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Abstract We consider a variant of the stochastic multi-armed
bandit with K arms where the rewards are not assumed to be
identically distributed, but are generated by a non-stationary
stochastic process. We first study the unique best arm setting
when there exists one unique best arm. Second, we study the
general switching best arm setting when a best arm switches
at some unknown steps. For both settings, we target problem-
dependent bounds, instead of the more conservative problem
free bounds. We consider two classical problems: 1) Identify
a best arm with high probability (best arm identification),
for which the performance measure by the sample complex-
ity (number of samples before finding a near optimal arm).
To this end, we naturally extend the definition of sample
complexity so that it makes sense in the switching best arm
setting, which may be of independent interest. 2) Achieve
the smallest cumulative regret (regret minimization) where
the regret is measured with respect to the strategy pulling an
arm with the best instantaneous mean at each step.

1 Introduction

The theoretical framework of the multi-armed bandit prob-
lem formalizes the fundamental exploration/exploitation dilemma
that appears in decision making problems facing partial in-
formation. At a high level, a set of K arms is available to a
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player. At each turn, she has to choose one arm and receives
a reward corresponding to the played arm, without knowing
what would have been the received reward had she played
another arm. The player faces the dilemma of exploring, that
is playing an arm whose mean reward is loosely estimated in
order to build a better estimate or exploiting, that is playing
a seemingly best arm based on current mean estimates in
order to maximize her cumulative reward. The accuracy of
the player policy at time horizon T is typically measured in
terms of sample complexity or of regret. The sample complex-
ity is the number of plays required to find an approximation
of the best arm with high probability. In that case, the player
can stop playing after identifying this arm. The regret is the
difference between the cumulative rewards of the player and
the one that could be acquired by a policy assumed to be
optimal.

The stochastic multi-armed bandit problem assumes the
rewards to be generated independently from stochastic dis-
tribution associated with each arm. Stochastic algorithms
usually assume distributions to be constant over time like
with the Thompson Sampling (TS) [17], UCB [2] or Suc-
cessive Elimination (SE) [6]. Under this assumption of sta-
tionarity, TS and UCB achieve optimal upper-bounds on the
cumulative regret with logarithmic dependencies on T . SE
algorithm achieves a near optimal sample complexity.

In the adversarial multi-armed bandit problem, rewards
are chosen by an adversary. This formulation can model
any form of non-stationarity. The EXP3 algorithm [3, 14]
achieves an optimal regret of O(

√
T ) against an oblivious

opponent that chooses rewards before the beginning of the
game, with respect to the best policy that pulls the same
arm over the totality of the game. This weakness is partially
overcame by EXP3.S [3], a variant of EXP3, that forgets
the past adding at each time step a proportion of the mean
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gain and achieves controlled regret with respect to policies
that allow arm switches during the run.

The switching bandit problem introduces non-stationarity
within the stochastic bandit problem by allowing means
to change at some time-steps. As mean rewards stay sta-
tionary between those changes, this setting is also quali-
fied as piecewise-stationary. Discounted UCB [13] and
sliding-window UCB [8] are adaptations of UCB to the
switching bandit problem and achieve a regret bound of
O(
√
MT log T ), where M − 1 is the number of distribu-

tion changes. It is also worth citing META-EVE [10] that
associates UCB with a mean change detector, resetting the
algorithm when a change is detected. While no analysis is
provided, it has demonstrated strong empirical performances.

Stochastic and Adversarial. Several variants combining
stochastic and adversarial rewards have been proposed by
Seldin & Slivkins [15] or Bubeck & Slivkins [5]. For in-
stance, in the setting with contaminated rewards, rewards
are mainly drawn from stationary distributions except for a
minority of mean rewards chosen in advance by an adversary.
In order to guarantee their proposed algorithm EXP3++ [15]
achieves logarithmic guarantees, the adversary is constrained
in the sense it cannot lowered the gap between arms more
than a factor 1/2. They also proposed another variant called
adversarial with gap [15] which assumes the existence of a
round after which an arm persists to be the best. These works
are motivated by the desire to create generic algorithms able
to perform bandit tasks with various reward types, stationary,
adversary or mainly stationary. However, despite achieving
good performances on a wide range of problems, each one
needs a specific parametrization (i.e. an instance of EXP3++
parametrized for stationary rewards may not perform well if
rewards are chosen by an adversary).

Our contribution. We consider a generalization of the sta-
tionary stochastic, piecewise-stationary and adversarial ban-
dit problems. In this formulation, rewards are drawn from
stochastic distributions of arbitrary means defined before the
beginning of the game. Our first contribution is for the unique
best arm setting. We introduce a deceptively simple variant
of the SUCCESSIVE ELIMINATION (SE) algorithm, called
SUCCESSIVE ELIMINATION WITH RANDOMIZED ROUND-
ROBIN (SER3) and we show that the seemingly minor mod-
ification – a randomized round-robin procedure – leads to a
dramatic improvement of the performance over the original
SE algorithm. We identify a notion of gap that generalizes the
gap from stochastic bandits to the non-stationary case, and de-
rive gap-dependent (also known as problem-dependent) sam-
ple complexity and regret bounds, instead of the more classi-
cal and less informative problem-free bounds. We show for
instance in Theorem 1 and Corollary 1 that SER3 achieves

a non-trivial problem dependent sample complexity scaling
with ∆−2 and a cumulative regret in O(K log(TK/∆)/∆)

after T steps, in situations where SE may even suffers from
a linear regret, as supported by numerical experiments (see
Section 5). This result positions, under some assumptions,
SER3 as an alternative to EXP3 when the rewards are non-
stationary.

Our second contribution is to manage best arm switches
during the game. First, we extend the definition of the sample
complexity in order to analyze the best arm identification
algorithms when best arm switches during the game. SER4
takes advantages of the low regret of SER3 by resetting the
reward estimators randomly during the game and then start-
ing a new phase of optimization. Against an optimal policy
with N − 1 switches of the optimal arm (but arbitrarily many
distribution switches), this new algorithm achieves an ex-
pected sample complexity ofO(∆−2

√
NKδ−1 log(Kδ−1)),

with probability 1− δ, and an expected cumulative regret of
O(∆−1

√
NTK log(TK)) after T time steps. A second al-

gorithm for the non stationary stochastic multi-armed bandit
with switches is an alternative to the passive approach used in
SER4 (the random resets). Second, the algorithm EXP3.R
takes advantage of the exploration factor of EXP3 to eval-
uate unbiased estimations of the mean rewards. Combined
with a drift detector, this active approach resets the weights of
EXP3 when a change of best arm is detected. We finally show
that EXP3.R also obtains competitive problem-dependent
regret minimization guarantees in O

(
3NCK

√
TK log T

)
,

where C depends on ∆.

2 Setting

We consider a generalization of the stationary stochastic,
piecewise-stationary and adversarial bandit problems where
the adversary chooses before the beginning of the game a
sequence of distributions instead of directly choosing a se-
quence of rewards. This formulation generalizes the adver-
sarial setting since choosing arbitrarily a reward yk(t) is
equivalent to drawing this reward from a distribution of mean
yk(t) and a variance of zero. The stationary stochastic formu-
lation of the bandit problem is a particular case, where the
distributions do not change.

2.1 The problem

Let [K] = 1, ...,K be a set ofK arms. The reward ykt(t) ∈
[0, 1] obtained by the player after playing the arm kt is drawn
from a distribution of mean µkt(t) ∈ [0, 1]. The instanta-
neous gap between arms k and k′ at time t is:

∆k,k′(t)
def
= µk(t)− µk′(t) . (1)
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The player competes against an optimal policy, assumed
as optimal (per example, always playing the arm with the
highest mean reward). Let k∗(t) be the arm played by the
optimal policy at time t.

