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Abstract— The identification of inertial parameters is crucial
to achieve high-performance model-based control of legged
robots. The inertial parameters of the legs are typically not
altered during expeditions and therefore are best identified
offline. On the other hand, the trunk parameters depend on
the modules mounted on the robot, like a motor to provide the
hydraulic power, or different sets of cameras for perception.
This motivates the use of recursive approaches to identify online
mass and the position of the Center of Mass (CoM) of the
robot trunk, when a payload change occurs. We propose two
such approaches and analyze their robustness in simulation.
Furthermore, experimental trials on our 80-kg quadruped robot
HyQ show the applicability of our strategies during locomotion
to cope with large payload changes that would otherwise
severely compromise the balance of the robot.

I. INTRODUCTION

Knowledge of the robot’s inertial parameters is of
paramount importance for controlling a robot [1], especially
if fast, accurate and dexterous motions are required. Indeed,
most advanced locomotion controllers are model based [2]–
[4] and rely heavily on a feedforward action to predict the
necessary control forces to realize such actions [5]. Due to
the inherent delay, feedback control is no longer sufficient for
these intrinsically unstable systems. The advantage of feed-
forward action lies therefore in the possibility of specifying
the necessary control forces in advance [6].

However, the drawback of these methods is that they
rely on the accuracy of the robot dynamic model [1], [6],
whose parameters are usually calculated using computer-
aided design (CAD) software [1], [7]–[9]. Although CAD
softwares can calculate these parameters accurately, addi-
tional elements like hoses and cables are usually not taken
into account [1]. Moreover, the density set for the materials
can differ from reality [9], causing significant errors. Inac-
curate parameters result in a wrong prediction of the forces,
moving the control burden toward the feedback controller
and thus increasing tracking errors.

In addition, most stability criteria in legged locomotion
are heavily affected by model errors as they depend on
the estimation of the robot CoM [10]. A common strategy
to increase robustness against CoM uncertainties [11] is
to ensure a reasonable stability margin inside the support
polygon. However, ensuring such margin becomes difficult
on rough terrains, where only a limited set of potential
footsteps is available. There can be situations where the
support polygon shape shrinks and degenerates and where
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Fig. 1. Picture of IIT’s 80 kg HyQ loaded with a 10 kg backpack. The
names of the links are shown on the picture itself together with the joints
definitions: Hip Adduction-abduction (HAA), Hip Flexion-Extension (HFE),
Knee Flexion-Extension (KFE).

ensuring a sufficient margin to account for CoM uncertainty
is impossible. Therefore, an accurate model is crucial for
legged robots that are meant to traverse unstructured envi-
ronments. Lastly, proper knowledge of the robot model is
needed to accurately simulate the robot dynamics.

Identification of inertial parameters for legged robots has
recently been investigated [1], [6], and is mostly carried
out offline. Offline identification is appropriate for the robot
legs, since the mechanical structure (and therefore the model
parameters) does not change during locomotion. The trunk of
the robot, however, often undertakes inertial changes during
locomotion (e.g. due to a payload change). In particular,
the trunk parameters depend on the different modules that
are mounted on it, like an onboard hydraulic power unit,
different sets of perception sensors or mission payloads (e.g.
a backpack). Furthermore, arms can be mounted on the trunk
for manipulation tasks, creating a centaur [12]. Hence, for
trunk inertial parameters, an online identification strategy
would be beneficial to identify the changes in the trunk
parameters (CoM, mass and inertia) and promptly reflect
them into the trunk controller that exploits the rigid body
model of the robot to compute the joint torques [13].

Examples of online identification of the inertial param-
eters of manipulators can be found in [14], [15] but these
works were not extended to floating-base systems. Moreover,
approaches targeting specifically locomotion and planning
problems consider the dynamic model to be too complex to



be precisely identified. Tracking performance is improved
by learning policies that start off from the inaccurate models
and thus do not improve the knowledge of the model [16].
Regarding online estimation approaches for legged robots,
recently Stephens [17] improved his state estimator to incor-
porate CoM offsets.

