
HAL Id: hal-01575001
https://hal.science/hal-01575001

Submitted on 26 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the tree containment problem in linear time for
nearly stable phylogenetic networks

Philippe Gambette, Andreas D.M. Gunawan, Anthony Labarre, Stéphane
Vialette, Louxin Zhang

To cite this version:
Philippe Gambette, Andreas D.M. Gunawan, Anthony Labarre, Stéphane Vialette, Louxin Zhang.
Solving the tree containment problem in linear time for nearly stable phylogenetic networks. Discrete
Applied Mathematics, 2018, 246, pp.62-79. �10.1016/j.dam.2017.07.015�. �hal-01575001�

https://hal.science/hal-01575001
https://hal.archives-ouvertes.fr

Solving the Tree Containment Problem in Linear Time for Nearly

Stable Phylogenetic NetworksI

Philippe Gambettea,1,, Andreas D. M. Gunawanb, Anthony Labarrea, Stéphane Vialettea,
Louxin Zhangb

aUniversité Paris-Est, LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, F-77454, Marne-la-Vallée,
France

bDepartment of Mathematics, National University of Singapore, Singapore 119076

Abstract

A phylogenetic network is a rooted acyclic digraph whose leaves are uniquely labeled with
a set of taxa. The tree containment problem asks whether or not a phylogenetic network
displays a phylogenetic tree over the same set of labeled leaves. It is a fundamental problem
arising from validation of phylogenetic network models. The tree containment problem is
NP-complete in general. To identify network classes on which the problem is polynomial
time solvable, we introduce two classes of networks by generalizations of tree-child networks
through vertex stability, namely nearly stable networks and genetically stable networks.
Here, we study the combinatorial properties of these two classes of phylogenetic networks.
We also develop a linear-time algorithm for solving the tree containment problem on binary
nearly stable networks.

Keywords: phylogenetic trees, phylogenetic networks, tree containment, reticulation
visibility, nearly stable networks, genetically stable networks

1. Introduction1

With thousands of genomes being fully sequenced, phylogenetic networks have been2

adopted to study “horizontal” processes that transfer genetic material from a living organism3

to another without descendant relation. These processes are believed to be a driving force4

that shapes the genome of a species in evolution [6, 25].5

A (phylogenetic) network over a set X of taxa is a rooted acyclic digraph with a set6

of leaves (i.e., vertices of outdegree zero) that are uniquely labeled with the taxa. Such a7

network represents the evolutionary history of the taxa in X. In a network, the tree vertices8

(i.e., vertices of indegree one) represent speciation events, whereas the vertices of indegree9

IParts of this work were presented in conferences RECOMB’2015 and IWOCA’2015.
Email addresses: philippe.gambette@u-pem.fr (Philippe Gambette), a0054645@u.nus.edu

(Andreas D. M. Gunawan), anthony.labarre@u-pem.fr (Anthony Labarre),
stephane.vialette@u-pem.fr (Stéphane Vialette), matzlx@nus.edu.sg (Louxin Zhang)

Preprint submitted to Discrete Applied Mathematics July 26, 2018

at least two (called reticulation vertices, or simply reticulations) represent genetic material10

flow from several ancestral species into an “unrelated” species. A plethora of methods for11

reconstructing networks and related algorithmic issues have been extensively studied over12

the past two decades [16, 17, 23, 24, 27].13

One approach to assessing the quality of a network is to verify whether or not it is14

consistent with previous biological knowledge about the species. Biologists therefore demand15

that the network displays existing gene trees, which corresponds to the tree containment16

(TC) problem [17]. This problem is well-known to be NP-complete [19, 26], and great17

efforts have therefore been devoted to identifying “tractable” subclasses of binary networks,18

such as galled trees [19], normal networks, tree-child networks and level-k networks [26].19

Recently, Gunawan et al. [12] and Bordewich and Semple [3] independently proved that the20

TC problem can be solved in cubic time for binary reticulation-visible networks, thereby21

settling an open problem [17, 26]. The time complexity was further improved to quadratic22

time even for arbitrary (i.e. non-binary) reticulation-visible networks in [13].23

To tackle the TC problem for reticulation-visible networks, we introduced nearly stable24

networks and genetically stable networks, which both generalize tree-child networks, and25

gave quadratic time algorithms for solving the TC problem on both classes [10, 11]. These26

results gave an insight on the topological structure of a reticulation-visible network, and27

eventually led to a solution to the open problem in [12]. In this paper, we establish the tight28

upper bounds on the numbers of vertices in a nearly stable network and in a genetically29

stable network. We further show on simulated data that these two new classes cover a30

significant proportion of phylogenetic networks, compared with binary reticulation-visible31

networks.32

In this paper, we also revisit the TC problem for nearly stable networks. In an earlier33

version of this work [10], we developed a quadratic-time algorithm for the TC problem on34

that class. The time complexity of the algorithm was further improved to O(n log n) in35

[8] using the same approach but with a more efficient data structure. Here, we develop a36

linear-time TC algorithm by combining the structure analysis in [10] and a decomposition37

technique introduced in [12]. This technique plays a vital role in the designs of a quadratic-38

time TC algorithm for reticulation-visible networks and of a fast exponential-time algorithm39

for arbitrary networks [14].40

2. Concepts and notions41

2.1. Phylogenetic trees and networks42

A (phylogenetic) network on a set X of taxa is an acyclic digraph N with a single root43

ρN (a unique vertex with indegree 0) whose leaves (vertices with outdegree 0) are in one-44

to-one correspondence with the taxa in X. The fact that the root is the unique vertex with45

indegree 0 implies that there is a (directed) path from the root to every other vertex. For46

convenience, we attach an incoming edge to ρN (so the indegree becomes one) with one47

open-end. We identify each leaf with the taxon corresponding to it.48

In a network, reticulation vertices (or simply reticulations) are vertices with indegree49

at least two and outdegree one; tree vertices are vertices with indegree one, which includes50

2

the root and leaves. For a given network N , L(N) denotes its leaf set, R(N) its set of51

reticulation vertices, T (N) its set of tree vertices (including leaves), V(N) the entire set of52

vertices, and E(N) the entire set of edges. An edge is a reticulation edge if it is an edge53

entering a reticulation vertex.54

Let N be a network. For an edge set E ⊆ E(N), N − E denotes the subnetwork with55

vertex set V(N) and edge set E(N)\E. Similarly, for a vertex subset S ⊆ V(N), N − S56

denotes the subnetwork with the vertex set V(N)\S and the edge set {(u, v) ∈ E(N) | u 6∈57

S, v 6∈ S}. When E or S contains only one element x, we simply write N − x.58

Let v ∈ V(N). The subnetwork of N induced by v consists of v and all its descendants59

and the edges between them. It is rooted at v and is denoted by N [v].60

We say that a network obtained by removing all but one incoming edge from each retic-61

ulation in a network N is a spanning tree of N .62

A network is binary if its leaves are of degree one, and all other vertices are of degree63

three. A phylogenetic tree is simply a binary network without reticulation vertices. All64

networks we shall consider in this paper are binary unless stated otherwise.65

2.2. Reticulation stability66

Consider a network N . Let x and y be two vertices of N . We say that x is a parent of67

y and y is a child of x if (x, y) is an edge of N . More generally, we say that x 6= y is an68

ancestor of y (or above y) and equivalently y is a descendant of x (or below x) if there is69

a directed path from x to y in N . Two vertices are siblings if they are the children of the70

same vertex.71

A vertex x is a stable ancestor of a vertex v (or x is stable on v) if it belongs to all72

directed paths from ρN to v. We say that x is stable (or visible) if there exists a leaf ` such73

that x is a stable ancestor of `. A vertex is unstable if it is not a stable ancestor of any leaf.74

A network is reticulation-visible [17] if every reticulation vertex it contains is visible.75

Proposition 2.1. (Lemma 2.3, [15]) Let N be a network and u ∈ V(N). Let R be a set76

of reticulations below u such that for each r ∈ R, either (i) r is a descendant of another77

reticulation r′ ∈ R, or (ii) there is a path from ρN to r that avoids u. Then, u is not stable78

on any leaf ` below a reticulation in R.79

By Proposition 2.1, we have the following simple criteria to determine whether a vertex80

is stable or not in a network.81

Corollary 2.1. Let v be a tree vertex in a network N .82

(1) If v has two reticulation children, then v is unstable.83

(2) Assume v has two children u and w such that u is a tree vertex with two reticulation84

children and w is a reticulation vertex (Fig. 1). If w is different from the children of85

u, then v is unstable.86

Proposition 2.2. The following facts hold for a network.87

3

𝑢

𝑣

𝑤

Figure 1: Two types of unstable tree vertices in a network.