2.2 The notion of sample complexity

In the literature [12], the sample-complexity of an algorithm
is the number of samples needed by this algorithm to find a
policy achieving a specific level of performance with high
probability. We denote δ ∈ (0, 1] the probability of failure.
For instance, for the best arm identification in the stochastic
stationary bandit (that is when ∀k∀t , µk(t) = µk(t+ 1) and
k∗(t) = k∗(t + 1)), the sample complexity is the number
of sample needed to find, with a probability at least 1 −
δ, the arm k∗ with the maximum mean reward. Analysis
in sample complexity are useful for situations where the
knowledge of the optimal arm is needed to make one impact-
full decision, for example to choose which one of several
possible products to manufacture or for building hierarchical
models of contextual bandits in a greedy way [7], reducing
the exploration space.

Definition 1 (Sample complexity) Let A be an algorithm.
An arm k is epsilon optimal if µk ≥ µ∗ − ε, with ε ∈
[0, 1]. The sample-complexity of A performing a best arm
identification task is the number of observations needed to
find an ε-optimal arm with a probability of at least 1− δ.

The usual notion of sample complexity - the minimal num-
ber of observations required to find a near optimal arm with
high probability - is well adapted to the case when there exists
a unique best arm during all the game, but makes little sense
in the general scenario when the best arm can change. Indeed,
after a best arm change, a learning algorithm requires some
time steps before recovering. Thus, we provide in section
4 a meaningful extension of the sample complexity defini-
tion to the switching best arm scenario. This extended notion
of sample complexity now takes into account not only the
number of time-steps required by the algorithm to identify
a near optimal arm, but more generally the number of time
steps required before recovering a near optimal arm after
each change.

2.3 The notion of regret

When the decision process does not lead to one final de-
cision, minimizing the sample complexity may not be an
appropriate goal. Instead, we may want to maximize the cu-
mulative gain obtained through the game which is equivalent
to minimize the difference between the choices of an optimal

policy and those of the player. We call this difference, the re-
gret. We define the pseudo cumulative regret as the difference
of mean rewards between the arms chosen by the optimal
policy and those chosen by the player.

Definition 2 (Pseudo cumulative regret)

T∑
t=1

µk∗(t)(t)− µkt(t) . (2)

Usually, in the stochastic bandit setting, the distribu-
tions of rewards are stationary and the instantaneous gap
∆k,k′(t) = µk(t)− µk′(t) is the same for all the time-steps.

There exists a non reciprocate relation between the min-
imization of the sample-complexity and the minimization
of the pseudo cumulative regret. For instance, the algorithm
UCB has an order optimal regret, but it does not minimize the
sample-complexity. UCB will continue to play sub-optimal
arms, but with a decreasing frequency as the number of plays
increases. However, an algorithm with an optimal sample
complexity, like MEDIAN ELIMINATION [6], will also have
an optimal pseudo cumulative regret (up to some constant
factors). More details on the relation between both lower
bounds can be found in [4, 9].

Therefore, the algorithms presented in this paper slightly
differ according to the quantity to minimize, the regret or the
sample complexity. For instance, when the target is the regret
minimization, after identifying the best arm, the algorithms
continue to sample it whereas in the case of sample complex-
ity minimization, the algorithms stop the sampling process
when the best arm is identified. When best arm switches are
considered, algorithms minimizing the sample complexity
enter a waiting state after identifying the current best arm and
do not sample the sequence for exploitation purposes (sam-
pling the optimal arm still increases the sample complexity).
However, they still have to parsimoniously collect samples
for each actions in order to detect best arm changes and face
a new trade-off between the rate of sampling and the time
needed to find the new best arm after a switch.

3 Non-stationary Stochastic Multi-armed Bandit with
Unique Best Arm.

In this section, we present the algorithm SUCCESSIVE

ELIMINATION WITH RANDOMIZED ROUND-ROBIN (SER3,
see algorithm 1), a randomized version of SUCCESSIVE

ELIMINATION which tackles the best arm identification prob-
lem when rewards are non-stationary.
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3.1 A modified Successive Elimination algorithm

We elaborate on several notions required to understand
the behavior of the algorithm and to relax the constraint of
stationarity.

3.1.1 The elimination mechanism

The elimination mechanism was introduced by SUCCESSIVE

ELIMINATION [6]. Estimators of the rewards are built by se-
quentially sampling the arms. After τmin turns of round-robin,
the elimination mechanism starts to occur. A lower-bound of
the reward of the best empirical arm is computed and com-
pared with an upper-bound of the reward of all other arms. If
the lower-bound is higher than one of the upper-bounds, then
the associated arm is eliminated and stop being considered
by the algorithm. Processes of sampling and elimination are
repeated until the elimination of all arms except one.

Algorithm 1 SUCCESSIVE ELIMINATION WITH RANDOM-
IZED ROUND-ROBIN (SER3)

input: δ ∈ (0, 0.5], ε ∈ [0, 1), τmin = log K
δ

output: an ε-approximation of the best arm
S1 = [K], ∀k, µ̂k(0) = 0, t = 1, τ = 1
While |Sτ | > 1
Shuffle Sτ
For each k ∈ Sτ do
Play k
µ̂k(τ) =

τ−1
τ
µ̂k(τ − 1) + yk(t)

τ
t = t+ 1

End for
kmax = argmaxk∈S µ̂k(τ)
If τ ≥ τmin

Remove from Sτ+1 all k such as:

µ̂max(τ)− µ̂k(τ) + ε ≥

√
2

τ
log

(
4Kτ2

δ

)
(3)

End if
If |Sτ | = 1 and the algorithm performs a sample complexity

minimization task
Return the last element of Sτ

End if
τ = τ + 1

End while

3.1.2 Hoeffding inequality

SUCCESSIVE ELIMINATION assumes that the rewards are
drawn from stochastic distributions that are identical over
time (rewards are identically distributed). However, the Ho-
effding inequality used by this algorithm does not require
stationarity and only requires independence. We remember
the Hoeffding inequality:

Lemma 1 (Hoeffding inequality [11]) IfX1, X2, ..., Xτ are
τ independent random variables and 0 ≤ Xi ≤ 1 for all
(i = 1, 2, ..., τ), then for ετ > 0

P

(∣∣∣∣∣
t∑
i=1

Xi

τ
− E

[
t∑
i=1

Xi

τ

]∣∣∣∣∣ ≥ ετ
)
≤ 2 exp

(
−2ε2ττ

)
.

Thus, we can use this inequality to calculate confidence
bounds of empirical means computed with rewards drawn
from non identical distributions.

3.1.3 Randomization of the Round-Robin

We illustrate the need of randomization with an example
tricking a deterministic algorithm (see figure 1).

µk(t) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
k = 1 0.6 1 0.6 1 0.6 1
k = 2 0.4 0.8 0.4 0.8 0.4 0.8

Fig. 1: A sequence of mean rewards tricking a deterministic
bandit algorithm.

The best arm seems to be k = 1 as µ1(t) is greater than
µ2(t) at every time-step t. However, by sampling the arms
with a deterministic policy playing sequentially k = 1 and
then k = 2, after t = 6 the algorithm has only sampled
rewards from a distribution of mean 0.6 for k = 1 and of
mean 0.8 for k = 2. After enough time following this pattern,
an elimination algorithm will eliminate the first arm. Our
algorithm SER3 adds a shuffling of the arm set after each
round-robin cycle to SUCCESSIVE ELIMINATION and avoids
this behavior.

