the fact that the maximum velocity value is reached or not.

For instance, Fig. 6 illustrates such adaptation. Based on the desired position, the initial conditions and the kinematic constraints, the initial acceleration-limited trajectory calculated using the relations (5) to ( 9 filtered trajectory reached the maximum velocity, but is not jerk-time fixed (left plot in Fig. 6). Then, imposing each stage of the initial accelerationlimited trajectory to be equal to the desired filter time T j , i.e. posing 7), leads to the following new values of the reached velocity v r = (∆ q -v 0 • T j )/2T j , acceleration a r = (v r -v 0 )/T j and deceleration d r = v r /T j for the definition of the adapted initial acceleration-limited profile (right plot in Fig. 6).

T v = T a = T d = T j in (

Advantage of fixed Jerk-time for vibration compensation

As mentioned in the introduction, online jerk-time fixed trajectories can be useful for vibration reduction. Indeed, similarly to input shaping methodology, the jerk-time (filter-time) and the jerk-shape (filter coefficients) can be calculated to reduce vibration. Hence, for an undamped dominating vibratory mode with natural period noted T 0 , constant jerk stage T j with time equal to an integer multiple of T 0 will suppress vibration (see Fig. 7). For a dominating low-damped vibration, the damping coefficient ζ can be taken into account by modifying the jerk shape using damped-jerk shape described in Bearee (2014) or exponential jerk shape detailed in [START_REF] Biagiotti | Optimal Trajectories for Vibration Reduction Based on Exponential Filters[END_REF].

Considering a jerk-time fixed trajectory, the number N and the values of filter coefficients c i in (1) can be fixed according to the modal parameters 

Adaptations for time-optimal jerk-limited trajectories

This section is concerned with the definition of the initial accelerationlimited profile in view of producing after FIR filtering a time-optimal jerklimited trajectory, as described in Fig. 2(c). Fig. 8 shows the definition of the parameters for the jerk-limited profile. One can note that for obtaining this kind of trajectory by FIR filtering, the maximum jerk value should be fixed instead of the filter time. Hence, the filter time has to be dynamically switched. The trajectory starts at t = t 0 with a filter initialized at a 0f and a filter-time equal to T ja . Then the filter is changed at t = t 0 + T a to a length T jv , initialized at the value a r . Finally, at t = t 0 + T a + T v the length of the filter is set to T jd with zero initial condition. According to the Fig. 8 notations, the different filter times can be expressed as

T ja = |a r -a 0f | j max ; T jv = |a r | j max ; T jd = |d r | j max . ( 16 
)

Handling initial conditions

The relations (10), ( 11) and ( 13) are generic for the filtering of any trajectory, but the expressions ( 12) and ( 14) cannot be used for time-optimal generation since the length of the filter will not be constant in general case.

The new relations are determined by calculating the difference between initial unfiltered and filtered trajectory with fixed maximum jerk value j max in ( 11) and ( 13). The resulting δ v and δ q are given by One notes that the relations ( 17) depend on the reached velocity, acceleration and deceleration and has to be included in the set of equations (6-9).

δ v = s • a 0f • 2a r -a 0f j max , δ q = s • a r • v 0f -(a r + d r ) • v r 2j max + a 2 0f • 3a r -2a 0f 12j 2 max . ( 17 
)
Practically, v r , a r and d r are initialized to their bounds and the previous set of equations is solved iteratively to find the time-optimal profile according to simple rules described in the following part.

Decision tree for Time-optimality

As seen for the jerk-time fixed case, the initial constant velocity stage T v has to verify T v ≥ T jv to ensure that the jerk bound j max is respected.

For time-optimality, other iterative adaptations of the initial accelerationlimited profile can be necessary. For instance, if T ja > T a or T jd > T d then the acceleration profile after filtering will saturate at a value lower than its bounds, respectively a max and d max , as depicted in Fig. 9 ref fixed. In that case, the initial acceleration-limited profile should be adapted in order to produce the desired time-optimal jerk-limited trajectory. Fig. 10 presents the decision table and the associated decision tree, used to select the adaptation to be applied to the acceleration-limited profile. Hence, for the case T jd > T d and T v > T jv , a Type III-b adaptation is needed and the initial value of d r cannot be reached. The adapted value of d r is calculated by setting T jd equal to T d in ( 7) and ( 16), which leads to the following relation

T jd = T d =⇒ d r j max = v r d r , =⇒ d r = s • j max • |v r |. (18) 
One notes that according to the decision tree (see Fig. 10) the adaptations are limited to a maximum of 2 iterations.