(1) A vertex u is stable if it has a stable tree vertex as a child.88

(2) A reticulation u is stable if and only if its unique child is a stable tree vertex.89

(3) If u and v are stable ancestors of w, then either u is an ancestor of v or vice versa.90

Proof. (1). Let v be a child of u. Assume it is a tree vertex and stable. Since v is stable,91

then it is a stable ancestor of some network leaf `. Since v is a tree vertex, u is the unique92

parent of v. Taken together, both facts imply that all paths from ρN to ` must contain v93

and hence u. Therefore, u is also stable on `.94

(2). The sufficiency follows from (1). To prove the necessity, we assume that u is a95

reticulation stable on a leaf ` and let x denote its unique child. Since every path from ρN96

to ` goes through u, each such path must also go through x, which is therefore stable on `.97

We now show by contradiction that x is a tree vertex: if x is a reticulation, it has another98

parent v different from u. For a path from ρN to ` passing u, it also passes x and so joining a99

path from ρN to v, the edge (v, x) and a path from x to ` gives a path from ρN to ` avoiding100

u, contradicting the fact that u is stable on `. Therefore, x must be a tree vertex.101

(3) The fact follows from the fact that both u and v must be within every path from ρN102

to w.103

We refer to leaves resulting from the removal of edges or vertices as dummy leaves (i.e.104

leaves that were not leaves in the original network). A network is tree-based if there is an105

edge set E that contains an incoming edge for each reticulation vertex such that N − E106

is a spanning tree of N without dummy leaves [9]. In [10], we used the following result to107

establish the first upper bound on the size of reticulation-visible network. Although a better108

bound can be obtained using a different approach, this result is interesting in its own right109

and therefore presented below.110

Theorem 2.1. Every reticulation-visible network is tree-based.111

Proof. Let N be a reticulation-visible network and E ⊂ E(N). If E contains two edges112

coming out of the same tree vertex, there will be a dummy leaf in N − E. Similarly, if E113

contains two edges entering the same reticulation vertex, this reticulation vertex will become114

a vertex of indegree 0 in N −E. Therefore, N −E is a spanning tree of N without dummy115

leaves if and only if E is a matching covering every reticulation vertex in N .116

Since N is reticulation-visible, by the part (2) of Proposition 2.2, the parents of each117

reticulation vertex are tree vertices. The existence of such a matching can be found by118

4

A B C
𝜌𝑁

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

𝑑

𝑢

𝑝

𝑣

𝜌𝑁

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

𝑑

𝑢

𝑝

𝑣 𝑣

𝑝

𝜌𝑁

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

𝑢

Figure 2: (A) A network N with five leaves labeled with `i (1 ≤ i ≤ 5). Reticulation edges are colored
dark red. (B) A spanning tree T obtained by removing a reticulation edge from each reticulation in the
network, in which there is a dummy leaf d. (C) A tree that is displayed in N , which can be obtained from
T by contraction. Each shallow blue edge corresponds to a path consisting of two or more edges in T .

applying Hall’s Theorem to a bipartite graph with one part consisting of tree vertices and119

another consisting of reticulation vertices, and the edges being reticulation edges in N . Since120

each reticulation vertex has two incoming reticulation edges and each tree vertex has at most121

two outgoing reticulation edges, the existence of such a matching E follows from a theorem122

of Alon [2, page 429].123

2.3. The tree containment problem124

Let (u, v) ∈ E(N). The contraction of (u, v) in N transforms N into the network with
the vertex set V(N)\{v} and the following edge set:{

(x, y) ∈ E(N) | x 6= v 6= y
}
∪
{

(x, u) | (x, v) ∈ E(N)\{(u, v)}
}
∪
{

(u, y) | (v, y) ∈ E(N)
}
.

Given a phylogenetic tree G and a network N , we say that N displays G if there is a125

spanning tree T of N such that G is a contraction of T , i.e. T has the same vertex set as N126

and G can be obtained from T by repeatedly applying contraction to all edges entering either127

the “dummy” leaves or the vertices of both outdegree and indegree one, where a dummy128

leaf is a leaf in T but not a leaf in N . Figure 2 shows an example of a network N and a129

phylogenetic tree that is displayed by N .130

The tree containment (TC) problem is to determine whether a given phylogenetic network131

displays a given phylogenetic tree. We shall discuss the TC problem for network class defined132

using vertex stability, namely the nearly stable networks.133

3. Nearly stable and genetically stable networks134

3.1. Inclusion Relationship135

A network is tree-child if each of its internal vertices has a child that is a tree vertex [5].136

A binary network is tree-sibling if every reticulation vertex has a sibling that is a tree137

5

vertex [4, 22]. Cordue et al. [7] investigated reticulation-visible networks in which each138

reticulation has at least a parent p that is connected to some leaf by a path consisting of139

only tree vertices. Here, such networks are defined to be nearly tree-child networks.140

Huson et al. [17, page 164] noted that if a network is tree-child, then all its vertices are141

stable. We strengthen their result by proving the other direction.142

Proposition 3.1. A network is tree-child if and only if every vertex is stable in the network.143

Proof. The sufficiency follows from Proposition 2.2(2) and Corollary 2.1.144

To extend tree-child networks, we introduced two subclasses of phylogenetic networks. A145

network is nearly stable if for every vertex, either the vertex or its parents are stable [10]. It is146

genetically stable if every reticulation vertex is stable and has at least one stable parent [11].147

Proposition 3.2.148149

(1) Every genetically stable network is tree-sibling.150

(2) Every tree-child network is nearly stable.151

(3) Every nearly tree-child network is genetically stable.152

Proof. (2) and (3) follow from the definitions. For (1), let N be a genetically stable network153

and let p ∈ R(N). Since N is genetically stable, p has a stable parent p′. By Proposi-154

tion 2.2(2), p′ is a tree vertex, so it must have another child c. By Corollary 2.1, c is a tree155

vertex, and N is therefore tree-sibling.156

Based on Proposition 3.2, we summarize the relationships between the classes we study157

and the other network classes for which the complexity of the TC problem is known in158

Figure 3.159

A reticulation-visible and tree-sibling network is not necessarily genetically stable (Fig-160

ure 4.A). A genetically stable network is not necessarily nearly tree-child (Figure 4.B). A161

nearly stable and nearly tree-child network is not necessarily tree-child (Figure 4.C). A162

nearly tree-child network is not necessarily nearly stable (Figure 4.D).163

3.2. Class sizes164

Recombination histories of viruses, hybridization histories of plants, and histories of165

horizontal gene transfers reported in the literature are often found to be nearly stable or166

reticulation-visible (see e.g. the networks given in [18, 21] which are available at http:167

//phylnet.info/recophync/networkDraw.php).168

In order to evaluate whether the class of nearly stable networks is relevant in practice,169

especially combined with the class of reticulation-visible networks for which there also exists170

a polynomial-time algorithm solving the TC problem, we used a set of phylogenetic networks171

randomly generated using a simulation program [1] and calculated the proportion of those172

networks belonging to the classes1. Figure 5 summarizes the results of our simulation study.173

1A Python script for class recognition as well as the data and the obtained results are available at
http://phylnet.info/recophync/, and an online demo is provided at http://phylnet.info/tools/.

6

http://phylnet.info/recophync/networkDraw.php
http://phylnet.info/recophync/networkDraw.php
http://phylnet.info/recophync/networkDraw.php
http://phylnet.info/recophync/
http://phylnet.info/tools/

Figure 3: Inclusion relationships between classes of binary phylogenetic networks: an arrow from class
A to class B means that A contains B. Class inclusions involving nearly stable and genetically stable are
justified in this article (Proposition 3.2); for the other ones, references are available at http://phylnet.

info/isiphync/. The boxes of classes where the TC problem is NP-complete are colored gray, the ones
where the TC problem is solvable in polynomial time are colored white.

This experiment shows that among networks generated with the coalescent with recom-174

bination model, the proportions of reticulation-visible and especially nearly stable networks175

are significantly larger than that of tree-child networks. Furthermore, the proportion of176

networks which are reticulation-visible or nearly stable is also significantly larger than the177

proportion of reticulation-visible networks.178

4. How large can nearly stable and genetically stable networks be?179

A network with n leaves may contain an arbitrary large number of non-leaf vertices and180

hence, unlike phylogenetic trees, its size is not bounded from above by a function of the181

number of leaves. In [10], we proved that a reticulation-visible network with n leaves has182

at most 10n − 9 vertices (including leaves). Later, the tight size bound 8n − 7 was proved183

Figure 4: (A) A network which is reticulation-visible and tree-sibling, but not genetically stable. (B) A
network which is genetically stable but neither nearly stable nor nearly tree-child. (C) A network which
is nearly tree-child and nearly stable but not tree-child. (D) A network which is nearly tree-child but not
nearly stable. Here, the filled vertices are unstable.