3.1.4 Uniqueness of the best arm

The best arm identification task assumes a criteria identifying
the best arm without ambiguity. We define the optimal arm
as:

k∗ = arg max
k∈[K]

T∑
t=1

µk(t) . (4)

As an efficient algorithm will find the best arm before the
end of the run, we use assumption 1 to ensure its unique-
ness at every time-step. First, we define some notations.
A run of SER3 is a succession of round-robin. The set
[τ ] = {(t1, |S1|), ..., (tτ , |Sτ |)} is a realization of SER3
and ti is the time step when the round-robin ith of size |Si|
starts (ti = 1 +

∑i−1
j=1 |Sj |). As arms are only eliminated,

|Si| ≥ |Si+1|. We denote T(τ) the set containing all possible
realizations of τ round-robin steps. Now, we can introduce
assumption 1 that ensures the best arm is the same at any
time-step.
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Assumption 1 (Positive mean-gap). For any k ∈ [K]−{k∗}
and any [τ ] ∈ T(τ) with τ ≥ τmin, we have:

∆∗k ([τ ]) =
1

τ

τ∑
i=1

ti+|Si|−1∑
j=ti

∆k∗,k(j)

|Si|
> 0 . (5)

Assumption 1 is trivially satisfied when distributions are
stationary, is quite weak (see e.g. figure 2(b)) and can toler-
ate a large noise when τ is high. As the optimal arm must
distinguish itself from others, instantaneous gaps are more
constrained at the beginning of the game. It is quite simi-
lar to the assumption used by Seldin & Slivkins [15] to be
able to achieve logarithmic expected regret on moderately
contaminated rewards, i.e., the adversary does not lower
the averaged gap too much. Another analogy can be done
with the adversarial with gap setting [15], τmin representing
the time needed for the optimal arm to accumulate enough
rewards and to distinguish itself from the suboptimal arms.

Figure 2(a) illustrates assumption 1. In this example the
mean of the optimal arm k∗ is lower than the second one on
time-steps t ∈ {5, 6, 7}. Thus, even if the instantaneous gap
is negative during these time-steps, the mean gap ∆∗k ([τ ])

stays positive. The parameter τmin protects the algorithm
from local noise at the initialization of the algorithm. In order
to ease the reading of the results in the next sections, we here
assume τmin = log K

δ .

Assumption 1 can be seen as a sanity-check assumption en-
suring that the best-arm identification problem indeed makes
sense. In section 4, we consider the more general switching
bandit problem. In this case, assumption 1 may not be veri-
fied (see figure 2(b)), and is naturally extended by dividing
the game in segments wherein assumption 1 is satisfied.

3.2 Analysis

All theoretical results are provided for ε = 0 and therefore
accept only k∗ as the optimal arm.

Theorem 1 (Sample-complexity of SER3) For K ≥ 2,
δ ∈ (0, 0.5], and τmin = log K

δ , the sample-complexity of
SER3 is upper bounded by:

O

(
K

∆2
log(

K

δ∆
)

)
where ∆ = min[τ ],k

1
τ

∑τ
i=1

∑ti+|Si|−1
t=ti

∆k∗,k(t)

|Si| .

The proof is given in Appendix B.1.

(a) Assumption 1 is satisfied as the mean gap remains posi-
tive.

(b) Assumption 1 is not satisfied. This sequence involves a
best arm switch as the mean gap become non positive.

Fig. 2: Two examples of sequence of mean rewards.

Guarantee on the sample complexity can be transposed in
guarantee on the pseudo cumulative regret. In that case, when
only one arm remains in the set, the player continues to play
this last arm until the end of the game.

Corollary 1 (Expected pseudo cumulative regret of SER3).
For K ≥ 2, and δ = 1/T , and τmin = log(KT ), the ex-
pected pseudo cumulative regret of SER3 is upper bounded
by:

min

(
O

(
K − 1

∆
log(

KT

∆
)

)
, O

(√
TK log

T

K

))

The proof is given in Appendix B.2.

These guarantees are the same as the original SUCCESSIVE

ELIMINATION performed with a deterministic round-robin
on arms with stationary rewards. Indeed, when reward distri-
butions are stationary, we have for all t and all [τ ]:

1

τ

τ∑
i=1

ti+|Si|−1∑
t=ti

∆k∗,k(t)

|Si|
= ∆k∗,k(t) = ∆k∗,k(t+ 1) . (6)
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However, in a non-stationary environment satisfying as-
sumption 1 SUCCESSIVE ELIMINATION will eliminate the
optimal arm if the adversary knows the order of its round-
robin before the beginning of the run and exploits this knowl-
edge against the learner, thus resulting in a linear cumulative
regret. Our modification of the SE algorithm allows SER3
to perform on near adversarial sequence of reward while
achieving a gap dependent logarithmic pseudo cumulative
regret.

Remark: These logarithmic guarantees result from as-
sumption 1 that allows to stop the exploration of elimi-
nated arms. They do not contradict the lower bound for non-
stationary bandit whose scaling is in Ω(

√
T ) [8] as it is due

to the cost of the constant exploration for the case where the
best arm changes.

3.3 Non-stationary Stochastic Multi-armed Bandit with
Budget

We study the case when the sequence from which the re-
wards are drawn does not satisfy assumption 1.

The sequence of mean rewards is build by the adversary
in two steps. First, the adversary choose the mean rewards
µk(1), ..., µk(T ) associated with each arm in such a way that
assumption 1 is satisfied. The adversary can then apply a
malus bk(t) ∈ [0, µk(t)] to each mean reward to obtain the
final sequence. The mean reward of the arm k at time t is
µk(t)− bk(t). The budget spent by the adversary for the arm
k is Bk =

∑T
t=1 bk(t). We denote B ≥ arg maxk Bk the

upper-bound on the budget of the adversary.

The algorithm SER3 can be modified to perform a best
arm identification task when assumption 1 is not satisfied
but B is known. To achieve that, we replace the condition of
elimination (Inequality (3) in Algorithm 1) is replaced by the
following:

µ̂max(τ)− µ̂k(τ) + ε ≥ B

τ
+ 2

√
1

2τ
log

(
4Kτ2

δ

)
This new algorithm is called SUCCESSIVE ELIMINATION

WITH ROUND ROBIN RANDOMIZED AND BUDGET (SER3.B).

Theorem 2 ForK ≥ 2, δ ∈ (0, 0.5], and τmin = log K
δ , the

sample complexity of SER3.B is upper-bounded by:

O

(
K

∆2

(
log

K

δ∆
+B

))
where ∆ = min[τ ],k

1
τ

∑τ
i=1

∑ti+|Si|−1
t=ti

∆k∗,k(t)

|Si| .

The proof is given in Appendix B.1.

4 Non-stationary Stochastic Multi-armed Bandit with
Best Arm Switches

The switching bandit problem has been proposed by Gariv-
ier et al. [8] and assumes means to be stationary between
switches. In particular, the algorithm SW-UCB is built on
this assumption and is a modification of UCB using only
the rewards obtained inside a sliding window. In our setting,
we allow mean rewards to change at every time-steps and
consider that a best arm switch occurs when the arm with the
highest mean change. This setting provides an alternative to
the adversarial bandit with budget, when B is very high or
unknown.

The optimal policy is the sequence of couples (optimal
arm, time when the switch occurred):

{(k∗1 , 1), ..., (k∗N , TN )} , (7)

with k∗n 6= k∗n+1 and ∆k∗n,k
(t) > 0 for any k ∈ [K]− {k∗n}

and any t ∈ [Tn, Tn+1). The optimal policy starts playing
the arm k∗n at the time-step Tn. Time-steps Tn when switches
occur are unknown to the player.

4.1 Successive Elimination with Randomized Round-Robin
and Resets (SER4)

The Definition 1 of the sample complexity is not adapted
to the switching bandit problem. Indeed this definition is
used to measure the number of observations needed by an
algorithm to find one unique best arm. When the best arm
changes during the game, this definition is too limiting. In
subsection 4.1.1 we introduce a generalization of the sample
complexity for the case of switching policies.