A. Contributions

This work focuses on the identification of the inertial
parameters of the torque-controlled hydraulic quadruped
HyQ [18]. HyQ is a robot designed for robust and versatile
movements on rough terrain. Considering the characteristics
of our robot, we take a hybrid offline-online approach. We
first briefly describe the identification of the leg parameters,
which is performed offline. In the second part we propose
multiple original techniques to identify online the parameters
of the trunk of the robot, which is our main contribution.
The latter approach, together with our trunk controller that
we use to ensure locomotion stability, can be seen as an
adaptive control, where the accuracy of the dynamic model
is improved online whenever a change in the load is de-
tected. Moreover, our experimental contribution is to show
experiments of HyQ walking on flat and rough terrain while
sustaining large payload changes (i.e. we add weight on its
trunk). The robot detects the payload change, performs the
online identification and continues walking with the updated
parameters 1.

B. Outline

This paper is structured as follows: in Section II we
start with the generic theory of identification, specified for
quadrupeds; Section III presents a state-of-the-art trunk CoM
identification method [13] (which is used as ground truth)
and two recursive strategies for online identification. Sections
IV and V present the data collected from simulation and
experiments both for our offline and online identification
approaches. Finally, Section VI concludes the paper.

II. OFFLINE LEG PARAMETER IDENTIFICATION

In this section we briefly summarize state-of-the-art offline
identification techniques to identify the inertial parameters of
the HyQ legs. In offline identification some desired motion is
commanded to the joints and the corresponding joint torques
and motion are recorded. Then the model parameters are
fitted on this data such that the relationship between the
applied torques and the observed motion is best described.
Significant work has been done on these data-driven ap-
proaches using a floating-base model [1], [6].

However, as the trunk mass is much larger than the
link masses, the torques caused by link motion are almost
negligible compared to those due to the trunk motion, making
the identification more difficult. In addition, a floating base
introduces some difficulties: i) contact states can change, i.e.
a leg can be pulled up, and ii) balance requirements limit the
allowed motions [6]. Therefore, we fix the trunk and identify
the parameters of a single leg at a time. As HyQ can be seen

1A video of the experiments is available at https://youtu.be/2Pnj5hJVeJM

as a tree-structured mechanism, each leg is considered as a
fixed-base manipulator.

The starting point of the offline identification is the generic
set of Lagrange equations that map the motion of a system
to output torques or vice versa. Therefore, for a single leg
with n joints, the well-known dynamic equations of motion
are written as [6]:

M(q)q̈ + c(q̇, q) = τ, (1)

where q ∈ Rn is the vector of joint angular positions of the
leg joints, M(q) ∈ Rn×n is the inertia matrix, c(q, q̇) ∈ Rn
is the vector of centripetal, Coriolis and gravity forces and
τ ∈ Rn is the vector of the joint torques. As each leg has
3 Degrees of Freedom (DoFs), henceforth we will consider
n = 3. The set of equations (1) are linear in the model
parameters [6], [19] and the left-hand side of (1) can be
rewritten in linear form with respect to a set of inertial
parameters:

Y (q, q̇, q̈)φ = τ, (2)

with Y (q, q̇, q̈) ∈ Rn×(10p) and φ = [φT1 φT2 . . . φTp ]T being
the sets of inertial parameters for the p rigid bodies. Each
rigid body i has 10 inertial parameter: mass, center of mass
and inertia tensor, given by

φi = [mi micxi micyi miczi . . .

. . . Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz ]T . (3)

HyQ has 3 links per leg, so p = 3, resulting in 30
inertial parameters per leg. In order to estimate the inertial
parameters we can simply collect m data samples and stack
them to obtain an over-defined system of equations:

Yφ = τ . (4)

Here, the barred notation denotes the augmented stack of
their respective counterparts from (2). In general the re-
gressor matrix Y ∈ R(mn)×(10p) is not full rank because
certain parameters are not observable [1]. Using a damped
pseudoinverse of Y to compute φ would result in a value of
zero for some parameters. Instead, it is common to minimize
the distance from the CAD parameter values, φCAD, for the
unobservable subspace (i.e. the null space of Y):

φ = Y
+
τ +NY(φCAD −Y

+
τ) (5)

where Y
+

is the pseudoinverse of the rank deficient Y and
where NY forms a null space basis for Y.

Remark 1: In alternative, a weighted approach could
be implemented, but this has the drawback that a wrong
choice of the weights would shift the identification too much
towards the CAD parameters.

Remark 2: If a subset of the parameters has to be identified
it is necessary to partition (5) into the contribution of the
parameters to be identified and those who are not. The latters
still contribute to the torques and have therefore to be moved
to the right-hand side of (5), to obtain:

Yidφid = τ −Yfφf, (6)



with φid and φf being the subsets of parameters to be
identified and fixed parameters, and Yid and Yf their corre-
sponding columns from the regressor matrix.