7

http://phylnet.info/isiphync/
http://phylnet.info/isiphync/

Figure 5: Percentage of binary phylogenetic networks on n leaves generated with the coalescent with recom-
bination model (recombination rate r) in each class of phylogenetic networks. The corresponding data is
available at http://phylnet.info/recophync/.

[3]. In this section, using the decomposition theorem introduced below, we shall first give184

a short proof of this tight bound. We also show that nearly stable networks have the same185

tight size bound as reticulation-visible networks, whereas genetically stable networks with186

n leaves have the tight size bound 6n− 5.187

4.1. A decomposition theorem188

Consider a network N . After the removal of all reticulations, N becomes a forest N −189

R(N). One connected component of the forest is rooted at ρN , whereas the other components190

are each rooted at the child of a reticulation (Figure 6). Since components consist of tree191

vertices of N , they are called tree vertex components of N . We call them big tree vertex192

components if they contain more than one vertex.193

A reticulation is said to be inner if its two parents belong to the same tree vertex194

components. Otherwise, it is said to be cross.195

We now prove the following decomposition theorem for nearly stable networks, which is196

similar to Theorem 1 of [13] for reticulation-visible networks.197

Theorem 4.1. Let N be a nearly stable or reticulation-visible network with tree vertex198

components C0, C1, C2, . . . , Cr. Then,199

(1) Each component Cj is rooted at a stable tree vertex. Additionally, a vertex is a compo-200

nent root if and only if it is either the network root or the child of a stable reticulation.201

(2) Each component Cj contains either a network leaf or the two parents of an inner202

reticulation.203

(3) Each component Cj contains at least two tree vertices if Cj 6= {`} for any leaf ` ∈ L(N).204

Proof. (1) By definition of a tree vertex component, its root r must be a tree vertex. If r is205

the root of N , then it is obviously stable. Otherwise, as r is a tree vertex, then its parent206

p is a reticulation (otherwise r is not a component root). If p is unstable, then r must be207

stable as N is a nearly stable network, but this contradicts Proposition 2.2(1). Therefore,208

8

http://phylnet.info/recophync/

A B C

Figure 6: (A) The decomposition of a nearly stable network into ten tree vertex components. Seven
components consist of a single leaf. The remaining three “big” components are C0, C1, and C2, where ρi
denotes the root of Ci for each i = 1, 2, 3. (B) A network with 3 leaves and 6 reticulations that is both
nearly stable and reticulation-visible. (C) A genetically stable network with 4 leaves and 6 reticulations.
Here the filled vertices are unstable ones.

p is a stable reticulation vertex and r is a stable tree vertex according to the part (2) of209

Proposition 2.2. Clearly, every child of a stable reticulation is a tree vertex, and thus is a210

component root as well.211

(2) For a component Cj that does not contain a network leaf, each leaf of Cj is a parent212

of some reticulation below Cj. If for any reticulation below Cj not all parents are in Cj,213

then, the set of the reticulations satisfies the conditions in Proposition 2.1 and hence the214

root of Cj is not stable, contradicting (1).215

(3) Suppose for contradiction that Cj contains exactly one tree vertex v and v is not216

a leaf. Then both children of v are reticulation vertices, and so v is unstable according to217

Corollary 2.1(1), contradicting the condition (1) above (i.e. v is stable).218

219

For a tree vertex component C of N , we denote its root by ρC . A tree vertex component220

C is below another component D, if there is a path from ρD to ρC in N . A lowest big tree221

vertex component is a component such that every other component below it contains exactly222

a single leaf. Such component is always guaranteed to exist, see [12].223

4.2. Three size bounds224

Let N be a network. In this subsection, we use r and t to denote the number of reticu-225

lations and non-leaf tree vertices in N .226

Theorem 4.2. (i.) ([3]) If N is reticulation-visible, then r ≤ 3(n− 1).227

(ii.) If N is reticulation-visible and tree-sibling, r ≤ 2(n − 1). In particular, the bound228

holds for genetically stable networks.229

(iii.) If N is nearly stable, then r ≤ 3(n− 1).230

9

Proof. (i.) Ignoring the open-edge attached to the root, the network root is of indegree 0231

and outdegree 2, the other tree vertices are of indegree 1 and outdegree 2 if they are not232

leaves, and each reticulation vertex is of indegree 2 and outdegree 1. By the handshaking233

lemma, 2t+ r = t− 1 + 2r + n, which is further simplified into:234

t = r + n− 1. (1)

Additionally, we let c be the number of tree vertex components of N for the rest of the235

proof. By Theorem 4.1(1), c = r + 1.236

Consider a component C. Since N is reticulation-visible, by Theorem 4.1(3), C contains237

two distinct parents of an inner reticulation if it does not contain a network leaf. Hence,238

r + 1 = c ≤ n+ t/2. (2)

Replacing t with r + n− 1 in Equation (2), we obtain that r ≤ 3(n− 1).239

240

(ii.) Assume N is reticulation-visible and tree-sibling. We distinguish three types of tree241

vertices of N by using Ti to denote the set of tree vertices with exactly i children being also242

tree vertices for i = 0, 1, 2, respectively.243

Since N is tree-sibling, each reticulation vertex x has a parent vx such that vx is a tree244

vertex and has x and another tree vertex as its children. Therefore, mapping x to vx is an245

injective map from R(N) to T1 and thus:246

r ≤ |T1|. (3)

Consider a tree vertex component C of N that does not contain any network leaf. By247

the fact (3) of Theorem 4.1, C contains a leaf v that differs from ρC . The children of v must248

be reticulation vertices, and hence v ∈ T0 (Fig 7.A). Since there are at most n tree vertex249

components that contain one or more network leaves,250

r + 1 = c ≤ |T0|+ n. (4)

Combining Inequalities (3) and (4) with Equation (1), we have:

2r + 1 ≤ |T1|+ |T0|+ n ≤ t+ n = r + 2n− 1,

and thus r ≤ 2(n− 1).251

252

(iii.) Let N be a nearly stable network. Given that each reticulation vertex may or may253

not be stable, we use rs and ru to denote the numbers of stable and unstable reticulation254

vertices of N , respectively.255

First, for an unstable reticulation vertex, its parents are both stable tree vertices, as N is256

nearly stable. By Corollary 2.1, a tree vertex with two reticulation children is unstable. This257

implies that any two different unstable reticulation vertices have distinct parents. Therefore,258

there are at least 2ru stable tree vertices that have an unstable reticulation child (Fig 7.B).259

10

Figure 7: Illustration of three types of tree vertices in a nearly stable network. (A) An unstable tree
vertex v with two reticulation children and a stable tree vertex u with two tree children. (B) A stable tree
vertex u for which a child is an unstable reticulation vertex. (C) A stable tree vertex u that has a common
reticulation child with its tree vertex child.

Secondly, for a tree vertex component C not containing any network leaf, its root is a260

stable tree vertex. By the fact (3) of Theorem 4.1, C contains a leaf v that differs from261

the root. The children of v are both reticulation vertices and thus, by Corollary 2.1, v is262

unstable. This implies that:263

c− n ≤ tu, (5)

as there are at most n components that contain at least a network leaf. Additionally, since N264

is nearly stable, the parent u of v has to be a stable tree vertex. Since v has two reticulation265

children, by Corollary 2.1, the stability of u implies that the other child of u has to be266

either a tree vertex (Fig. 7.A) or a child of v (Fig. 7.C). Since there are at least c − n tree267

vertex components that do not contain any network leaf, there are at least c− n stable tree268

vertices such that their children are either two tree vertices or a tree vertex and one (stable)269

reticulation vertex.270

In summary, we have shown that (i) N contains at least 2ru stable tree vertices that
have an unstable reticulation child and (ii) there are at least c− n stable tree vertices that
have no unstable reticulation child. Hence,

ts ≥ (c− n) + 2ru.

By Inequality (5),
t = tu + ts ≥ 2(c− n) + 2ru.

Since each tree vertex component is rooted at either the network root or the child of a
stable reticulation vertex, then, c = rs + 1. Replacing c with rs + 1 and rs + ru with r in
the last inequality, we have:

t ≥ 2r + 2− 2n.