4.1.1 The sample complexity of the best arm identification
problem with switches

A cost associated is added to the usual sample complexity.
This cost is equal to the number of iterations after a switch
during which the player does not know the optimal arm and
does not sample.

Definition 3 (Sample complexity with switches) Let A be
an algorithm. The sample-complexity of A performing a best
arms identification task for a segmentation {Tn}n=1..N of
[1 : T ], with T1 = 1 < T2 < · · · < TN < T , is:

N∑
n=1

Tn+1−1∑
t=Tn

max(s(t), 1Jkt 6=k∗nK) , (8)

where s(t) is a binary variable equal to 1 if and only if the
time-step t is used by the sampling process of A, kt is the
arm identified as optimal by A at time t, k∗n is the optimal
arm over the segment n and TN+1 = T + 1.
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In order to clarify definition 3, we detail the different states
achievable by an algorithm of best arms identification and
their impact on the sample complexity. Two states are achiev-
able during a task of minimization of the sample complexity:

– s(t) = 1 if the algorithm is sampling an arm during the
time-step t. In the case of SER4, s(t) = 1 when |Sτ | 6= 1

and the sample complexity increases by one.
– s(t) = 0 if the algorithm submits an arm as the optimal

one during the time-step t. In the case of SER4, s(t) = 0

when |Sτ | = 1. The sample complexity increases by one
if kt 6= k∗(t).

In the context of SER4, the sample complexity is the num-
ber of time-steps during which the arm set does not only
contain the optimal arm.

4.1.2 Algorithm

In order to allow the algorithm to choose another arm when
a switch occurs, at each turn, estimators of SER3 are reseted
with a probability ϕ ∈ [0, 1] and a new task of best arm iden-
tification is started. We name this algorithm SUCCESSIVE

ELIMINATION WITH RANDOMIZED ROUND-ROBIN AND

RESETS (SER4).

Algorithm 2 SUCCESSIVE ELIMINATION WITH RANDOM-
IZED ROUND-ROBIN AND RESETS (SER4)

input: δ ∈ (0, 1], ε ∈ [0, 1), ϕ ∈ [0, 1)
S1 = [K], ∀k, µ̂k(0) = 0, t = 1, τ = 1
While t ≤ T
Shuffle Sτ
For each k ∈ Sτ do

If |Sτ | 6= 1 or If the algorithm performs a regret minimization
task

Play k
µ̂k(τ) =

τ−1
τ
µ̂k(τ − 1) +

ykt (t)

τ
End if
t = t+ 1

End for
kmax = argmaxk∈S µ̂k(τ)
Remove from Sτ+1 all k such as:

µ̂max(τ)− µ̂k(τ) + ε ≥ 2

√
1

2τ
log

(
4Kτ2

δ

)

τ = τ + 1
t = t+ 1
With a probability ϕ
St = [K]
∀k, µ̂k(t) = 0
τ = 1

End with a probability
End while

4.1.3 Analysis.

We now provide the performance guarantees of the SER4
algorithm, both in terms of sample complexity and of pseudo
cumulative regret.

The following results are given in expectation and in high
probability. The expectations are taken with regard to the
randomization of the resets. The sample complexity or the
pseudo cumulative regret achieved by the algorithm between
each resets (given by the analysis of SER3) are still results
in high probability.

Theorem 3 (Expected sample complexity of SER4) For
K ≥ 2, δ = 1/T , τmin = log K

δ and ϕ ∈ (0, 1], the expected
sample complexity of SER4 w.r.t. the randomization of resets
is upper bounded by:

O

(
ϕK

δ∆2
log(

K

δ∆
) +

N

ϕ

)
with a probability of at least 1− δ.

The proof is given in Appendix B.3.

We tune ϕ in order to minimize the sample complexity.

Corollary 2. For K ≥ 2, δ = 1/T , τmin = log K
δ , ∆ ≥

1
KT and ϕ =

√
Nδ

K log(Kδ )
, the expected sample complexity of

SER4 w.r.t. the randomization of resets is upper bounded by:

O

 1

∆2

√
NK log(Kδ )

δ

 .

Remark 2: transposing Theorem 3 for the case where ε ∈
[ 1
KT , 1] is straightforward. This allows to tune the bound by

setting ϕ = ε
√

(Nδ)/(K log(TK)).
This result can also be transposed in bound on the ex-

pected cumulative regret. We consider that the algorithm
continues to play the last arm of the set until a reset occurs.

Corollary 3 (Expected cumulative regret of SER4). For
K ≥ 2, and δ = 1/T , τmin = log(KT ), ∆ ≥ 1

KT and

ϕ =
√

N
TK log(KT ) , the expected cumulative regret of SER4

w.r.t. the randomization of resets is upper bounded by:

min
(
O

(√
NTK log(KT )

∆

)
, O

(
T 2/3

√
NK log

T

K

))
.

(9)

The proof is given in Appendix B.4.
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Remark 3: A similar dependency in
√
T∆−1 appears also

in SW-UCB (see Theorem 1 in [8]), and is standard in this
type of results.

4.2 EXP3 with Resets

SER4 and other algorithms from the state of the art [3, 8,
13] use a passive approach through forgetting the past. In this
subsection, we propose an active strategy which consists in
resetting the reward estimations when a change of the best
arm is detected. A supposed advantage of this approach is
to let the algorithm converge on a longer time period, as
it is reset only when a switch is detected, and thus build a
more accurate estimate of the reward distributions. First, we
describe the adversarial bandit algorithm EXP3 [3], which
will be used by the proposed algorithm EXP3.R between
detections. We then describe the drift detector used to detect
changes of the best arm. Finally, we combine the both to
obtain the EXP3.R algorithm.

Algorithm 3 EXP3
The parameter γ ∈ [0, 1] controls the exploration and the probability
to choose an action k at round t is:

pk(t) = (1− γ)
wk(t)∑k
i=1 wi(t)

+
γ

K
, (10)

where the weight wk(t) of each action k is computed from the
unbiased cumulative reward estimator X̂k(t):

wk(t) = exp(
γ

K
X̂k(t)) , (11)

with

X̂k(t) =
t∑

j=tr

xk(j)

pk(j)
Jk = k(j)K , (12)

where tr is the time steps when the algorithm is initialized.

4.2.1 The EXP3 algorithm

The EXP3 algorithm (see Algorithm 3) minimizes the re-
gret against the best arm using an unbiased estimation of
the cumulative reward at time t for computing the choice
probabilities of each action. While this policy can be viewed
as optimal in an actual adversarial setting, in many practical
cases the non-stationarity within a time period exists but is
weak and is only noticeable between different periods. If an
arm performs well in a long time period but is extremely bad
on the next period, the EXP3 algorithm can need a number
of trial equal to the first period’s length to switch its most
played arm.

4.2.2 The detection test

The detection test (see Algorithm 4) uses confidence intervals
to estimate the expected reward in the previous time period.
The action distribution in EXP3 is a mixture of uniform and
Gibbs distributions. We call γ-observation an observation
selected though the uniform distribution. Parameters γ, H
and δ define the minimal number of γ-observations by arm
needed to call a test of accuracy ε with a probability 1 − δ.
They will be fixed in the analysis (see Corollary 4) and the
correctness of the test is proven in Lemma 2. We denote µ̄k(I)

the empirical mean of the rewards acquired from the arm k

on the interval I using only γ-observations and Γmin(I) the
smallest number of γ-observations among each action on the
interval I . The detector is called only when Γmin(I) ≥ γH

K .
The detector raises an alert when the action kmax with the
highest empirical mean µ̂k(I − 1) on the interval I − 1 is
eliminated by an other on the current interval.