A. Observability

The rank of the regressor matrix (i.e. the number of
linearly-independent columns) represents the number of pa-
rameters that are observable [19]. A method to check whether
a specific parameter is observable is to compute the ob-
servable subspace of regressor matrix, as explained in [20].
Often, only a linear combination of some parameters is ob-
servable, rendering these parameters partially observable. By
optimizing the joint trajectories [9], the number of observable
parameters can be maximized.

III. ONLINE TRUNK COM IDENTIFICATION

In this section we explain three methods for online iden-
tification of the trunk parameters. First we identify the
trunk mass. Then Section III-A introduces a state-of-the-art
batch Least-Squares approach [13] to identify trunk CoM
(approach (a)), which will be used as baseline. In Sections
III-B and III-C we describe two recursive strategies for
identification of the trunk CoM: one based on the trunk
orientation error (approach (b)) and another based on the
contact forces (approach (c)). The former only exploits
inertial (IMU) measurements, but requires a trunk posture
controller. The latter, on the other hand, works with any
controller, but requires accurate measurement/estimation of
the contact forces. Recursive strategies are preferable over
batch ones because they allow to smoothly update the value
of a parameter in case it changes during the experiment.

We do not identify the trunk inertia tensor because it only
comes into play for very dynamic motions. Indeed, after
performing some simulations, we assessed the impact of
inertial forces on joint torques at different walking speeds.
In practice, we evaluated the integral of the norm of the
joint torques (during one locomotion cycle) and we compared
it with the norm of the joint torques related to inertial
forces. For the range of walking speed of our locomotion
experiments, [5,10,15,15] cm/s, we found that the inertial
forces accounted only for [9.5,11.5,15, 22]% of the total joint
torques. Therefore, since the influence of the trunk inertia
tensor is minor, its identification is out of the scope of this
work.

As a prerequisite to the online approaches, the trunk mass
has to be estimated. Based on the contact forces, the robot
mass mr is identified in a static configuration as

mr =

N∑
i=1

fiz/g (7)

where N is the number of stance legs, fiz is the vertical
contact force of leg i, and g is the gravity acceleration. Under
the assumption that the mass of the legs, ml is known or
estimated reasonably close to their real values (from Section
II), we subtract their contribution to find the trunk mass as
mtr = mr −ml.

Robottrunk
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frame

RF LF
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Fig. 2. Robot sketch to define the vectors, the frames and to show the sign
convention. The four legs are called Left Front (LF), Right Front (RF), Left
Hind (LH), Right Hind (RH).

A. Identification of trunk CoM with static poses

This approach is based on the equation of the net moment
around the CoM of the entire robot, expressed by

Γ =

N∑
i=1

(pi,c × fi) =

N∑
i=1

((pi − c)× fi) (8)

with fi ∈ R3 the contact forces at point i and N is the
number of ground contacts. Moreover, pi,c ∈ R3 is the lever
arm of contact force fi w.r.t. the whole robot CoM and is
rewritten as the difference from the Cartesian position of the
contact point pi ∈ R3 and the whole robot CoM c ∈ R3 both
w.r.t. the base frame origin (see Fig. 2).

For a static robot it follows that the net moment Γ equals
zero, hence (8) equals zero, such that by rearranging we get

N∑
i=1

(c× fi) =

N∑
i=1

(pi × fi) . (9)

By using the skew symmetric operator to express the cross
product, we can further rearrange to

−

(
N∑
i=1

[fi]×

)
c =

N∑
i=1

(pi × fi) . (10)

The whole robot CoM can be partitioned as c = (mtrctr +
mlcl)/(mtr +ml), where mtr and ctr are the trunk mass and
trunk CoM. Moreover, ml and pl are the mass and CoM of
the legs. Again, assuming that the mass and the CoM of
the different leg links are known, or estimated reasonably
close to their real values (from Section II), we can subtract
their contribution from the whole robot CoM and find a
relationship between the trunk CoM and the contact forces:

−

(
N∑
i=1

[fi]×

)
ctr =

N∑
i=1

(
(mr)pi −mlcl

mtr
× fi

)
. (11)

By collecting numerous sets of contact force estimates and
positions for different static predefined poses of the trunk,
we obtain an over-defined system of equations that can be
solved for ctr in a least-square (LS) fashion.



Remark: It is important that the predefined poses render
the over-defined system matrix full rank in order to observe
the three CoM components. For this it suffices to have
the base wrenches not aligned with gravity (e.g. trunk not
horizontal).