This inequality and Eqn. 1 imply that 3(n− 1) ≥ r. This completes the proof.271

Fig. 6.B gives a nearly stable and reticulation-visible network with 3 leaves and 6 reticu-272

lation vertices. Fig. 6.C gives a genetically stable network with 4 leaves and 6 reticulations.273

Hence, the second and third bounds in Theorem 4.2 are also tight.274

Finally, it is not hard to see that in nearly tree-child network, each tree-vertex component275

contains at least a network leaf and thus we have r = c− 1 ≤ n− 1.276

11

5. A linear-time TC algorithm for nearly stable networks277

In this section, we present a recursive linear-time algorithm for TC on nearly stable278

networks.279

5.1. Stable tree vertices280

Let N be a nearly stable network. Consider a lowest big tree vertex component C of N ,281

and let ρC denote the root of C. Let u be a vertex in C. If u is stable, then all vertices in282

the path from ρC to u are stable by Proposition 2.2(1). Therefore, the stable vertices in C283

span a subtree of C with the same root ρC (Figure 8.A), called the stable subtree of C. The284

following proposition characterizes vertices outside the stable subtree.285

Proposition 5.1. Let N be a nearly stable network, and C be a lowest big tree vertex286

component of N . Then every unstable tree vertex in C has two reticulation children.287

Proof. Let x be an unstable tree vertex and y be a child of x in C. Assume y is a tree vertex.288

If y was stable, then x would also be stable (Proposition 2.2(1)), a contradiction. Therefore289

both y and x should be unstable, which contradicts the fact that N is nearly stable, so y290

cannot be a tree vertex.291

In the example given in Figure 8, the stable subtree has four leaves `9, s1, s2, s3. Clearly,292

every network leaf in C is a leaf of the stable subtree. We let S(C) denote the set of leaves293

of the stable subtree that are not network leaves, i.e.:294

S(C) = {s ∈ V(C)\L(N) : s is stable but every tree vertex child of s is unstable}. (6)

Proposition 5.2. Let x be a vertex in C. Then, x ∈ S(C) if and only if each child of x in295

C is a leaf of C but not a network leaf.296

𝑠3

ℓ6ℓ5

𝑟3

𝜌𝐶

ℓ1 ℓ2 ℓ3 ℓ7 ℓ8

𝑠1

𝑎 𝑏

𝑟2

B

𝑟1

ℓ4

𝑐

𝑠2

𝐶

ℓ3 ℓ4 ℓ5 ℓ6

𝑡

ℓ2 ℓ9

ℓ9

𝑏 𝑐𝑏 𝑐

𝑠3𝑠3

ℓ6ℓ5

𝑟3

𝜌𝐶
A

ℓ2 ℓ3 ℓ7 ℓ8

𝑠1

𝑟2

ℓ4

𝑠2

𝐶′

ℓ9

ℓ6ℓ5

𝑟3

𝜌𝐶
B

ℓ2 ℓ3 ℓ7 ℓ8

𝑠1

𝑟2

ℓ4

𝑠2

𝐶′′

ℓ9

Figure 8: Illustration of the idea of our algorithm. A tree-vertex component C of a nearly stable network,
where filled vertices are unstable ones and open edges have their end in other components. The orange
subtree is the subtree spanned by the stable vertices with four leaves s1, s2, s3, and `9.

12

Proof. Let x ∈ S(C).297

Suppose by contradiction that x has no child in C. Then x has two reticulation children298

r1 and r2. Thus, by Corollary 2.1, x is unstable: contradiction. Then let y be a child of x in299

C. By definition, y is unstable and thus is not a network leaf. If y is not a leaf of C, there300

is an unstable tree vertex below y, contradicting that N is nearly stable.301

Conversely, let y be a leaf of C but not a network leaf. Then, y has two reticulation302

children. Thus, by Corollary 2.1, y is unstable. Since N is nearly stable, the parent of y (i.e.303

the vertex x) must be stable. If the sibling of y is either a reticulation or a leaf of C but not304

a network leaf, its parent is then a lowest stable vertex in C and hence is in S(C).305

5.2. Two key lemmas306

Let N and G be the given network and phylogenetic tree. We assume that N does not307

contain any parallel edge nor a vertex with indegree and outdegree one.308

The following lemma limits the possible mini-structures below a vertex s ∈ S(C) for a309

lowest tree vertex component C. We use N [s] to denote the subnetwork consisting of all the310

vertices below s (including reticulation vertices below C).311

ℓ𝑠

𝑠

𝑎

𝑟

(1)

ℓ

𝑐

𝑏

(2) (3)

𝑠

𝑐

ℓ𝑠

𝑎

ℓ1

𝑏

ℓ2

𝑒𝑟

𝑑 𝑓

ℓ𝑠

𝑠

𝑎

𝑟 𝑏

ℓ

𝑑

ℓ′

ℓ

𝑝 𝑞

𝑣

𝑝 𝑞

𝑣

ℓ′

𝑧

𝑤

(1) (2) (3) (4)

ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦

ℓ

Figure 9: Three possible mini-structures below a vertex s ∈ S(C) in a lowest component C. Here, the
vertices c and f have undetermined vertex type, each of them can be a tree or reticulation vertex.

Lemma 5.1. Let C be a lowest tree vertex component of a network N . For s ∈ S(C), N [s]312

has only three possible mini-structures given in Figure 9.313

Proof. Assume s is stable on a leaf `s. The leaf `s cannot be in C. Otherwise all the vertices314

in the path from s to `s are stable, contradicting the fact that s ∈ S(C). Thus, `s is the315

unique child of an inner reticulation r below s. Let u be a parent of r. If u is a reticulation,316

it is then unstable and its parents are two tree vertices equal to or below s in C. Since317

s ∈ S(C), u and each of its parents below s are unstable, contradicting that N is nearly318

stable. Hence the parents of r are two tree vertices below s in C.319

Since N does not contain parallel edges, at least a parent of r is not s. Let a be such a320

parent of r. Note that a is a child of s, otherwise, since s ∈ S(C), any parent of the tree321

vertex a below s in C would not be a leaf of C, therefore contradicting Proposition 5.2. The322

fact that s ∈ S(C) also implies that a is unstable. Since N is nearly stable, there are no323

13

two unstable vertices that appear consecutively in a path. This implies that a must also be324

a child of s and the other child b of a is a stable reticulation for which the child is a network325

leaf `, as C is a lowest component of N .326

Let d be the other parent of r. If d = s, we obtain the mini-structure (1) in Fig. 9.327

If d 6= s, the other child of d is also a stable reticulation with a network leaf as its child, as328

N is nearly stable. If a and d have distinct child other than r, we obtain the mini-structure329

(2) in Fig. 9. If a and d have the same children, we obtain the mini-structure (3) in Fig. 9.330

This completes the proof.331

Now, we consider network leaves in C. For a network leaf ` in C, let p be the parent of332

`. The following lemma gives all possible mini-structures of N [p] if the sibling of ` is not a333

stable tree vertex.334

Lemma 5.2. If the sibling of ` is not a stable tree vertex in C, N [p] has only three possible335

mini-structures given in Figure 10.336

Proof. Let v be the sibling of `. It is either a tree vertex or a reticulation vertex.337

If v is a stable reticulation, the child of v must be a network leaf. Then, we obtain the338

mini-structure (1) in Figure 10.339

If v is an unstable reticulation, then its child w is a stable reticulation. Clearly, the child340

of w is a leaf. This gives the mini-structure (2) in Figure 10.341

Finally, if v is an unstable tree vertex, the children of v must be stable, as N is nearly342

stable. By the part (1) of Proposition 2.2, the children of v are stable reticulation vertices,343

for which the unique child is a network leaf. Otherwise, v is stable. Thus, we obtain the344

mini-structure (3) in Figure 10.345

5.3. Dissolving the lowest components346

Now, we show how to dissolve a lowest big tree vertex component C by working one by347

one on the subnetworks below the vertices in S(C) and then the parents of network leaves348

in C.349

ℓ′

ℓ

𝑝 𝑞

𝑣

(1) (3)(2)

𝑝
𝑞

𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦
ℓ

ℓ′

ℓ

𝑝
𝑣

ℓ

𝑝
𝑝

𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝
𝑣

ℓ

𝑝

𝑣

ℓ′

𝑤
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

ℓ

𝑝

𝑣

ℓ′′

𝑤𝑥

ℓ′

ℓ

1 2 3 4 5 6 (7)

Figure 10: Three possible mini-structures below a tree vertex for which one child is a network leaf and the
other is not a stable tree vertex in a lowest component. The vertices q, y and x have undetermined vertex
type.

14

In the rest of this discussion, we use x ∧G y (resp. x −∧Gy) to denote that x and y are350

(resp. not) siblings in G. We also use parG(v) to denote the parent of v in G.351

First, we consider the mini-structure (1) in Figure 10, which is named the “uncle-nephew352

structure” in [10], where two leaves ` and `′ have the uncle and nephew relationship and q353

is either a tree or reticulation vertex.354

Lemma 5.3. If N contains the mini-structure (1) in Figure 10, define

E =

{
(q, v) if ` ∧G `

′;

(p, v) otherwise.

