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Products of real equivariant weight filtrations

Fabien Priziac

Abstract

We first show the existence of a weight filtration on the equivariant cohomology of real
algebraic varieties equipped with the action of a finite group, by applying group cohomology
to the dual geometric filtration. We then prove the compatibility of the equivariant weight
filtrations and spectral sequences with Künneth isomorphism, cup and cap products, from
the filtered chain level. We finally induce the usual formulae for the equivariant cup and
cap products from their analogs on the non-equivariant weight spectral sequences.

1 Introduction

In [3], P. Deligne established the existence of a filtration on the rational cohomology with
compact supports of complex algebraic varieties, which is trivial on compact nonsingular va-
rieties, additive and compatible with resolutions of singularities : the weight filtration. Using
F. Guillén and V. Navarro Aznar’s work on cubical hyperresolutions ([5], [6]), B. Totaro in-
troduced in [15] an analog of the weight filtration for real algebraic varieties, defined on their
cohomology with compact supports and Borel-Moore homology with coefficients in Z2 := Z/2Z.
Unlike the complex case, the spectral sequence associated to the real weight filtration does not
degenerate at page two in general. Moreover, it contains important additive invariants of real
algebraic varieties : the virtual Betti numbers ([11]). In [12], C. McCrory and A. Parusiński
proved that the homological real weight spectral sequence and filtration can be induced by
a filtered chain complex, the geometric filtration, defined on semialgebraic chains with closed
supports. The geometric filtration is itself additive, compatible with resolutions of singularities
and furthermore functorial with respect to continuous proper maps with AS-graph ([7], [8]).
In particular, this last fact allows to show that the virtual Betti numbers are invariant under
homeomorphisms with AS-graph.

The cohomological counterpart of McCrory and Parusińki’s work is tackled in [9] : the
cohomological real weight spectral sequence and filtration can be induced by a dualization of the
geometric filtration. This is used to prove in particular that the cohomological and homological
real weight spectral sequences and filtrations are dual to one another. The second part of [9]
deals with the issue of the compatibility of the geometric and dual geometric filtrations and
the induced weight spectral sequences and filtrations with products. Morphisms defined on the
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filtered chain level induce Künneth isomorphisms as well as cup and cap products on the weight
spectral sequences. In particular, obstructions for Poincaré duality to be an isomorphism are
extracted.

Let us now consider real algebraic varieties equipped with the action of a finite group. We
can equip the geometric filtration with the action induced by functoriality ([13]). Furthermore,
applying to this “geometric filtration with action” a functor which computes group homology
with values in a chain complex, we can obtain a new chain complex which induces an analog
of the weight filtration on the equivariant homology of real algebraic varieties with action
defined in [16] : the homological equivariant weight filtration ([14]). Significative differences
appear between the associated equivariant weight spectral sequence and the non-equivariant
one. In particular, it is not left-bounded and, even for compact nonsingular varieties, it does
not degenerate at page two in general. Consequently, we can not recover additive invariants
directly from the equivariant weight spectral sequence.

In this paper, we first define and study the cohomological equivariant version of the real
weight filtration. The dual geometric filtration of a real algebraic variety with action can
be equipped with the action induced by functoriality (Definition 2.2). We can then apply
to this “dual geometric filtration with action” a functor which computes group cohomology
with values in a cochain complex (Definition and Proposition 3.1) in order to induce a weight
filtration on the equivariant cohomology of real algebraic varieties with action. In addition,
similarly to what was done in [12], [9], [13] and [14], we show that the dual geometric filtration
with action and the induced cohomological equivariant geometric filtration are unique up to
filtered quasi-isomorphisms with additivity, acyclicity and triviality properties (Theorem 2.3
and Proposition 2.6, Theorem 3.9 and Proposition 3.11), using a version with action ([13]) of
an extension criterion of Guillén and Navarro Aznar ([6]). We also remark that, contrary to
the non-equivariant ones ([9]), the cohomological and homological equivariant weight spectral
sequences and filtrations are not dual to one another in general (Example 3.5).

In a second part, we use the work on products of [9] to induce a Künneth isomorphism
(Theorems 4.7 and 4.9), a cup product (Theorem 4.11) and a cap product (Theorem 4.11) on
the equivariant weight spectral sequences, via morphisms defined on the filtered chain level.
Precisely, we first check that the filtered chain morphisms used in [9] to define the products
on the weight spectral sequences are equivariant, so that we can apply the functor computing
group (co)homology. We then use the facts that, when the considered groups are of finite order,
this last functor is itself compatible with products (Propositions 4.4 and 4.6), and that it is
also functorial with respect to group morphisms (Proposition 4.10). An important part of the
study consists in proving the usual properties of cup and cap products for the equivariant cup
and cap products on the equivariant weight spectral sequences (Theorems 4.15, 4.16 and 4.18,
Theorems 4.24 and 4.25). To this end, we consider further spectral sequences (induced by group
(co)homology) which converges to the page two of the equivariant weight spectral sequences
and which allow to carry the properties of the non-equivariant weight spectral sequences.