B. Identification of trunk CoM using orientation error

This approach is built on top of a trunk posture con-
troller [13] that controls the position of the robot CoM and
the orientation of the trunk by means of virtual springs.
The controller also compensates for gravity, by applying a
force equal and in opposite direction of gravity and passing
through the CoM (see Fig. 2). However, if the estimated
CoM ĉ used in the controller (e.g. obtained by CAD data)
differs from the real CoM c, the gravity compensation force
creates a tipping moment around the real CoM due to the
lever arm (w ĉ − wc) (see Fig. 3(left)). This will result in
either pitching or rolling of the robot (or both) until this
tipping moment is equilibrated by the returning torque due
to the torsional springs (gains) of the posture controller. At
equilibrium, the amount of pitch and roll will be dependent
on the CoM error and on the stiffness of the posture
controller. This behaviour can be exploited to identify the real
CoM coordinates, first to identify the x and y component and
subsequently to identify the z component. Indeed considering
x and y components, it can be proven (not reported in this
work for sake of space) that whenever the joint velocities
are zero there is a one-to-one mapping (linear) relationship
between the orientation error eo and the estimation error on
the CoM (c− ĉ = f(eo) = Meo), where:

cx,y − ĉx,y =

[
c̃x

c̃y

]
=

[
0 −1

1 0

]
IKpang

mg︸ ︷︷ ︸
M

eo, (12)

with orientation error eTo =
[
−φ −θ

]T
(we set a zero

orientation reference) and with φ and θ the measurements
of roll and pitch respectively, coming from an inertial sensor
(e.g. IMU). Kpang ∈ R2×2 is the torsional stiffness set in
the trunk controller and I ∈ R2×2 is the rotational inertia
of the robot in the roll and pitch directions. Furthermore,
one can easily see from Fig. 3 (left) that a deviation towards
the x direction leads to (negative) pitching, while an error in
the y direction leads to rolling. Instead of applying (12) in
a single one-shoot correction, to increase the robustness to
sensor noise and tracking errors, we can take reduced step
corrections in a recursive fashion. Therefore, we can write
a recursive update for each direction to make our estimated
CoM ĉ converge to the real CoM c:2

ĉx,y(k + 1) = ĉx,y(k) + β(c− ĉx,y)(k) (13)

Considering the linear mapping in (12), (13) becomes:[
ĉx

ĉy

]
(k + 1) =

[
ĉx

ĉy

]
(k) + αx,y

[
−φ
−θ

]
(k) (14)

2This is somewhat similar to a gradient descent optimization where β is
a scalar representing the step size.
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Fig. 3. Lateral view: sketch of the gravity/gravity compensation force
in the identification of x,y (left) and of the Z (right) components of c in
approach (b).

Rewriting equation (13) we can see that ĉx,y has a first
order discrete dynamics ĉx,y = β/(z − (1 − β))cx,y with
a settling time ta = −3Ts

ln(1−β) , where Ts is the sampling time.
Therefore the gains αx,y = Mβ can be tuned to have a trade-
off between low convergence time (high α) and filtering
capability of high frequency disturbances (low α).

The identification procedure consists of two phases. Using
(14) the x and y CoM components can be updated, until the
pitch/roll errors converge to (0, 0). Now independent of the
z component, the tipping moment is zero and the gravity
compensation force is perfectly aligned to the real gravity
(the real z component will lie on this line). Then, to find the
z component, the identified x and y CoM components are
fixed and a non-zero reference orientation, e.g. (0, θd) is set.
For an incorrect z component, the robot will pitch either too
much or too little with respect to θd (see sign conventions
in Fig. 2). Using an update rule analogue to (14) given by

ĉz(k + 1) = ĉz(k)− αz (θd − θ) (k), (15)

the z component will be moved up or down (in the base
frame, see Fig. 3(right)), until convergence ĉz = cz is
achieved.

Remark 1: Equations (14) and (15) are written for the
robot CoM c and not for the trunk CoM ctr as we intended.
However, assuming proper identification of the leg inertial
parameters offline, we can claim that the modeling error in
the trunk CoM is the only responsible for the error in the
robot CoM. In particular, an advantage of using a recursive
update (beyond robustness), is that it allows us to replace,
without any loss of generality, the robot CoM ĉ with the
trunk CoM ĉtr, having the update happening only in the trunk
parameters. For a similar reason, the update can be performed
in the base frame rather than in the world frame.