Then N displays G if and only if N − E displays G.355

Proof. Let N ′ = N −E. If N ′ displays G, then N also displays G, as N ′ is a subnetwork of356

N . To prove the necessity, we assume that N displays G with a spanning tree T such that357

G is a contraction of T . There are two possible cases.358

1. ` ∧G `′: note that T contains either (p, v) or (q, v) exclusively. If T contains (p, v), N ′359

displays G, as T is also a spanning tree of N ′.360

If T contains (q, v), let h be the lowest common ancestor of ` and `′ in T . Since any361

path to ` must contain p, p must be in the path from h to p in T and T [h] only has362

two labeled leaves, namely ` and `′.363

Define T ′ = T−(q, v)+(p, v). Then, the vertex p becomes the lowest common ancestor364

of ` and `′ in T ′, so T [h] and T ′[h] do not contain any network leaves other than ` and365

`′. Any edge of T that is not below h is also an edge in T ′ and conversely, so G is a366

contraction of both T and T ′. The tree T ′ is a spanning tree of N − (q, v), and thus367

is the evidence that N − (q, v) displays G.368

2. ` −∧G`
′: if (p, v) is an edge in T , then ` and `′ has p as their lowest common ancestor369

in T , contradicting that ` and `′ are not sibling in G. Thus, T does not contain (p, v)370

and T is also a spanning tree of N − (p, v), implying that N ′ also displays G.371

372

Using the above lemma, we can prove the following facts. These facts suggest that we373

can dissolve the subnetwork below each s ∈ S(C) by using the structural information on G.374

Lemma 5.4. Let s ∈ S(C). Define N ′ as follows.375

(i) If N [s] has the mini-structure (1) in Figure 9,376

N ′ = N −
{
{(a, r), (c, b)} if ` ∧G `s,
{(a, r), (a, b)} otherwise.

(7)

15

(ii) If N [s] has the mini-structure (2) in Figure 9,377

N ′ = N −


{(a, b), (a, r), (d, e)} if neither `1 ∧G `s nor `2 ∧G `s,
{(c, b), (d, r), (f, e)} if `1 ∧G `s and parG(`s) ∧G `2,
{(c, b), (d, r), (d, e)} if `1 ∧G `s but parG(`s)−∧G`2,
{(c, b), (a, r), (f, e)} if `2 ∧G `s and parG(`s) ∧G `1,
{(a, b), (a, r), (f, e)} if `2 ∧G `s but parG(`s)−∧G`1.

(8)

(iii) If N [s] has the mini-structure (3) in Figure 9, N ′ = N − {(a, b), (d, r)}.378

Then N displays G if and only if N ′ displays G.379

Proof. Since N ′ is a subnetwork of N in each case, N displays G if N ′ displays G. To prove380

the other direction, assume that N displays G. There is a spanning tree T of N such that381

G is a contraction of T .382

(i) The reticulation edge (a, r) is redundant. N − (a, r) is essentially an uncle-nephew383

structure. Hence by Lemma 5.3, we have N displays G only if N ′ defined in Eqn. (7) displays384

G.385

(ii) In Eqn. (8), the fourth and fifth cases are symmetric to the second and third cases,386

respectively. Hence, we only consider the first three cases.387

CASE 1. Neither `1 ∧G `s nor `2 ∧G `s.388

Clearly, neither (a, b) nor (d, e) are in T . Otherwise, either `1 or `2 is the sibling of `s,389

contradicting the assumption. So T is a spanning tree of N − {(a, b), (d, e)}. If (d, r) is in390

T , then, T is also a spanning tree of N ′. If (a, r) is in T , then T − {(a, r)} + {(d, r)} also391

displays G and is a spanning tree of N ′. Thus, N displays G only if N ′ displays G.392

CASES 2 and 3. `1 ∧G `s.393

We first claim that N − (d, r) displays G. If (d, r) is not in T , then the claim is true. If394

(d, r) is in T , then (d, e) is not in T . Otherwise, `s and `2 are siblings in T . Hence, G is also395

a contraction of T − (d, r) + (a, r), and N − (d, r) displays G.396

Next, note that there is essentially an uncle-nephew structure on the leaves `1 and `s in397

N − (d, r). Hence, the assumption that `1 ∧G `s implies that N − {(d, r), (c, b)} displays G.398

Finally, in N − {(d, r), (c, b)}, we have essentially an uncle-nephew structure after con-399

traction of the subtree below a. Therefore, if `2 is the sibling of the parent of `1 and `s in400

G, N − {(d, r), (c, b), (f, e)} displays G. Otherwise, N − {(d, r), (c, b), (d, e)} displays G.401

(iii) In this case, deleting which edge entering at r and b makes no difference. Therefore,402

N displays G if and only if N ′ displays G.403

After we modify N [s] according to the rules suggested in Lemma 5.4 for every s ∈ S(C),404

the subtree below each s consists of network leaves, vertices of degree 2 and/or dummy405

vertices in the resulting network N ′ (Figure 11). We can further replace N [s] and the406

corresponding subtree in G by the same leaf `s, if they are compatible. Otherwise, we407

conclude that N does not display G and stop the algorithm.408

In summary, the procedure for simplifying the subnetwork below a lowest stable vertex409

in C is given in Algorithm 1.410

16

Algorithm 1: Dissolving lowest stable vertices

Procedure Dissolve Lowest Stable Vertices(N , C, s)
Input: a network N , a component C, a vertex s
Output: simplified N with reticulations below s being eliminated

1 if Case 1 holds (Fig. 9.1) then
2 if ` ∧G `s then
3 delete (a, r) and (c, b) (Fig. 11.1); contract the edge(s) entering c;

4 else
5 delete (a, r) and (a, b) (Fig. 11.2); contract (c, b);

6 if Case 2 holds (Fig. 9.2) then
7 if neither `1 ∧G `s nor `2 ∧G `s then
8 delete (a, b), (a, r), and (d, e) (Fig. 11.4);
9 contract the edges (c, b) and (f, e);

10 else if `1 ∧G `s and parG(`s) ∧G `2 then
11 delete (c, b), (d, r), and (f, e) (Fig. 11.5);
12 contract the edge(s) entering c or f ;

13 else if `1 ∧G `s but parG(`s)−∧G`2 then
14 delete (c, b), (d, r), and (f, e);
15 contract the edge(s) entering f and the edge (c, b);

16 else if `2 ∧G `s and parG(`s) ∧G `1 then
17 delete (c, b), (a, r), and (f, e);
18 contract the edge(s) entering c or f ;

19 else if `2 ∧G `s but parG(`s)−∧G`1 then
20 delete (a, b), (a, r), and (f, e);
21 contract the edge(s) entering f and the edge (c, b);

22 if Case 3 holds (Fig. 9.3) then
23 if ` ∧G `s then
24 skip;

25 else
26 output “G is not displayed” and exit;

27 contract N [s] into `s;
28 contract G[parG(parG(`s))] or G[parG(`s)] into `s if necessary;

17

Figure 11: The resulting networks after N [s] is simplified. (1) and (2) for the two cases of the mini-structure
(1). (3) for the mini-structure (3). (4)-(6) for the first three cases of the mini-structure (2). The cases 4
and 5 of the mini-structure (2) are symmetric to the cases 2 and 3, respectively.

Note that no stable reticulation vertex becomes unstable after removing reticulation411

edges in a network if at least one reticulation edge is kept for each reticulation vertex, which412

is the case for all the rules of this simplification process. Therefore, after the simplification413

process terminates, N ′ is still nearly stable. Each of the components different from C may414

be simplified into a smaller one in N ′. Additionally, two big tree vertex components may415

even be merged into one component in N ′.416

When working on N [s′] for some s′ ∈ S(C), we may transform another N [s] into a417

subtree or a subnetwork of different mini-structure through the elimination of the reticulation418

vertices that have a parent in both N [s] and N [s′]. The following result describes the possible419

modifications on the subnetwork N [s] below s ∈ S(C).420

Proposition 5.3. Let s, s′ ∈ S(C) such that V(N [s]) ∩ V(N [s′]) 6= ∅. Calling421

Dissolve Lowest Stable Vertices on s′ first will change N [s] into (i) a subnetwork of the mini-422

structure in Figure 9.1, (ii) a three-vertex tree with two network leaves, (iii) a length-2 path423

from s to a network leaf on which s is stable, or (iv) a subnetwork in which at least a child424

of s is a stable tree vertex.425

Proof. To distinguish N [s] before and after the procedure Dissolve Lowest Stable Vertices is426

called on s′, we use N̄ [s] to denote the subnetwork obtained when the procedure terminates.427

The existence of s′ such that V(N [s])∩V(N [s′]) 6= ∅ implies that N [s] has the mini-structure428

either (1) or (2) in Figure 9.429

If N [s] has the mini-structure (1) in Figure 9, calling the procedure first on s′ affects N [s]430

only if V(N [s]) ∩ V(N [s′]) = {b, `}. Therefore, calling the procedure on s′ may alter N [s]431

in two possible ways. One possibility is that (a, b) is deleted and then (s, a) is contracted,432

resulting in N̄ [s] equivalent to a path: s → r → `s. The second possibility is that (c, b) is433