Adaptations for time-fixed jerk-limited trajectories

In the general case, several Degrees-Of-Freedom (DOF) are controlled simultaneously to reach a targeted system position. Classically, it is wished that the motion of each DOF ends at the same time. Consequently, for a motion involving n DOFs, with T f,i the duration of the time-optimal jerklimited trajectory for the i-th DOF, n -1 trajectories have to be adjusted to the fixed time constraint T f,f ix given by the slowest DOF

T f,f ix = max i (T f,i ) . (19) 
This adjustment can be done in several, very different ways. For rest to rest motion, a simple rescaling of the time evolution can be used, but for nonzero initial conditions this approach is not sufficient. Here, we propose one solution to easily compute without any iteration a fixed-time solution for the jerk-limited profile. First, one notes that after filtering, the resulting trajec- the duration of the initial acceleration-limited profile for axis i, noted T i , the duration of the time-optimal jerk-limited trajectory T f,i and the duration of the deceleration stage T jd,i is given by

T i = T f,i -T jd,i . (20) 
Now, keeping the value of T jd,i given by the time optimal calculation, noted T opti jd,i , we can define the rescaling parameter

α i = T f ix /T i , with T f ix = T f,f ix - T opti jd,i .
The imposed time evolution of the time-fixed acceleration-limited profile is expressed as

τ a,i = α i T a,i ; τ v,i = α i T v,i ; τ d,i = α i T d,i . (21) 
Then, the successive filter times are set as follow

T ja,i = |a r,i -a 0f,i | j max,i ; T jv,i = |a r,i | j max,i ; T jd,i = T opti jd,i . (22) 
Summarizing, the synchronization approach consists in defining a profile with the jerk set at its maximum value j max for the first acceleration stage and preserving the original filter length T opti jd,i during the deceleration stage. Fig. 11 described the proposed approach, the time rescaling leads to peak acceleration, deceleration and velocity values lower than their bounds. To calculate the initial time-fixed acceleration-limited trajectory, the only unknown parameters are the reached acceleration a r,i and deceleration d r,i . These two parameters can be analytically defined as

d r,i = s τ d,i • v of,i + a 0f,i • T ja,i 2 + a r,i • (τ a,i + T jv,i /2 -T ja,i /2) ( 23 
)
with a r,i being solution of

β 0 + β 1 • a r,i + β 2 • a 2 r,i = 0, (24) 
with

β 0 = q 0f,i -q ef,i + v 0f,i • T jd,i 2 + τ a,i + τ d,i 2 + τ v,i - a 3 0f 6j 2 max,i -s • a 3 0f • T jd,i + 2τ a,i + τ d,i + 2τ v,i 4j max,i , β 1 = τ a,i 2 • (T jd,i + τ a,i + τ d,i + 2τ v,i ) + a 2 0f,i 2j 2 max,i + s • a 0f • T jd,i + 2τ a,i + τ d,i + 2τ v,i 2j max,i , β 2 = - a 0f,i + s • τ a,i • j max,i 2j 2 max,i
.

Finally, based on the calculated time-optimal trajectory parameters, the time-fixed jerk-limited solution can be obtained without iteration by convolution of the acceleration profile given by the time evolution (21) and the maximum acceleration and deceleration values (23-24), with the timevarying FIR filter following the (22). Fig. 13 gives an example of multi-axis synchronisation using the proposed methodology. Axis 2 is here the slowest axis. In this example, the initial value of axis 3 acceleration a 0f,3 is higher than the calculated reached acceleration value a r,3 given by ( 24) for the time-rescaled solution. For this special case, discussed in section 2.2, the fastest physical solution for the acceleration profile is to reached a r,3 as fast as possible, then the trajectory generation is repeated with this new initial condition. For this reason, the resulting time-fixed trajectory of axis 3 (see Fig. 13) includes a double acceleration profile. 

Experimental results

The proposed trajectory generation method was implemented in C ++ .