Remark 2: Any other controller (e.g. a joint PD controller)
that possibly would fight with the trunk controller should be
switched off, because it would create bias body moments that
would affect the trunk angular dynamics thus jeopardizing
the identification.

C. Identification of trunk CoM using contact forces

The approach presented in the previous Section (III-B) is
appealing because it depends only on inertial measurements.
However, in practice, since it relies on a whole-body posture
controller and (at a lower level) on torque controllers, its
performance can be affected by joint torque tracking errors.



An alternative approach, only valid to identify the x and y
components (in the world frame), is to check the values of the
contact forces at the feet. We know that in static conditions,
the equilibrium of moments (and forces) should hold:

ḣ = Iwω̇ + İwω =

N∑
i=1

(wpi,com × wfi) = 0 (16)

where the moments are computed about the CoM point. The
idea here, is to ”move” the CoM until the values of the
contact forces satisfy (16). Recalling (10) we can rewrite
it as:

− [

N∑
i=1

(wfi)︸ ︷︷ ︸
wF

]×w ĉ =

N∑
i=1

(wpi × wfi)︸ ︷︷ ︸
wµ

. (17)

We want to find an estimate w ĉ of wc for which (17) is valid.
This happens only if w ĉ = wc. If this is not the case (e.g.
we have a modeling error), we can exploit (17) to create a
recursive update for w ĉ given by

w ĉ(k + 1) = w ĉ(k) + α(− [wF (k)]
+
× wµ(k)− w ĉ(k)) (18)

where [.]+ is a damped pseudo-inversion and α << 1
is a gain parameter that can be tuned as in Section III-
B. This update rule will make w ĉ converge to the real
robot CoM position. This is equivalent to make a Recursive
Least-Squares fitting. The difference of (17) from 10 is that
here in (17) we are considering only one sample to do
the estimation. Note that, even in theory, it is not possible
to make the estimation in one go, as [wF ]× is not full
rank (the cross product eliminates the component parallel
to
∑N
i=1 wfi which in quasi-static conditions is mg). This

means that is not possible to estimate all the 3 components
of wc. In particular, if the trunk is horizontal we cannot
appropriately reconstruct the wcz component from the vector
wF , as it is aligned to gravity. We therefore perform the
update only on the x and y components. The advantage
of this approach is that it is independent from the type of
controller used to regulate the orientation (e.g. it can also be
a stiff joint space position controller). The drawback is that,
the identification accuracy depends on the accuracy of the
contact force estimation (e.g. in our case we estimate them
from joint torques with f = −J+

c (ST τ − h(q, q̇))); thus it
is sensitive to torque offsets and modeling errors. Similarly
to what previously highlighted, without loss of generality,
the approach is valid also if we apply the update rule (18)
only to the trunk CoM ĉtr and express it in the base frame.
Furthermore, rewriting the update rule in the base frame,
does not take into account that some directions could be
unobservable (e.g. along gravity). Therefore, to avoid errors
it is important not to perform the update along that direction,
thus a selection matrix Exy for the x and y components is
used to obtain

ctr = ctr + α
[
wR

T
b ExywRb(− [F ]

+
× µ− ĉ)

]
, (19)

where wRb is a rotation matrix from base to world frame.

IV. RESULTS: OFFLINE IDENTIFICATION

As introduced in Section II we performed the offline
identification of the leg parameters by swinging one leg in
the air (without contact) while keeping the trunk of the robot
attached to a frame. To be able to identify masses, CoM and
inertias, we designed rich identification trajectories that had
enough accelerations.3 We designed sinusoidal signals as
reference joint positions. High velocities and accelerations
could be achieved either by increasing the amplitude or
the frequency. We preferred to increase the amplitude over
frequency to avoid jerky movements4 that can excite the
elasticity of the mechanical structure, that we do not model.
To better explore the workspace we shifted the origin of
the sinusoidal joint trajectories in different positions that we
selected to maximize the gravity torque shift. Finally, to have
richer data, we randomly sampled the frequency, amplitude
and phase shift of the 3 joint sinusoids.

A. Simulation Results

To generate a Simulation dataset useful to assess the con-
vergence of the offline identification algorithm, we modified
the original CAD parameters, adding (Gaussian) zero-mean
parametric noise on the links CoM positions and inertia
tensor, with standard deviations 0.02m and 0.02 kgm2, re-
spectively. Then, we moved the right hind (RH) leg according
to the designed identification trajectory, and recorded joint
torques and link accelerations, velocities and positions. For
the identification trajectory, the frequency ranged between
0.3 and 0.9Hz, the phase shift between 0 and π and the
amplitudes between (0, 0, 0) and (0.25, 0.20, 0.4)rad for the
3 joints, respectively. After collecting a 180 second dataset,
we estimated all the leg parameters in one shot using (5). The
regressor matrix Y at each time step was computed using the
iDynTree software library [8].