18

deleted and (a, b) is then contracted, changing the tree vertex a into a tree vertex stable on434

` in N̄ [s] and hence making s not in S(C).435

If N [s] has the mini-structure (2) in Figure 9, calling the procedure first on s′ affects436

N [s] only if V(N [s])∩V(N [s′]) is equal to {b, `1}, {e, `2}, or {b, e, `1, `2}. The first two cases437

are symmetric and thus we consider the following two cases.438

CASE 1. V(N [s]) ∩ V(N [s′]) = {b, `1} (resp. {e, `2}).439

Running the procedure on s′ may alter N [s] in two possible ways. One possibility is that440

(a, b) (resp. (d, e)) is deleted and then (s, a) (resp. (s, d)) is contracted, simplifying N̄ [s]441

into a subnetwork of the mini-structure (1) in Figure 9.442

The second possibility is that (c, b) (resp. (f, e)) is deleted and (a, b) (resp. (d, e)) is443

then contracted. This changes the vertex a from an unstable tree vertex into a stable tree444

vertex. As such, N̄ [s] contains an uncle-nephew structure and s is no longer in S(C).445

CASE 2. V(N [s]) ∩ V(N [s′]) = {b, e, `1, `2}.446

In this case, N [s′] has the same mini-structure (2) in Figure 9. Running the procedure447

on s′ may alter N [s] in three possible ways. One possibility is that both (a, b) and (d, e) are448

deleted and thus both (s, a) and (s, d) are contracted. This makes N̄ [s] equivalent to the449

path s→ r → `s.450

Another possibility is that (a, b) and (f, e) (resp. (c, b) and (d, e)) are deleted and thus451

(s, a) and (d, e) (resp. (a, b) and (s, d)) are contracted. This makes N̄ [s] essentially equivalent452

to a 3-vertex tree (s, (`1, `s)) (resp. (s, (`2, `s))).453

The third possibility is that both (c, b) and (f, e) are deleted and thus both (a, b) and454

(d, e) are contracted. This changes the vertices a and d from unstable tree vertices into455

stable tree vertices, making s not in S(C).456

In N ′, each vertex of S(C) becomes a new network leaf. Importantly, the following fact457

is true for the simplified component, which is still called C for convenience. It says that the458

simplification process will not create new elements for S(C).459

Proposition 5.4. S(C) = ∅ in N ′.460

Proof. Assume the resulting stable subtree of the component contains a leaf u that is not461

a network leaf of N ′. Then, u must be an unstable tree vertex in N . Otherwise, either u462

has a stable tree child in N (and thus in N ′), or u is in S(C) and thus becomes a leaf in463

N ′, a contradiction. By Proposition 5.1, u has two reticulation children x and y. Since C464

is a lowest component of N , the unique child for x and y must be a network leaf. If the465

reticulation edges entering x and y have never been removed, u could not become stable.466

If some edge entering x or y is deleted when N [s] is modified for some s ∈ S(C), then the467

involved child of u is contracted and thus u becomes either a dummy leaf or the parent of468

a network leaf. By Proposition 5.2, u is not in S(C), a contradiction.469

Now S(C) = ∅. However, there may be reticulation vertices below C. We further simplify470

C using each of the rules in the following lemma.471

Lemma 5.5. Let ` be a network leaf in C and p be the parent of ` such that the sibling of472

` is not a stable tree vertex in C. Define N ′ as follows.473

19

(i) If N [p] has the mini-structure (1) in Figure 10,474

N ′ = N −
{

(q, v) if `′ ∧G `,
(p, v) otherwise.

(9)

(ii) If N [p] has the mini-structure (2) in Figure 10,475

N ′ = N −
{
{(q, v), (z, w)} if `′ ∧G `,
{(p, v)} otherwise.

(10)

(iii) If N [p] has the mini-structure (3) in Figure 10,476

N ′ = N −


{(y, x), (v, w)} if `′ ∧G `,
{(v, x), (z, w)} if `′′ ∧G `,
{(y, x), (z, w)} if `′ ∧G `′′ and parG(`′) ∧G `,
{(v, x), (v, w)} otherwise.

(11)

Then, N displays G if and only if N ′ displays G.477

Proof. N ′ is a subnetwork of N , so clearly N displays G if N ′ displays G.478

Assume that N displays G. There exists a spanning tree T of N such that G is a479

contraction of T .480

By Lemma 5.2, there are three possible mini-structures for N [p] shown in Fig. 10. The481

mini-structure (1) is an uncle-nephew structure and thus the sufficiency follows from482

Lemma 5.3. The sufficiency for the mini-structure (2) in Fig. 10 can be proven similarly.483

Suppose N [p] has the mini-structure (3) in Fig. 10, the first and second case in the484

definition of N ′ are symmetric, so we only need to consider the cases 1, 3 and 4.485

1: `′ ∧G `: since T must contain p, T does not contain (v, w). Otherwise, `′′ is the sibling486

of either `′ or ` depending whether or not (v, x) is in T , contradicting the assumption487

in this case. This implies that T is a spanning tree of N − (v, w).488

In N − (v, w), (N − (v, w))[p] is essentially an uncle-nephew structure. By Lemma 5.3,489

N ′ = (N − (v, w))− (y, x) displays G.490

3: `′ ∧G `′′ and parG(`′) ∧G `.491

Notice that T contains p. If T contains exactly one of (v, x) and (v, w), ` is a sibling492

of either `′ or `′′ in G, contradicting the assumption in this case.493

Therefore, either both (v, x) and (v, w) are in T or none of them is in T . If the former494

holds, then T is a spanning tree of N ′ and N ′ also displays G. If the latter holds, let495

t1 denote the lowest common ancestor of `′ and `′′ and let t2 be the lowest common496

ancestor of t1 and ` in T . Then, T [t2] contains only three labeled leaves: `, `′, and `′′.497

Let T ′ = T −{(y, x), (z, w)}+ {(v, x), (v, w)}. The tree in which `′ and `′′ are siblings498

and ` is their uncle is a contraction of T ′[t2] and T [t2], and T ′ is a spanning tree of499

N − {(y, x), (z, w)}. Therefore, N − {(y, x), (z, w)} displays G.500

20

4: All the first three cases are not true.501

As shown in the third case, either both (v, x) and (v, w) are both in T or none of them502

is in T . If (v, x) and (v, w) are both in T , then `′ and `′′ are sibling and their parent503

is a sibling of ` in G, contradiction. Therefore, T is a spanning tree of N ′. Hence, N ′504

also display G.505

506

ℓ′

ℓ

𝑝 𝑞

𝑣

(1) (2) (3) (4)

𝑝 𝑞

𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦

ℓ

𝑝 𝑞
𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝 𝑞

𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦
ℓ

1 2 (3)

4 5 (6)

Figure 12: The resulting networks after N [p] is simplified using each of the rule in Lemma 5.5. (1) and (2)
for the two cases of the mini-structure (2) in Fig. 10. (3)-(6) for the four cases of the mini-structure (3) in
Fig. 10.

By Lemma 5.5, we can simplify the subnetwork below the parent of each network leaf in507

C using the following procedure called Dissolve SubntkNearNtkLeaf, which is illustrated in508

Fig. 12. When the procedure is called on a network leaf, it may alter the subnetwork below509

the parent of another network leaf. Because of this, when a network leaf is examined, the510

subnetwork below its parent may have one of the degenerated structures listed in Fig. 13.511

For this case, Dissolve DegeneratedCases is called.512

By repeatedly simplifying the subnetwork below the parent of each network leaf through513

the removal of edges entering reticulations and contraction of edges, we will further transform514

the component into a single vertex or else we will discover that the input network does not515

display the tree G.516

5.4. The algorithm517

We are now ready to describe a linear-time TC algorithm (Algorithm 4) for nearly stable518

networks. It is divided into the pre-processing and simplification parts. Roughly speaking,519

21

Algorithm 2: Dissolving subnetwork near network leaf

Procedure Dissolve SubntkNearNtkLeaf(N , C, `)
Input: a network N , a component C, a leaf `
Output: N with reticulations below the parent p of ` being eliminated

1 if Case 1 holds (Fig. 10.1) then
2 if ` ∧G `′ then
3 delete (q, v);

4 else
5 delete (p, v);

6 if Case 2 holds (Fig. 10.2) then
7 if ` ∧G `′ then
8 delete (q, v) and (z, w) (Fig. 12.1);

9 else
10 delete (p, v) (Fig. 12.2);

11 if Case 3 holds (Fig. 10.3) then
12 if ` ∧G `′ then
13 delete (y, x) and (v, w) (Fig. 12.3);

14 else if ` ∧G `′′ then
15 delete (v, x) and (z, w) (Fig. 12.4);

16 else if (`′ ∧G `′′) and (parG(`′) ∧G `) then
17 delete (y, x) and (z, w) (Fig. 12.5);

18 else
19 delete (v, x) and (v, w) (Fig. 12.6);

20 contract N [p] into `; contract G[par(`)] into ` if necessary (Fig. 12).