Algorithm 4 DriftDetection(I)
Parameters: Current interval I
kmax = argmax

k
µ̂k(I − 1)

ε =

√
K log( 1

δ
)

2γH

return
q
∃k, µ̂k(I)− µ̂kmax(I) ≥ 2ε

y

4.2.3 The EXP3.R algorithm

Coupled with a detection test, the EXP3 algorithm has sev-
eral advantages. First in a non-stationary environment, we
need a constant exploration to detect changes where a sub-
optimal arm becomes optimal and this exploration is naturally
given by the algorithm. Second, the number of breakpoints is
higher than the number of best arm changes (M ≥ N ). This
means that the number of resets needed by EXP3 is lower
than the one needed by a stochastic bandit algorithm such as
UCB. Third, EXP3 is robust against test failures (non detec-
tion) or local non-stationarity. We call EXP3.R the algorithm
obtained by combining EXP3 and the drift detector. First,
one instance of EXP3 is initialized and used to select actions.
When the count of γH

K γ-observations per arm is fulfilled,
the detection test is called. If in the corresponding interval,
the empirical mean of an arm exceeds by 2ε the empirical
mean of the current best arm then a drift detection is raised.
In this case, weights of EXP3 are reset. Then a new interval
of collect begins, preparing the next test. These steps are
repeated until the run ends (see Algorithm 5).

4.2.4 Analysis

In this section we analyze the drift detector and then we
bound the expected regret of the EXP3.R algorithm.
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Algorithm 5 EXP3 with Resets
Parameters: Reals δ, γ and Integer H
I = 1
for each t = 1, ..., T do

Run EXP3 on time step t
if Γmin(I) ≥ γH

K
then

if DriftDetection(I) then
Reset EXP3

end if
I = I + 1

end if
end for

Assumption 2 (Accuracy of the drift detector). During
each of the segments S where k∗S is the optimal arm, the gap
between k∗S and any other arm is of at least 4ε with

ε =

√
K log( 1

δ )

4γH
. (13)

Lemma 2 guarantees that when Assumption 1 holds and
the interval I is included into the interval S then, with high
probability, the test will raise a detection if and only if the
optimal action k∗S eliminates a sub-optimal action.

Lemma 2 (Arm switches are detected) When Assumption
2 holds and I ⊆ S, then, with a probability 1− 2δ, for any
k 6= k∗S:

µ̂k
∗
S (I)− µ̂k(I) ≥ 2

√
K log( 1

δ )

2γH
⇔ µk

∗
S (I) ≥ µk(I) . (14)

The proof is given in Appendix B.5.

Theorem 4 bounds the expected cumulative regret of EXP3.R.

Theorem 4 (Expected cumulative regret of EXP3.R) For
any K > 0, 0 < γ ≤ 1, 0 ≤ δ < 1

2 , H ≥ K and N ≥ 1

when Assumption 2 holds, the expected cumulative regret of
EXP3.R is

G∗ − E[GEXP3.R] ≤ (e− 1)γT

+

(
N − 1 + KδT

H +Kδ
)
K log(K)

γ

+ (N − 1)HK

(
1

1− 2δ
+ 1

)
. (15)

The proof is given in Appendix B.6.

In Corollary 4 we optimize parameters of the bound ob-
tained in Theorem 4.

Corollary 4 (Expected cumulative regret of EXP3.R). For
any K ≥ 1, T ≥ 10, N ≥ 1 and C ≥ 1 when Assumption 1
holds, the expected cumulative regret of EXP3.R run with
input parameters

δ =

√
log T

KT
, γ =

√
K logK log T

T
and H = C

√
T log T

(16)

is

G∗−E[GEXP3.R]) ≤ (e−1)
√
TK logK log T+N

√
TK logK

+ (C + 1)K
√
T logK + 3NCK

√
T log T . (17)

The proof is given in Appendix B.7.

Accordingly to C, the precision ε is:

ε =

√
1

2C

√√√√ log
√

KT
log T

log T

√
K

logK
. (18)

Notice that, when T increases,

√
log

√
KT
log T

log T

√
K

logK tends
towards a constant.

5 Numerical Experiments

We compare our algorithm with the state-of-the-art. For
each problem, K = 20 and T = 107. The instantaneous
gap between the optimal arm and the others is constant,
∆ = 0.05, i.e. the mean of the optimal arm is µ∗(t) =

µ(t) +∆. During all experiments, probabilities of failure of
SUCCESSIVE ELIMINATION (SE), SER3 and SER4 are set
to δ = 0.05. Constant explorations of all algorithms of the
EXP3 family are set to γ = 0.05. Results are averaged over
50 runs. On problems 1 and 2, variances are low (in the order
of 103) and thus not showed. On problem 3, variances are
plotted as the gray areas under the curves.

5.1 Problem 1: Sinusoidal means

The index of the optimal arm k∗ is drawn before the game
and does not change. The mean of all suboptimal arm is
µ(t) = cos(2πt/K)/5 + 0.5.
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Fig. 3: Cumulative regret of SER3, SE, UCB and EXP3 on
the Problem 1.

This problem challenges SER3 against SE, UCB and EXP3.
SER3 achieves a low cumulative regret, successfully elimi-
nating sub-optimal arms at the beginning of the run. Contrar-
ily, SE is tricked by the periodicity of the sinusoidal means
and eliminates the optimal arm. The deterministic policy of
UCB is not adapted to the non-stationarity of rewards and
thus the algorithm suffers from a high regret. The unbiased
estimators of EXP3 enable the algorithm to quickly converge
on the best arm. However, EXP3 suffers from a linear regret
due to its constant exploration until the end of the game.

5.2 Problem 2: Decreasing means with positive gap

The optimal arm k∗ does not change during the game. The
mean of all suboptimal arms is µ(t) = 0.95−min(0.45, 10−7t).

On this problem, SER3 is challenged against SE, UCB and
EXP3. SER3 achieves a low cumulative regret, successfully
eliminating sub-optimal arms at the beginning of the run.
Contrarily to problem 1, mean rewards evolve slowly and
SUCCESSIVE ELIMINATION (SE) achieves the same level
of performance than SER3. Similarly to problem 1, UCB
achieves a high cumulative regret. The cumulative regret of
EXP3 is low at the end of the game but would still increase
linearly with time.

5.3 Problem 3: Decreasing means with arm switches

At every turn, the optimal arm k∗(t) changes with a prob-
ability of 10−6. In expectation, there are 10 switches by
run. The mean of all suboptimal arms is µ(t) = 0.95 −
min(0.45, 10−7(t[mod 106]).

Fig. 4: Cumulative regret of SER3, UCB and EXP3 on the
Problem 2.

(a) Cumulative regret of SER4, SW-UCB, EXP3.S, EXP3.R and META-
EVE on the Problem 3.

Fig. 5

On problem 3, SER4 is challenged against SW-UCB, EXP3.S,
EXP3.R and META-EVE. The probability of reset of SER4
is ϕ = 5−5. The size of the window of SW-UCB is 105.
The historic considered by EXP3.R is H = 4 · 105 and the
regularization parameter of EXP3.S is α = 10−5.

SER4 obtains the lowest cumulative regret, confirming
the random resets approach to overcome switches of best
arm. SW-UCB suffers from the same issues as UCB in
previous problems and obtains a very high regret. Constant
changes of mean cause META-EVE to reset very frequently
and to obtain a lower regret than SW-UCB. EXP3.S and
EXP3.R achieves both low regrets but EXP3.R suffers from
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the large size of historic needed to detect switches with a
gap of ∆. We can notice that the randomization of resets in
SER4, while allowing to achieve the best performances on
this problem, involve a highest variance. Indeed, on some
runs, a reset may occur lately after a best arm switch whereas
the use of windows or regularization parameters will be more
consistent.