To validate its results, all types of configurations (time-optimal, time-fixed, fixed jerk-time) and initial conditions has been firstly simulated. In any case the algorithm generates the jerk-time fixed solution in less than 15 µs and the time-optimal jerk-limited case in less than 20 µs on a regular laptop i7/2.7GHz running with Windows 7 as operating system. A typical control cycle time being 1 ms, the proposed algorithm can easily handle any multiaxis system and save a significant amount of time to the controller for other tasks, e.g. monitoring, obstacle avoidance, reaction to unforeseen events or any data processing. Fig. 14 shows the result of five trajectories generated online with random set-points. Halfway, the kinematic bounds are lowered.

On these trajectories one can observe that the bounds are respected. When lowering the bounds, the trajectories may be outside their limits because this online change can not be anticipated. In other words, the instant compliance with the new bound can be physically not allowed regarding the current state of the trajectory. In such case, the generator bring the trajectories back into their new limits in a time-optimal manner (double acceleration or deceleration profile).

Then, to illustrate the effectiveness of the proposed approach, experi- are newly satisfied in minimum-time. The online trajectory generation have also been tested in a third practical test case with the set-points coming from a visual exteroceptive system (Basler ace acA640 CDD monocular camera).

Two Kuka iiwa robot were used for this test case. A lemniscate reference path was initially defined for the end-point of the "master" robot. A visual marker put on the "master" robot end-point is tracked by the camera and the measured position is sent to the external computer at a sampling time of 15 ms, i.e. a frequency of almost 66 Hz. Then, the current reference set-point for each joint of the "slave" robot, determined using the inverse kinematics model of the robot, are sent as input to the trajectory generation algorithm. Fig. 17 presents some results from this test case. For a better understanding, a video file is given as supplementary data. It emphasizes that the trajectory generation method is efficient in the context of online trajectory generation, since the slave robot trajectory efficiently tracks the target, here the master robot end-point. Yin, P., Xiong, R., Wu, J., and Wu, Y. (2012). Real-time generation of a continuous acceleration trajectory for mobile robots. In Proc. of the IEEE International Conference on Mechatronics andAutomation, Chengdu, China, 1168-1173. 
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 1 Figure 1: FIR filtering principle for jerk limitation of an acceleration-limited profile.
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 2 Figure 2: Examples of trajectories resulting from FIR filtering (averaging filter) of different acceleration-limited profiles. Solid and dashed lines indicate respectively the filtered and the initial profiles, dotted lines represent the kinematic constraints (set-point q e = 0.1m,
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 3 Figure 3: Proposed online trajectory generation algorithm based on FIR filtering of adapted acceleration-limited profile.

  into three stages: first an acceleration stage with constant acceleration value noted a r and duration time T a ; second a constant velocity stage with duration time T v and constant velocity value v r ; finally, a deceleration stage with constant acceleration value noted d r and duration time T d . The initial values of the position and velocity are noted q 0 and v 0 and the final position is q e . For time-optimality reasons, the reached value a r and d r are set equal to Symbol description T a , T v and T d Duration of the stages of the AL profile q 0f , v 0f and a 0f Initial conditions of the jerk-limited trajectory q 0 and v 0 Adapted initial conditions for the AL profile q e Position set-point s Direction (sign) of the trajectory v max , a max , d max and j max Kinematic bounds v r , a r and d r Reached values of velocity and acceleration T j , T ja , T jv and T jd Length of the constant jerk stages (FIR filter time)
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 4 Figure 4: Generic acceleration-limited profile.
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 5 Figure 5: Principle of initial conditions definition for trajectory FIR filtering. a) Influence of the initial acceleration value on the filtered velocity: the maximum and final filtered velocity values present an overshoot of δ v . b) Adaptation of the initial velocity condition v 0 of the acceleration-limited profile to fulfill the velocity constraints after filtering: the final filtered position presents an overshoot of δ q . c) adaptation of the initial position condition q 0 of the acceleration-limited profile: the filtered trajectory fulfill the kinematic constraints.
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 6 Figure 6: Example of adaptation of the initial acceleration-limited profile (dotted line) for the generation of jerk-time fixed trajectory (∆q f = 0.5 m, a 0f = -4 m/s 2 , v 0f = 1 m/s, a max = 10 m/s 2 , d max = 6 m/s 2 , v max = 1.5 m/s and T j = 0.25 s ). a) non-adapted initial profile with T a , T v and T d lower or equal to the FIR filter time T j . b) adapted profile, T v = T a = T d = T j and |v r | < v max consequently.
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 0 and ζ. For instance, damped-jerk trajectory (see Bearee (2014)) is obtained by setting T j = N.T e and c i =(N -1 + ζπ(N + 1 -2i))/(N -1)with N = ⌈T 0 (1 + 0.083ζ + 0.047ζ 2 + 7.1ζ 3 ) /T e ⌉ . This kind of online trajectory generation can be advantageously exploited to reduce the vibrations of a flexible robotic arm or the vibrations of the payload during motion.