Table I compares the identified parameters for the RH
leg to the simulated CAD parameters. 5 For the RH leg the
observable and partially observable parameters converge to
the simulated values with a 1mm accuracy. For the unobserv-
able ones (red) the noiseless CAD values are maintained. At
most a rank of 12 was obtained, meaning 12 out of 30 link
parameters were observable.

Remark: We were not able to achieve proper observability
of the masses for the 3 links. As the CoM is computed from
the product c·m as seen in (3), this poses significant problems
in the estimation of the link CoM. More investigation should
be done in this direction.

Furthermore, we used a dataset for identification and a
second one for validation. With the identified parameters
φid from the first set, we predicted the torques for the
validation set by τid = Ȳ φid. Moreover, the error between

3Without acceleration (e.g. using just static poses) we would be able to
identify only the first moment of inertia c×m for each link and we could
not discriminate the mass.

4The jerk of a sinusoid scales linearly with its amplitude, but cubically
with its frequency.

5The inertia tensors are expressed in the link frame because only in that
frame the dynamic equations are linear.



TABLE I
OFFLINE IDENTIFICATION OF RH LEG IN SIMULATION. COLORS

REPRESENT PARAMETER OBSERVABILITY: RED-UNOBSERVABLE,
GRAY-PARTIALLY OBSERVABLE, GREEN-OBSERVABLE.

Hip assembly mass CoM x CoM y CoM z

Simulated 2.9300 0.0025 -0.006 0.1228
Identified 2.9300 0.0033 -0.0079 0.1693

Upper limb
Simulated 2.6380 0.1409 0.0510 -0.0246
Identified 2.6363 0.1436 0.0512 -0.0088

Lower limb
Simulated 0.8810 0.1361 -0.0131 0.0212
Identified 0.8485 0.1368 -0.0127 -0.0215
Hip assemb. Ix Ixy Ixz Iy Iyz Iz
Simulated 0.1423 0.0188 -0.0651 0.1313 -0.0141 -0.0093
Identified 0.1347 0.0 -0.0227 0.1442 -0.0001 0.0059

Upper limb
Simulated 0.0019 0.0230 -0.0009 0.1117 -0.0139 0.0900
Identified -0.0121 0.0231 -0.0139 0.0363 0.0134 0.0933

Lower limb
Simulated -0.0152 0.0117 -0.0050 0.0360 0.0133 0.0246
Identified -0.0145 0.0121 -0.0052 0.0996 -0.0138 0.0254

predicted torques and measured torques is computed as
eid = τmeas−τid. For comparison the torque is also predicted
using the CAD data τCAD = Ȳ φCAD. Again prediction error
eCAD = τmeas − τCAD is computed and shown in Fig. 4.
The improvement in torque prediction given by the identified
parameters with respect to the CAD parameters is clearly
observed for all the joints.

B. Experimental results

We appropriately processed the experimental data before
using it for the identification. In particular, all variables were
zero-delay low-pass filtered and data samples where velocity
of the three links was smaller than 0.01rad/s were removed

Fig. 4. Simulation data. RH leg. The first 3 plots are for the torques
for the 3 leg joints: HAA, HFE, KFE. Red: Measured joint torques τmeas,
blue: predicted torques calculated with the identified parameters τid, green:
predicted joint torques calculated with the CAD parameters τCAD, Fourth
plot compares the two prediction errors: eid and eCAD for the HAA joint.

to mitigate the effect of stiction. Results are shown in Fig. 5.
Since we do not have a base line (i.e. we do not know what
the real parameters are), the effectiveness of the approach
is demonstrated by how well the torque τid of the HAA
joint, computed with the identified parameters, matches the
measured torque τmeas. For comparison we also report the
prediction error with the torque computed with the CAD
parameters.

The prediction error for the HAA joint is below 1Nm in the
case of the identified model, while for the CAD model it is
3 times as large (e.g. below 3Nm). If one would implement
an inverse dynamics controller based on the CAD model,
this error would be obtained. Despite the torque is predicted
quite well for the HAA and HFE there is some discrepancy
for the KFE joint. One possible reason is the low mass and
inertias of the lower leg link (0.88kg). As a result the torque
in the KFE joint (around 3/4Nm) is very small with respect
to the measuring range of the sensor (150Nm) that also has
quite small resolution (0.5% of the range). This significantly
reduces the signal to noise ratio.