6 Conclusion

We proposed a new formulation of the multi-armed bandit
problem that generalize the stationary stochastic, piecewise-
stationary and adversarial bandit problems. This formulation
allows to manage difficult cases, where the means rewards
and/or the best arm may change at each turn of the game.
We studied the benefit of random shuffling in the design of
sequential elimination bandit algorithms. We showed that the
use of random shuffling extends their range of application
to a new class of best arm identification problems involv-
ing non-stationary distributions, while achieving the same
level of guarantees than SE with stationary distributions. We
introduced SER3 and extended it to the switching bandit
problem with SER4 by adding a probability of restarting the
best arm identification task. We extended the definition of
the sample complexity to include switching policies. Up to
our knowledge, we proved the first sample complexity based
upper-bound for the best arm identification problem with
arm switches. The upper-bound over the cumulative regret of
SER4 depends only of the number N − 1 of arm switches,
as opposed to the number of distribution changes M − 1

in SW-UCB (M ≥ N can be of order T in our setting).
The algorithm EXP3.R also achieves a competitive regret
bound. The adversarial nature of EXP3 makes it robust to
non-stationarity and the detection test accelerates the switch
when the optimal arm changes while allowing convergence
of the bandit algorithm during periods where the best arm
does not change.
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A Summary of the contributions

We provide in Table 1 and 2 a brief summary of the existing results regarding the performance of a few algorithms, together
with the contributions of this article, that are indicated in bold.

In both tables, T is the time horizon, assumed to be know, K the number of arms, ∆ is the gap, and δ is the probability
of success of the algorithm. C is quantity similar to the gap, described in subsection 4.2.4. Finally, M is the number of
breakpoints (the mean reward of an arm changes) and N the number of best arm switches.

Table 1: Overview of the different bandit algorithms for policies with unique best arm

Algorithms Regret Sample Complexity Non Stationarity

State of the art
UCB O

(
∆−1K log(T )

)
X No

SE O
(
∆−1K log(TK/∆)

)
O
(
∆−2K log(TK/∆)

)
No

EXP3 O
(√
KT logK

)
X Yes

EXP3++ O(∆−1K log3 T ) + Õ(∆−3) X Yes
Our contribution

SER3 O
(
∆−1K log(TK/∆)

)
O
(
∆−2K log(TK/∆)

)
Yes

Table 2: Overview of the different bandit algorithms for policies with switching best arm

Algorithms Regret Sample Complexity Non Stationarity between breakpoints

State of the art
SW-UCB O

(
∆−1

√
MT log T

)
X No

EXP3.S O
(√

NKT log(KT )
)

X Yes

Our contributions

SER4 O
(
∆−1

√
NKT log(KT )

)
O
(
∆−2

√
NKδ−1 log(Kδ−1)

)
Yes

EXP3.R O
(
3NCK

√
TK log T

)
X Yes

B Technical results

B.1 Proof of Theorem 1 and Theorem 2

Proof. Theorem 1 is a special case of Theorem 2. For Theorem 1, for every k and every t, B = 0, Bk = 0 and bk(t) = 0.
The proof consists of three main steps. The first step makes explicit the conditions leading to the elimination of an arm

from the set. The second step shows that the optimal arm will not be eliminated with high probability. Finally, the third step
shows that a sub-optimal arm will be eliminated after at most a critical number of steps τ∗, which then allows to derive an
upper-bound on the sample complexity.

Step 1. Conditions for the elimination of an arm.
From Hoeffding’s inequality, for any deterministic round-robin length τ and arm k we have:

P (|µ̂k − E[µ̂k]| ≥ ετ ) ≤ 2 exp
(
−2ε2ττ

)
.

where E denotes the expectation with respect to the distribution Dy . By setting

εt =

√
1

2τ
log

(
4Kτ2

δ

)
, we have:

P (|µ̂k − E[µ̂k(τ)]| ≥ εt) ≤ 2 exp

−2

√
1

2τ
log

(
4Kτ2

δ

)2

τ2

 =
δ

2Kτ2
.
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Applying Hoeffding’s inequality for each round-robin size τ ∈ N?, applying a standard union bound and using that∑∞
τ=1 1/τ2 = π2/6, the following inequality holds simultaneously for any τ with a probability at least 1− δπ2

12K :

µ̂k(τ)− ετ ≤ E[µ̂k] ≤ µ̂k(τ) + ετ . (19)

Let Si ⊂ {1, . . . ,K} be the set containing all the arms that are not eliminated by the algorithm at the start of the
ith round-robin. By construction of the algorithm, an arm k′ remains in the set of selected arms as long as for each arm
k ∈ Sτ − {k′}:

µ̂k(τ)− ετ < µ̂k′(τ) + ετ and τ ≥ τmin (20)

Combining (19) and the left inequality of (20), it holds on an event Ω of high probability

E[µ̂k(τ)]− 2ετ < E[µ̂k′(τ)] + 2ετ . (21)

We denote tτ , the time-step where the τ th round-robin starts (tτ = 1 +
∑τ−1
i=1 |Si|). Let us remind that T(τ) is the set

containing all possible realizations of τ sequences of round-robin. Each arm k is played one time during each round-robin
phase and thus τ observations per arm are available after τ th round-robin phases. The empirical mean reward µ̂k(τ) of each
arm k after the τ th round-robin is:

µ̂k(τ) =
∑
r∈T(τ)

1Jr=[τ ]K

τ

tτ+|Sτ |−1∑
j=1

yk(j)1Jk=kjK . (22)

Decomposing the second sum in round-robin phases and taking the expectation with respect to the reward distribution Dy

we have:

EDy [µ̂k(τ)] =
∑
r∈T(τ)

Jr = [τ ]K
τ

τ∑
i=1

ti+|Sτ |−1∑
j=ti

(µk(j)− bk(t))Jk = kjK . (23)

Taking the expectation of equation (23) with respect to the randomization of the round-robin we have:

E[µ̂k(τ)] =

 ∑
r∈T(τ)

Jr = [τ ]K
τ

τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk(j)

|Si|

− Bk
τ
. (24)

Now, under the event Ω for which (21) holds for k and k′, we deduce by using (24) that

∑
r∈T(τ)

Jr = [τ ]K
τ

 τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk(j)

|Si|
−

τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk′(j)

|Si|

 < 4ετ +
Bk
τ
− Bk′

τ
+
B

τ
. (25)

Let us introduce the following mean-gap quantity

∆k,k′([τ ]) =
∑
r∈T(τ)

1Jr=[τ ]K

τ

 τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk(j)

|Si|
−

τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk′(j)

|Si|

 .

Replacing the value of εt in (25), it comes

∆k,k′([τ ]) < 4

√
1

2τ
log

(
4Kτ2

δ

)
+
Bk
τ
− Bk′

τ
+
B

τ
,

∆k,k′([τ ])2 <
8

τ
log

(
4Kτ2

δ

)
+
Bk
τ
− Bk′

τ
+
B

τ
. (26)

An arm will be eliminated if (26) becomes false and if τ ≥ τmin.



The Non-stationary Stochastic Multi-armed Bandit Problem 15

Step 2. The optimal arm is not eliminated.
For k′ = k∗ et k 6= k∗, in the worst case Bk = 0 and Bk′ = B. After injecting those quantities in (26), we have :

∆k,k′([τ ])2 <
8

τ
log

(
4Kτ2

δ

)
. (27)

By assumption (∆k,k∗([τ ]) is negative after τmin), (27) is always true when τ ≥ τmin,implying that the optimal arm will
always remain in the set with a probability of at least 1− δ

K for all τ .
Step 3. The elimination of sub-optimal arms.

If the arm k′ still remain in the set, it will be eliminated if inequality (26) is not satisfied and if τ∗ ≥ τmin.
Let us consider k = k∗, k′ 6= k∗, and define the quantity

∆k([τ ]) =
∑
r∈T(τ)

1Jr=[τ ]K

τ

 τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk(j)

|Si|
−

τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk′(j)

|Si|

 .