Figure 7 :

 7 Figure7: Comparative acceleration responses of a second order system (natural frequency of f 0 = 10 Hz and low damping of 5 %) to a jerk-limited acceleration profile (with j max = 10 m/s 3 ) and a jerk-time fixed acceleration profile (with T j = 1/f 0 = 0.1 s).

Figure 8 :

 8 Figure 8: Parameters definition of the time-optimal jerk-limited trajectory.

Figure 9 :

 9 Figure 9: Example of an adaptation: Type III-b (see Fig. 10). To the left: non-adapted initial profile with T d < T jd . To the right, adapted profile with T d = T jd and d r < d max .

Figure 10 :

 10 Figure 10: Selection table and associated Decision tree for the iterative selection of the initial acceleration-limited profile.

Figure 11 :

 11 Figure 11: Methodology for time-fixed jerk-limited solution (b) based on the initial calculated time-optimal trajectory (a): the time evolution is rescaled, the value of the jerk is set to j max for the first acceleration stage and the filter length T jd is set equal to T opti jd

Figure 12 :

 12 Figure 12: Example of three axis synchronization. Time-optimal trajectories to the left, time-fixed trajectories to the right.

Figure 13 :

 13 Figure 13: Flowchart summarizing the proposed methodology for the different types of trajectory: Jerk-time fixed, time-optimal jerk-limited and time-fixed jerk-limited.

  mental tests have been conducted using the 7 DOF Kuka lightweigth LBR iiwa. The Fast Robot Interface (FRI) of the KUKA Sunrise.Connectivity collection of open interfaces was used for real time communication between the robot controller and the trajectory generation algorithm embedded in an external computer, with a rate of 1 ms (see. Fig.15). Fig.16and Fig.17

Figure 14 :Figure 15 :

 1415 Figure 14: Example of dynamic generation of time-optimal jerk-limited trajectories. New set-points are given at times {3.8, 5.2, 6.0 and 9.0 sec.} (dashed lines) and the bounds are lowered at 5.2 s: from (15 deg.s -1 , 10 deg.s -2 , 15 deg.s -3 ) to (10 deg.s -1 , 5 deg.s -2 , 3 deg.s -3 ). The acceleration and velocity limits are represented as the horizontal dot-dashed lines.

Figure 16 :Figure 17 :

 1617 Figure 16: Experimental measurements of the 7 joint positions for the time-optimal jerklimited trajectories generation. The vertical dotted and solid lines indicate the occurrence of a new target positions. The constraint on j max is modified (lowered) at the vertical solid line.

Table 1 :

 1 Main notationstheir respective bounds a max and d max .

Conclusions

In this paper, the proposed trajectory generator is able to generate online time-optimal jerk-limited trajectories from arbitrary initial velocity and acceleration conditions, while respecting the kinematics constraints of position, velocity, acceleration and jerk. The methodology used is a hybrid method which combines the simplicity of the analytic second-order trajectory generation, i.e. the generation of acceleration-limited trajectory, with the computational efficiency of FIR filtering. An iterative algorithm calculates an acceleration-limited profile, which is adapted to the FIR filtering stage in order to output a jerk-constrained trajectory with desired characteristics (time-optimal, time fixed, jerk-time fixed). One notes that the algorithm generating a trajectory in less than 20 microsecond, it is suitable for the online trajectory generation of systems with a large number of DOF.

Experimental validations carried out on a seven axis Kuka LBR iiwa demonstrated the efficiency of the proposed online trajectory generator.
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