22

Algorithm 3: Dissolving degenerated cases

Procedure Dissolve DegeneratedCases(N , C, `)
Input: a network N , a component C, a leaf `
Output: N with reticulations below the parent p of ` being eliminated

1 if Case 1 or 2 holds (Fig. 13.1 or Fig. 13.2) then
2 skip;

3 if Case 3 or 4 holds (Fig. 13.3 or Fig. 13.4) then
4 if ` ∧G `′ then
5 skip;

6 else
7 output “No” and exit;

8 if Case 5 holds (Fig. 13.5) then
9 if (`′ ∧G `′′) and (parG(`′) ∧G `) then

10 skip;

11 else
12 output “No” and exit;

13 if Case 6 holds (Fig. 13.6) then
14 if ` ∧G `′ then
15 delete (z, w);

16 else
17 delete (v, w);

18 if Case 7 holds (Fig. 13.7) then
19 if (`′ ∧G `′′) and (parG(`′) ∧G `) then
20 delete (z, w);

21 else if `′ ∧G ` then
22 delete (v, w);

23 else
24 output “No” and exit;

25 contract N [p] into `; contract G[parG(`)] into ` if necessary.

23

Algorithm 4: A linear-time tree containment algorithm for nearly stable networks

Procedure Tree containment(N , G)
Input: a network N , a tree G
Output: true if N contains G, false otherwise
// 1. Pre-process N

1 Compute and topologically sort the big tree-vertex components Ci (0 ≤ i ≤ k) so
that ρ(Cj) is a descendant of ρ(Ci) only if i < j;
/* Some big components may contain only leaves that are in L(N)

(i.e., below which there are no reticulation vertices) */

2 for i = k to 0 do
3 simplify C = Ci by repeatedly contracting degree-2 vertices and dummy leaves

so that it becomes binary;
4 compute S(C) by traversing C in pre-order (see Proposition 5.2);
5 foreach s ∈ S(C) do
6 if N [s] has a mini-structure in Fig. 9 then
7 Dissolve Lowest Stable Vertices(N ,C,s);

8 else
9 simplify N [s];

10 Resimplify C by repeatedly contracting degree-2 vertices and dummy leaves;
/* Assume the left child of a vertex is always a stable tree

vertex, if it has any stable tree vertex child. Exchange the

left and right children of a vertex if needed. */

11 (Traversing C in post-order: u1, u2, . . . , ut = ρ(C))
12 foreach ` = ui do
13 if ` does not have a sibling then
14 replace its parent ui+1 with `;

15 else if its sibling v is also a network leaf then // Case C1

16 if `−∧Gv then
17 return false;

18 else if v has been visited then
19 contract N [par(`)] and G[par(`)] into `;

20 else skip ;

21 else if its sibling is not a stable tree vertex then // Cases C2 & C3

22 if the subnetwork below the parent of ` has a mini-structure in Fig. 10
then

23 Dissolve SubntkNearNtkLeaf(N , C, `);

24 else
25 Dissolve DegenerateCases(N , C, `);

26 else skip ; // Case C4: the sibling of ` is a stable tree vertex

27 return true; 24

the algorithm first topologically sorts the big tree vertex components and then dissolves these520

components one by one in a bottom-up manner. Each component is dissolved in two stages.521

In the first stage , Dissolve Lowest Stable Vertices is called for each s ∈ S(C). In the second522

stage, Dissolve SubntkNearNtkLeaf and Dissolve DegenerateCases are repeatedly called. In523

the rest of this section, we discuss the correctness and running time of the algorithm step524

by step.525

Let N and G be the input nearly stable network and phylogenetic tree with the same set526

of n labeled leaves, respectively. Then, |V(N)| = O(n), which is proved in Section 4, and527

hence |E(N)| = O(n), as N is degree-bounded. If G is displayed in N , |V(G)| ≤ |V(N)|.528

We shall show that the proposed TC algorithm takes O(n) operations. Here, the operations529

include (i) edge contraction, (ii) edge deletion, (iii) membership check for T (N), R(N) and530

L(N), (iv) verification of sibling or parent-son relationship and (v) traverse to a vertex in531

N or G.532

First, in the pre-processing (line 1), we first identify and topologically sort the roots of533

the big tree vertex components in O(|E(N)|+ |V(N)|) [20, page 103]. Note that the root of534

each component is the unique child of a stable reticulation vertex. We then use breadth-first535

search to compute each big component by starting from its root and order these tree vertex536

components in the same way as their roots are ordered.537

After the pre-processing, the components are simplified one by one in a bottom-up man-538

ner. In line 3, the number of operations taken is linear in the number of contracted edges.539

Because each edge is contracted at most once, in a bottom-up manner, this step takes at540

most O(|E(N)|) operations.541

For a component C, by Proposition 5.2, a vertex x in S(C) if and only if each child of x542

in C is a leaf of C but not a network leaf. Hence, when traversing C in pre-order, a vertex543

x is in S(C) if and only if (a) the next vertex is in L(C)\L(N) and (b) the next vertex544

is either not a child of x or also in L(C)\L(N), each of which can be checked in constant545

time. Hence, the total number of operations taken on line 3 is linear in
∑

0≤i≤k |V(Ci)|, for546

all k + 1 big tree-vertex components of N , which is at most |V(N)|.547

For each component C, |S(C)| ≤ |L(C)| and thus |S(C)| ≤ |V(C)|/2. By the foreach548

loop on line 5–9, we simplify the networks N [s] below s ∈ S(C) one-by-one. Since there549

are only three possible mini-structures in Figure 9, each containing 4 to 6 vertices, the550

ℓ′

ℓ

𝑝 𝑞

𝑣

(1) (3)(2)

𝑝
𝑞

𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

𝑦
ℓ

ℓ′

ℓ

𝑝
𝑣

ℓ

𝑝
𝑝

𝑣

ℓ′

𝑧

𝑤
ℓ

𝑝
𝑣

ℓ

𝑝
𝑣

ℓ′

𝑤
ℓ

𝑝

𝑣

ℓ′′

𝑧

𝑤𝑥

ℓ′

ℓ

𝑝

𝑣

ℓ′′

𝑤𝑥

ℓ′

ℓ

1 2 3 4 5 6 (7)

Figure 13: The possible degenerated structures of the subnetwork below the parent of a network leaf in a
lowest tree component C. In (2) and (4), v can be either an unstable tree vertex or a reticulation vertex.

25

conditional statement can be verified in constant time. If the conditional statement is551

true, calling the procedure Dissolve Lowest Stable Vertices on s takes constant time. If the552

conditional statement is false, N [s] has been modified when working on some s′ ∈ S(C)553

earlier. By Proposition 5.3, s is no longer in S(C) or N [s] is equivalent to a length-2 path554

from s to `s on which s is stable. Hence, the simplification of N [s] also takes constant555

time. Overall, the first foreach loop takes O(|S(C)|) operations for each C. Hence the556

total number of the operations taken by the algorithm is O(|V(N)|) for line 5–9. Note that557

when the leaves of C are all network leaves, S(C) = ∅ and the foreach loop will stop.558

S(C) is empty when line 10 starts. Then, either an internal tree vertex or its parent is559

in the path from ρ(C) to a network leaf. Moreover, if an internal tree vertex is stable, as560

assumed in the beginning of this step, its left child is also a stable tree vertex.561

Let u be an internal tree vertex in the current component C. Assume at least one child562

of u ∈ V(C) is a network leaf. Since the vertices in C are traversed in post-order, a network563

leaf child of u must be visited before u. In particular, line 12 always starts with a network564

leaf, which is the leftmost leaf of C.565

Assume the currently visited vertex ` = ui is a network leaf and it is the left child of its566

parent p. Let v be the other child of p in N . There are the following four cases.567