In the worst case, Bk∗ = B et Bk = 0. Using equation (26) we obtain the condition to invalidate to eliminate the arm of
index k:

∆k,k′([τ ])2 <
8

τ
log

(
4Kτ2

δ

)
+

2B

τ
. (28)

Let us also introduce for convenience the critical value

τ∗1 =
642

∆k([τ ])2
log

(
16K

δ∆k([τ ])

)
.

Notice that τ∗1 ≥ τmin, satisfying one of the two conditions needed to eliminate an arm.
We introduce the following quantity

C1(t) =
8

τ
log

(
4Kτ2

δ

)
.

For τ = τ∗1 , we derive the following bound

C1(τ∗1 ) =
8∆k([τ ])2

642 log 16K
δ∆k([τ ])

(
log

4K

δ
+ 2 log

64

∆k([τ ])2
+ 2 log log

16K

δ∆k([τ ])

)
,

=
8∆k([τ ])2

642 log 16K
δ∆k([τ ])

(
log

4K

δ
− 4 log∆k([τ ]) + 24 log 2 + 2 log log

16K

δ∆k([τ ])

)
,

≤ 8∆k([τ ])2

642 log 16K
δ∆k([τ ])

(
4 log

16K

δ∆k([τ ])
+ 24 log 2 + 2 log log

16K

δ∆k([τ ])

)
.

We remark that for X > 8 we have

24 log 2 + 2 log logX < 8 logX .

Hence, provided that for K ≥ 2, δ ∈ (0, 0.5] and ∆k([τ ]) > 0, we have 4K
δ∆k([τ ])

> 8 and

C1(τ∗1 ) ≤ 8∆k([τ ])2

642 log 16K
δ∆k([τ ])

(
16 log

16K

δ∆k([τ ])

)
≤ ∆k([τ ])2

512
. (29)

As C1(τ∗1 ) is strictly decreasing with regard to t, (29) is true for all τ > τ∗1 .
When t > τ∗1 , it exists C2(t) such as:

∆k([τ ])2 = C1(t) + C2(t) .



16 Robin Allesiardo et al.

For invalidating 28, we must find a value τ∗2 > τ∗1 such as:

τ∗2 ≥
4B

C2(t∗2)
(30)

As C2(τ) = ∆k([τ ])2 − C1(τ), we have C2(τ) ≥ ∆k([τ ])2 − ∆k([τ ])
2

512 and:

τ ≥ 2048B

511∆k([τ ])2

For τ = τ∗2 with:

τ∗2 =
642

∆k([τ ])2
log

(
16K

δ∆k([τ ])

)
+

5B

∆k([τ ]2)
. (31)

(30) is true, invalidating (28) and invalidating (26) and involving the elimination of the suboptimal arms k with a probability
at least 1− δ/K.

We conclude the proof by summing over all the arms, taking the union bound and lower-bounding all ∆k([τ ]) by

∆ = min
[τ ]∈T(τ),k

∑
r∈T(τ)

Jr = [τ ]K
τ

 τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk(j)

|Si|
−

τ∑
i=1

ti+|Sτ |−1∑
j=ti

µk′(j)

|Si|

 . (32)

B.2 Proof of Corollary 1

Proof. We first provide the proof of the distribution dependent upper-bound.
The pseudo cumulative regret of the algorithm is:

R(T ) =
∑
k 6=k∗

τ∑
i=1

ti+|Si|−1∑
t=ti

∆k∗,k(t)1Jk=ktK . (33)

Taking in each round-robin the expectation of the corresponding random variable kt with respect to the randomization of
the round-robin (denoted by Ekt ), it comes:

E[R(T )] = E
[ ∑
k 6=k∗

τ∑
i=1

ti+|Si|−1∑
t=ti

Ekt [∆k∗,k(t)1Jk=ktK]

]

= E
[ ∑
k 6=k∗

τ∑
i=1

ti+|Si|−1∑
t=ti

∆k∗,k(t)

|Si|

]
.

E[R(T )] = E
[ ∑
k 6=k∗

τ
1

τ

τ∑
i=1

ti+|Si|−1∑
t=ti

∆k∗,k(t)

|Si|︸ ︷︷ ︸
∆∗k

]
= E

[ ∑
k 6=k∗

τ∆∗k

]
. (34)

The penultimate step of the proof of Theorem 1 allows us to upper-bound τ with the previously introduced critical value
τ∗ on an event of high probability 1 − δ, while the cumulative regret is controlled by the trivial upper bound T on the
complementary event of probability not higher than δ, leading to:

E[R(T )] ≤
∑
k 6=k∗

64

∆2
k

log

(
4K

δ∆k

)
∆k + δT . (35)

We conclude the proof of the distribution dependent upper-bound by setting δ = 1/T and :

E[R(T )] = O

(
K − 1

∆
log(

KT

∆
)

)
, (36)
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with ∆ = min[τ ],k
1
τ

∑τ
i=1

∑ti+|Si|−1
t=ti

∆k∗,k(t)

|Si| .
We now upper-bound the regret in the worst case in order to derive a distribution independent bound. To this end, we

consider a sequence that ensures that, with high probability, no suboptimal arm is eliminated by the algorithm at the end of the
T rounds, while maximizing the instantaneous regret. According to (21) an arm is not eliminated as long as

E[µ̂k(τ)]− E[µ̂k′(τ)] < 4ετ . (37)

By injecting (37) in (34) and replacing ετ by its value
√

2
τ log

(
4Kτ2

δ

)
we obtain:

E[R(T )] <
∑
k 6=k∗

τ4

√
2

τ
log

(
4Kτ2

δ

)
+ δT . (38)

The non-elimination of sub-optimal arms involves τ = T
K and by setting δ = 1

T we obtain the distribution independent
upper-bound:

E[R(T )] < (K − 1)
T

K
4

√
K

T
log(

4T 3

K
) + 1 , (39)

E[R(T )] = O

(√
TK log

T

K

)
. (40)

B.3 Proof of Theorem 3

Proof. In order to prove Theorem 3, we consider the following quantities:

– The expected number of times when the estimators are reseted: Nreset = ϕT .
– The sample complexity needed to find the best arm between each reset is SSER3 = O

(
K
∆2 log( Kδ∆ )

)
.

– The time before a reset, that follows a negative binomial distribution of parameters r = 1 and p = 1− ϕ. Its expectation
is upper-bounded by 1/ϕ.

– The number of arm switches: N − 1.

The sample complexity of SER4 is the total number of time-steps spent sampling an arm added to the time between each
switch and reset.

Taking the expectation with respect to the randomization of resets, we obtain an upper-bound on the expected number of
suboptimal plays given by

O

(
ϕTK

∆2
log

(
K

δ∆

)
+
N

ϕ

)
. (41)

The first term is the expectation of the total number of time-steps required by the algorithm in order to find the best arms
at its initialization and then after each reset of the algorithm. The second term is the expected total number of steps lost by the
algorithm when not resetting the algorithm after the N − 1 arm switches.

We obtain the final statement of the Theorem by setting T = 1
δ .

B.4 Proof of Corollary 3

Proof. Converting Corollary 2 into a distribution dependent upper-bound on the cumulative regret is straightforward by setting
δ = 1

T , replacing the sample complexity in the proof of Theorem 3 by the cumulative regret and using the upper-bound of
Corollary 1.