V. RESULTS: ONLINE IDENTIFICATION

First the trunk mass was estimated from contact forces
using (7). For sake of brevity, numerical results are omitted.
However, we found that even small trunk accelerations have
a large effect on the estimated mass, so we excluded data
where velocity and acceleration where non-zero. Moreover,
as HyQ has no contact force sensors at the feet, the ground
reaction forces are estimated from joint torques through the
equation f = −J+

c (ST τ − g). Since Jc depends on the
leg kinematics, also small kinematic errors are significantly
affecting mass estimation. In the following results only the
x and y component of the CoM are considered as for quasi-
static locomotion these are most important. Moreover, the
shift in z component is insignificant for the payload we use.

Fig. 5. Experimental data. RF leg. The first 3 plots are for the torques
for the 3 leg joints: HAA, HFE, KFE. Red: Measured joint torques τmeas,
blue: predicted torques calculated with the identified parameters τid, green:
predicted joint torques τCAD calculated with the CAD parameters. Fourth
plot compares the two prediction errors: eid and eCAD for the HAA joint.
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Fig. 6. Simulation of online identification with approach (c) after a virtual
load of 100N was applied at (−0.75, 0.4, 0.0)m w.r.t. the base frame.

A. Simulation results

We performed several simulations: in the first one we
added a virtual mass to the trunk at (−0.75, 0.4, 0.0)m w.r.t.
the base frame, which caused the trunk CoM to shift. In
simulation we compared the online identification approaches
(b) (Section III-B) and (c) (Section III-C) with the static one
(a) (Section III-A). We repeated the experiment for 3 dif-
ferent loading condition: 0, 50, 100N. In all we deliberately
started with a large error in the CoM estimation ĉtr used
in the controllers. As an error measure we computed the
Euclidean distance between the identified and real CoM as
||δ|| =

√
(cx − ĉx)2 + (cy − ĉy)2. In table II we show that

all the 3 approaches converge coherently to the same ground
truth values for the x and y direction, with a 0.5cm accuracy.
Furthermore, Fig. 6 shows that, with the approach (c), the
estimated CoM ĉtr converged to the real trunk CoM ctr within
2 seconds with an accuracy less than 2mm. For approach
(a) and (b) we also performed the identification of the z
component (not reported in the table) finding an error from
the ground truth of 2cm and 1cm, respectively.

Since in real world scenario the terrain is not always flat,
we investigated the robustness of approach (c) by letting
the robot stand on different ramp inclinations (0, 10, 15
) degrees and added different loading conditions (0, 50,
100)N . Again the Euclidean distance in x and y dimension
is used as error measure. Results in Table III demonstrate
accurate performance, i.e. <1cm error.

TABLE II
COMPARISON OF ONLINE COM IDENTIFICATION ERRORS FOR

APPRAOCHES (A), (B) AND (C) WITH DIFFERENT LOADS

Loads
ID apprach 0 N 50 N 100 N
approach (a) ||δ|| [cm]: 0.010 0.357 0.513
approach (b) ||δ|| [cm] 0.020 0.049 0.452
approach (c) ||δ|| [cm]: 0.006 0.125 0.586

B. Sensitivity analysis

The goal of this section is to evaluate the sensitivity (and
thus the robustness) of the proposed (b) and (c) approaches
when real world uncertainties are present, such as kinematic
errors and torque offsets. We set Gaussian parametric noise
to the joint torque measurements and feet positions. For
different noise characteristics, namely mean(µ) and standard
deviation (σ), convergence error is reported in Table IV We
see that approach (b) is mostly affected by torque offsets
while approach (c) suffers more from kinematic errors.