C1. The vertex v is also a network leaf. Then v = ui+1 and p = ui+2. If ` and v are not568

siblings in G, we have the evidence that G is not displayed and hence the algorithm569

terminates. If ` and v are siblings in G, then, the algorithm simply moves on to process570

v = ui+1. At v, the algorithm will replace p with v and also replace the parent of ` and571

v with v in G. As such, when the algorithm processes ui+2, it has become a network572

leaf now and {ui+2, . . . , ut} is still the vertex set of the modified component, listed in573

the post-order. This explain why the algorithm simply does not act when visiting ` in574

this case.575

C2. The vertex v is not in C, that is, a reticulation vertex. Then, ui+1 = p. If N [p] has576

the mini-structures (1) and (2) in Fig. 10, the procedure Dissolve SubntkNearNtkLeaf577

is called on `. Otherwise, Dissolve DegenerateCases is called on `. After p is replaced578

with a network leaf, then {p = ui+1, . . . , ut} is the vertex set of the modified component579

listed in the post-order.580

C3. The vertex v is a tree vertex but unstable. Then, v = ui+1 and N [p] has the mini-581

structure (3) in Fig. 10 or a degenerated structure in Fig. 13. Similar to the case C2,582

after Dissolve SubntkNearNtkLeaf or Dissolve DegenerateCases is called on `, {p =583

ui+2, . . . , ut} is the vertex set of the modified component listed in the post-order.584

C4. The vertex v is an internal, stable tree vertex in C. This indicates that the subnetwork585

N [v] contains at least one stable tree vertex and possibly some reticulation vertices.586

In this case, ui+1 is the leftmost network leaf in C[v]. The algorithm will move on to587

simplify C[v] into a network leaf and then contracting the parent of both ` and v into588

a network leaf. In order to simplify C[v] first, the algorithm simply skips at `.589

Clearly, the second foreach loop takes constant operations in each execution.590

26

Taken together, the above facts show the following theorem.591

Theorem 5.1. Algorithm 4 uses O(|L(N)|) operations to solve the TC problem for nearly592

stable networks N .593

6. Conclusion594

In this paper, we have studied nearly stable and genetically stable networks, two classes595

that were introduced in the study of the tree containment problem. In particular, we have596

proved that each nearly (resp. genetically) stable network with n leaves contains at most597

3(n − 1) (resp. 2(n − 1)) reticulation vertices. We have also designed a linear-time TC598

algorithm for binary nearly stable networks.599

This study arises several problems for future study. The cluster containment (CC) prob-600

lem asks whether or not a given cluster appears in some phylogenetic tree displayed by a601

given network. Gunawan et al. [12] designed a linear-time algorithm for the CC problem.602

Now, we have obtained a linear-time algorithm for the TC problem. Is there a linear-time603

TC algorithm for reticulation-visible networks? If the answer to this question is negative, is604

there a linear-time TC problem for genetically stable networks?605

In each binary nearly stable network, there are at most 3(n − 1) reticulation vertices.606

This is also true for reticulation-visible networks. Is it possible to define a superclass of607

networks that contains both reticulation-visible networks and nearly stable networks for608

which the TC and CC problems are still polynomial-time solvable?609

Binary nearly stable networks have simple local structures compared with reticulation-610

visible networks. Hence, it is also interesting to investigate how to efficiently reconstruct611

nearly stable network models from gene trees or sequence data.612

7. Acknowledgments613

The project was financially supported by the 2013 Merlion Programme. ADMG and614

LXZ were also supported by a Singapore MOE Tier-1 grant R-146-000-238-114.615

References616

[1] Arenas, M., Valiente, G., Posada, D., 2008. Characterization of reticulate networks based on the coa-617

lescent with recombination. Molecular Biology and Evolution 25 (12), 2517–2520.618

[2] Bondy, J. A., Murty, U. S. R., 2008. Graph Theory. Springer.619

[3] Bordewich, M., Semple, C., 2016. Reticulation-visible networks. Advances in Applied Mathematics 78,620

114–141.621

[4] Cardona, G., Llabrés, M., Rosselló, F., Valiente, G., 2008. A distance metric for a class of tree-sibling622

phylogenetic networks. Bioinformatics 24 (13), 1481–1488.623

[5] Cardona, G., Rosselló, F., Valiente, G., 2009. Comparison of tree-child phylogenetic networks.624

IEEE/ACM Trans. Comput. Biol. Bioinfo. 6 (4), 552–569.625

[6] Chan, J. M., Carlsson, G., Rabadan, R., 2013. Topology of viral evolution. PNAS 110 (46), 18566–626

18571.627

[7] Cordue, P., Linz, S., Semple, C., 2014. Phylogenetic networks that display a tree twice. Bull. Math.628

Biol. 76 (10), 2664–2679.629

27

[8] Fakcharoenphol, J., Kumpijit, T., Putwattana, A., 2015. A faster algorithm for the tree containment630

problem for binary nearly stable phylogenetic networks. In: Proceedings of the The 12th International631

Joint Conference on Computer Science and Software Engineering (JCSSE’15). IEEE, pp. 337–342.632

[9] Francis, A. R., Steel, M., 2015. Which phylogenetic networks are merely trees with additional arcs?633

Systematic Biology 64 (5), 768–777.634

[10] Gambette, P., Gunawan, A. D. M., Labarre, A., Vialette, S., Zhang, L., 2015. Locating a tree in a635

phylogenetic network in quadratic time. In: Proceedings of the 19th Annual International Conference636

on Research in Computational Molecular Biology (RECOMB 2015). Vol. 9029 of LNCS. pp. 96–107.637

[11] Gambette, P., Gunawan, A. D. M., Labarre, A., Vialette, S., Zhang, L., 2016. Solving the tree contain-638

ment problem for genetically stable networks in quadratic time. In: Proceedings of the 26th Interna-639

tional Workshop on Combinatorial Algorithms (IWOCA 2015). Vol. 9538 of LNCS. pp. 197–208.640

[12] Gunawan, A. D. M., DasGupta, B., Zhang, L., 2016. Locating a tree in a reticulation-visible network in641

cubic time. In: Proceedings of the 20th Annual International Conference on Research in Computational642

Molecular Biology (RECOMB 2016). Vol. 9649 of LNBI. pp. 266–266, arXiv:1507.02119, 2015.643

[13] Gunawan, A. D. M., DasGupta, B., Zhang, L., 2017. A decomposition theorem and two algorithms for644

reticulation-visible networks. Information and Computation 252, 161–175.645

[14] Gunawan, A. D. M., Lu, B., Zhang, L., 2016. A program for verification of phylogenetic network models.646

Bioinformatics 32 (17), i503–i510.647

[15] Gunawan, A. D. M., Zhang, L., 2015. Bounding the size of a network defined by visibility property.648

http://arxiv.org/abs/1510.00115.649

[16] Gusfield, D., 2014. ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Ex-650

plicit Phylogenetic Networks. The MIT Press.651

[17] Huson, D. H., Rupp, R., Scornavacca, C., 2011. Phylogenetic Networks: Concepts, Algorithms and652

Applications. Cambridge University Press.653

[18] Jenkins, P., Song, Y., Brem, R., 2012. Genealogy-based methods for inference of historical recombina-654

tion and gene flow and their application in saccharomyces cerevisiae. PLoS ONE 7 (11), e46947.655

[19] Kanj, I. A., Nakhleh, L., Than, C., Xia, G., 2008. Seeing the trees and their branches in the network656

is hard. Theoretical Comput. Sci. 401, 153–164.657

[20] Kleinberg, J., Tardos, E., 2006. Algorithm Design. Pearson Education.658

[21] Marcussen, T., Jakobsen, K. S., Danihelka, J., Ballard, H. E., Blaxland, K., Brysting, A. K., Oxelman,659

B., 2012. Inferring species networks from gene trees in high-polyploid north american and hawaiian660

violets (viola, violaceae). Systematic Biology 61, 107–126.661

[22] Nakhleh, L., 2004. Phylogenetic networks. Ph.D. thesis, University of Texas at Austin, U.S.A.662

[23] Nakhleh, L., 2013. Computational approaches to species phylogeny inference and gene tree reconcilia-663

tion. Trends Ecol. Evolut. 28 (12), 719–728.664

[24] Steel, M., 2016. Phylogeny: Discrete and Random Processes in Evolution. SIAM.665

[25] Treangen, T. J., Rocha, E. P., 2011. Horizontal transfer, not duplication, drives the expansion of protein666

families in prokaryotes. PLoS Genetics 7 (1), e1001284.667

[26] van Iersel, L., Semple, C., Steel, M., 2010. Locating a tree in a phylogenetic network. Inf. Process. Lett.668

110 (23), 1037–1043.669

[27] Wang, L., Zhang, K., Zhang, L., 2001. Perfect phylogenetic networks with recombination. J. Comp.670

Biol. 8 (1), 69–78.671

28

http://arxiv.org/abs/1510.00115

	Introduction
	Concepts and notions
	Phylogenetic trees and networks
	Reticulation stability
	The tree containment problem

	Nearly stable and genetically stable networks
	Inclusion Relationship
	Class sizes

	How large can nearly stable and genetically stable networks be?
	A decomposition theorem
	Three size bounds

	A linear-time TC algorithm for nearly stable networks
	Stable tree vertices
	Two key lemmas
	Dissolving the lowest components
	The algorithm

	Conclusion
	Acknowledgments