E[R(T )] = O

(
ϕTK

∆
log

(
KT

∆

)
+
N

ϕ

)
. (42)
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Setting ϕ =
√

N
TK log(KT ) and assuming ∆ ≥ 1

KT we obtain the final statement of the theorem:

E[R(T )] = O

(√
NTK log(KT )

∆

)
. (43)

We also derive below a distribution independent upper-bound. We introduce some notations, Nreset is the number of resets,
τ reset
i is the number of round-robin phases between the ith and the (i+ 1)th resets and Ln is the number of timesteps before a

reset after the nth arm switch.
When the resets are fixed, the expected cumulative regret is:

E[R(T )] < E
[Nreset+1∑

i=1

(K − 1)τ reset
i 4

√
2

τ reset
i

log(
4(τ reset

i )2

δ
) +

N∑
n=1

Ln + δT

]
, (44)

E[R(T )] < E
[Nreset+1∑

i=1

(K − 1)4

√
2τ reset
i log(

4(τ reset
i )2

δ
)︸ ︷︷ ︸

f(τ reset
i )

]
+ E

[ N∑
n=1

Ln

]
+ δT . (45)

At this point, we note that {τ reset
i }i is an i.i.d sequence of random variables and that Nreset is a random stopping time

with respect to this sequence. Moreover, f is a concave function. We can thus apply Wald’s equation followed by Jensen’s
inequality and deduce that

E[

Nreset+1∑
i=1

f(τ reset
i )] ≤ E[Nreset + 1]E[f(τ reset

1 )]

≤ E[Nreset + 1]f(E[τ reset
1 ]) .

We upper-bound log(
4(τ reset

i )2

δ ) by log( 4T 2

δK2 ) and set δ = 1
T . As E[Nreset] = ϕT , E[τ reset

1 ] = 1
ϕK and E[Ln] ≤ 1

ϕ , we have

E[R(T )] < 4(ϕT + 1)

√
2

ϕ
K log

(
4T 3

K2

)
+
N

ϕ
+ 1 . (46)

The previous equation makes appear a trade-off in ϕ, and we set ϕ =
√
N

T 2/3 .
Finally we have shown that

E[R(T )] = O

(
T 2/3

√
NK log

T

K

)
. (47)

B.5 Proof of Lemma 2

Proof. We justify our detection test by considering an observation of a reward through γ-exploration as a drawing in an
urn without replacement. More specifically, when all the necessary observations are collected, the detection test procedure
is called. During the interval, rewards were draw from m different distributions of mean µk0(I), ..., µkm(I) . We denote ti
the steps where the mean reward starts being µki (I) and tm+1 the time step of the call. When the test is called, all xk(t)
have a probability (ti+1 − ti)/(tm+1 − t0) to be drawn from the distribution of mean µki (I). The mean µk(I) of the urn
corresponding to the action k is:

µk(I) =

m∑
i=1

ti+1 − ti
tm+1 − t0

µki (I) . (48)
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At each time step, by assumption , the mean reward of the best arm is away by 4ε from any suboptimal arms. Consequently,
the difference between the mean reward of the urn of the optimal arm k∗ and that of an another arm k is at least 4ε if the best
arm doesn’t change during the interval.

µk(I) ≤
m∑
i=1

ti+1 − ti
tm+1 − t0

(µ
k∗S
i − 4ε) ≤ µk

∗
S (I)− 4ε . (49)

The following arguments prove the equivalence between the detection and the optimality of k∗S with high probability.
Applying the Serfling inequality [16], we have:

P (µ̂k
∗
S (I) + ε ≥ µk

∗
S (I)) ≤ e

−2nε2

1−n−1
U ≤ e−2nε

2

= δ (50)

and

P (µ̂k(I)− ε ≤ µk(I)) ≤ δ , (51)

where n = γH
K is the number of observation and U the size of the urn.

µk
∗
S (I)− µk(I) ≥ 4ε (52)

and with probability at least 1− 2δ,

µ̂k
∗
S (I) + ε ≥ µk

∗
S (I) (53)

and

µ̂k(I)− ε ≤ µk(I) (54)

Summing (55), (53) and (54) we obtain:

µ̂k
∗
S (I)− µ̂k(I) ≥ 2ε ? (55)

This ensures, with high probability, a positive test if µ̂kmax is not the optimal arm.
Reciprocally, we also have

µ̂k(I)− µ̂k
∗
S (I) ≤ −2ε . (56)

ensuring, with high probability, a negative test if µ̂kmax is the optimal arm.

B.6 Proof of Theorem 4

Proof. First we obtain the main structure of the bound. In the following, L(T ) denotes the expected number of intervals after
a best action change occurs before detection and F (T ) denotes the expected number of false detections up to time T . Using
the same arguments as [18] we deduce the form of the bound with drift detector from the classical EXP3 bound. If there
are N − 1 changes of best arm. Therefore the expectation of the number of resets over an horizon T is upper bounded by
N − 1 + F (T ). The regret of EXP3 on these periods is (e− 1)γT + K logK

γ [3]. While our optimal policy plays the arm
with the highest mean, the optimal policy of EXP3 plays the arm associated with the actual highest cumulative reward. As

TS+1−1∑
t=TS

xk∗S (t) ≤ max
k

TS+1−1∑
t=TS

xk(t) , (57)

the gain of our optimal policy is upper bounded by the gain the EXP3 optimal policy. Summing over each periods we obtain
(e− 1)γT + (N−1+F (T ))K logK

γ .
The regret also include the delay between a best arm change and its detection. To evaluate the expected size of the intervals
between each call of the detection test, we consider an hypothetical algorithm that collects only the observations of one arm
and then proceeds on the next arm until collecting all the observations. The γ-observation are drawn with a probability γ

K
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and γH
K observations are needed per action. The expectation of the number of failures before collecting γH

K γ-observations
follows a negative binomial distribution of expectation

γH

K
(1− γ

K
)
K

γ
= H − γH

K
. (58)

The expectation of the number of steps at the end of the collect is the number of success plus the expected number of failures:

γH

K
+H − γH

K
= H . (59)

Summing over all arms gives a total expectation of HK. Because our algorithm collects γ-observations from any arm at any
step, on a same sequence of drawings, our algorithm will collect the required observations before the hypothetical algorithm.
By consequence, the expectation of the time between each query of the detection test is upper bounded by HK and lower
bounded by H , the expected time of collect for one arm. There are N − 1 best action changes and the detections occur at most
dL(T )eHK time steps after the drifts. Finally, there are also at most N − 1 intervals where the optimal arm switches. In these
intervals we don’t have any guarantee on the test behavior due to this change. In the worst case, the test doesn’t detect the drift
and we set the instantaneous regret to 1.

G∗ − E[GEXP3.R] ≤ (e− 1)γT

+
(N − 1 + F (T ))K logK

γ
+ (N − 1)HK(dL(T )e + 1) . (60)

We now bound F (T ) and L(T ). Confidence intervals hold with probability 1 − δ and they are used K times at each
detection test. The maximal number of calls of the test up to time horizon T is T

H + 1. Using the union bound we deduce
F (T ) ≤ Kδ( TH +1). L(T ) is the first occurrence of the event DETECTION after a drift. When a drift occurs, Lemma 2 ensures
the detection happens with a probability 1− 2δ. We have L(T ) ≤ 1

1−2δ .

G∗ − E[GEXP3.R] ≤ (e− 1)γT

+

(
N − 1 + KδT

H +Kδ
)
K logK

γ

+ (N − 1)HK

(
1

1− 2δ
+ 1

)
. (61)

B.7 Proof of Corollary 4

Proof. We set δ =
√

log T
KT and H = C

√
T log T in Theorem 4

G∗ − E[GEXP3.R] ≤ (e− 1)γT

+
(N − 1 + (C + 1)

√
K)K logK

γ

+ 3(N − 1)CK
√
T log T . (62)

Finally, setting γ =
√

K logK log T
T we obtain:

G∗ − E[GEXP3.R] ≤ (e− 1)
√
TK logK log T

+N
√
TK logK + (C + 1)K

√
T logK

+ 3NCK
√
T log T . (63)
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