C. Experimental results

We implemented an online load change detection strategy
to detect possible payload changes. Each time velocity and
acceleration approach zero (static equilibrium), the robot
mass is verified. We performed several experiments with the
real robot by placing a 50 and 100N mass at a frame attached
to the left-hind corner torso, while the robot was walking at
10cm/s. The walking framework is a statically stable crawl
framework that we use for rough terrain locomotion. The
core module is a state machine (see [13] for details) that
switches between two temporized/event-driven locomotion
phases: a swing phase, and a body motion phase. During
the body motion phase the robot CoM is shifted onto the
future support triangle, which is opposite to the next swing
leg, in accordance to a user-defined foot sequence. 6 The
walk without identification failed at the first step because
the CoM, shifted by the payload, went out of the support
polygon. Subsequently, thanks to the online identification,
the robot was able to continue walking steadily. In detail,
after the detection of load change, the robot stopped to
start the online identification procedure. After the new trunk
CoM ctr was identified (e.g. when the ∆c = c− ĉ was getting
below a certain tolerance which we set to 0.0005m with
α = 0.002) the values were set both in the trunk controller
and in the planner for the generation of the future trajectories.
As predicted in Simulation (see Section V-B) approach (b)
happened to be more sensitive to torque tracking errors.
Therefore, due to tracking inaccuracies, it was taking quite
some time to converge to a stable value. Conversely, we
were able to successfully perform the identification with
approach (c). Because we did not have a ground truth we
compare the convergence results to the batch least-square
approach (a). Using (11) the new CoM was estimated for the
three payloads (0, 50 and 100N). The results are reported
in Table V. In the accompanying video we also show

6A video of the experiments is available at https://youtu.be/2Pnj5hJVeJM

TABLE III
ONLINE COM IDENTIFICATION ERRORS WITH APPROACH (C) FOR

DIFFERENT SLOPES AND LOADS

Loads
Slope 0 N 50 N 100 N
0◦ ||δ|| [cm]: 0.082 0.104 0.864
10◦ ||δ|| [cm]: 0.294 0.621 0.904
15◦ ||δ|| [cm]: 0.429 0.528 0.773



TABLE IV
SENSITIVITY OF APPROACHES (B) AND (C) TO NOISE ON TORQUE

OFFSETS AND FOOT POSITION MODELING ERROR.

Torque offset [Nm] Noise char. µ=0, σ=1 µ=10, σ=1 µ=20, σ=1
approach(b) ||δ|| [cm]: 0.410 1.114 2.098
approach(c) ||δ|| [cm]: 0.073 0.190 0.255

Foot pos. [cm] Noise char. µ=0, σ=1 µ=0, σ = 2 µ=0, σ=3
approach(b) ||δ|| [cm]: 0.001 0.060 0.202
approach(c) ||δ|| [cm]: 0.308 2.661 5.074

TABLE V
FOR 3 LOAD CONDITIONS THE IDENTIFIED x AND y COMPONENT OF THE

TRUNK COM ARE COMPARED FOR APPROACHES (C) AND (A)

Payload appr. (c) [m] appr. (a) [m] ‖δ‖ [cm]
0 N [ 0.007, 0.015] [ 0.005, 0.011] 0.45

50 N [-0.024, 0.017] [-0.024, 0.015] 0.20
100 N [-0.047, 0.023] [-0.048, 0.020] 0.32

successful experiments of a walk on moderately rough terrain
(e.g. stepping stones). Furthermore, we performed separate
experiments to estimate the z component exploiting (15) but
this turned out to be too sensitive to pitch orientation noise.
Indeed, the update is done for θdes − θ which can be very
small. Further work should be done to improve this.

VI. CONCLUSIONS

We presented a whole identification pipeline for a
quadruped robot. The identification is performed offline for
the leg parameters (mass, CoM and inertial tensors) and
online for the trunk, which is subject to more frequent pay-
load changes. After the offline leg parameters identification,
experimental data showed that the predicted torques were
matching quite well with the measured ones. For the online
trunk parameter identification, we proposed two distinct
recursive approaches, which where compared to a batch least
squares approach. Both of them produced similar results in
simulation by converging with good accuracy to the ground
truth value of CoM even in presence of rough terrains and
slopes. The approach (b) (Section III-B) resulted to be more
sensitive to the quality of the torque tracking. Conversely,
approach (c) (Section III-C) resulted more flexible because
it was independent from the type of controller used, but more
sensitive to estimation errors in the ground reaction forces.
We also analyzed the sensitivity of the proposed approaches
to some parametric uncertainties. Finally, in experimental
trials, the online identification was crucial to have the robot
successfully walk even when suffering big payload changes
(obtained by adding a 10 kg mass on the trunk).

In the future, we plan to solve the joint mass observability
issue, by exploiting the whole robot floating-base equations
for the estimation of the leg parameters. Also, we will use
appropriate scaling to address the issue of the different order
of magnitude between the inertia of the trunk and of leg links.
Last, future extensions will involve the possibility to perform
the online identification without stopping the robot at all, by
including velocities and accelerations into the framework.
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