We begin this paper by defining the dual geometric filtration with action of real algebraic
varieties equipped with a finite group action, by functoriality. We then prove its uniqueness up
to equivariant filtered quasi-isomorphism with triviality, acyclicity and additivity properties.

In section 3, we define a functor which computes group cohomology with coefficients in a
cochain complex and equivariant cohomology of real algebraic varieties with action. We apply
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this functor to the dual geometric filtration with action and study the resulting filtered cochain
complex, notably the associated spectral sequences and the induced cohomological equivariant
weight filtration on the equivariant cohomology of real algebraic varieties with action.

In section 4, we induce equivariant Künneth isomorphisms (subsection 4.1), cup products
(subsection 4.2) and cap products (subsection 4.3) on the equivariant weight spectral sequences,
as well as these products’ usual properties, from the products on the weight spectral sequences
with action. We also use the compatibility of group cohomology with products as well as the
functoriality of group cohomology with respect to homomorphisms of groups.

2 Cohomological weight complex with action

Let G be a finite group.
As in [13], we use the fonctoriality of the cohomological weight complex of [9] in order

to define a cohomological weight complex with action of G on the category of real algebraic
G-varieties. Its uniqueness up to filtered quasi-isomorphism will be given by Théorème 3.5 of
[13], which is a version with action of the extension criterion of F. Guillén and V. Navarro
Aznar ([6]).

First, we make precise the framework and notations (inspired by the ones in [6]) we are
going to work with throughout this paper. In this article, by a real algebraic variety, we mean
a reduced separated scheme of finite type over R, and by an action of G on a real algebraic
variety X, we mean an an action by isomorphisms of schemes such that the orbit of any point
in X is contained in an affine open subscheme.

Definition 2.1. We denote by

• SchG
c (R) the category of real algebraic G-varieties -that is, by definition, real algebraic

varieties equipped with an action of G- and equivariant regular proper morphisms,

• RegG
comp(R) the full subcategory of compact nonsingular real algebraic G-varieties,

• VG(R) the full subcategory of projective nonsingular real algebraic G-varieties.

We also denote by

• CG the category of filtered bounded cochain G-complexes of Z2-vector spaces -that is, by
definition, bounded cochain G-complexes of Z2-vector spaces equipped with a decreasing
bounded filtration by cochain G-complexes with equivariant inclusions- and equivariant
morphisms of filtered cochain complexes,

• DG the category of bounded cochain G-complexes of Z2-vector spaces and equivariant
morphisms of cochain complexes.

To any real algebraic variety X, we can associate its semialgebraic cochain complex with
closed supports and Z2-coefficients C∗(X) (see [9]) : it is by definition the dual cochain com-
plex of the semialgebraic chain complex with closed supports C∗(X) of X (we refer to [12] for
the precise definition of C∗(X)). This cochain complex C∗(X) computes the cohomology with
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compact supports of X(R) with coefficients in Z2, which we denote simply by H∗(X) in this
paper. If X is now a real algebraic G-variety, the action of G on X induces, thanks to the
contravariant functoriality of the semialgebraic cochain complex C∗, an action on the cochain
complex C∗(X), which becomes a cochain G-complex, that is an object of DG.

Furthermore, the semialgebraic cochain complex C∗(X) of X can be equipped with the
dual geometric filtration G•, defined in [9] in the following way :

GpCq(X) := {ϕ ∈ Cq(X) | ϕ ≡ 0 on Gp−1Cq(X)}

where G•C∗(X) is the geometric filtration on the semialgebraic chains with closed supports of
X defined in [12]. The dual geometric filtration is a decreasing filtration

Ck(X) = G−kCk(X) ⊃ G−k+1Ck(X) ⊃ · · · ⊃ G0Ck(X) ⊃ G1Ck(X) = 0

on C∗(X). Moreover, the contravariant functoriality of the dual geometric filtration allows the
action of G on X to induce on action on the filtered cochain complex G•C∗(X), which make it
into an object of CG :

Definition 2.2. Let X be a real algebraic G-variety. We denote by GG•C∗(X) (or simply
G•C∗(X) when the context is clear) the filtered cochain complex G•C∗(X) equipped with the
induced action of G. We call the functor

GG•C∗ : SchG
c (R)→ C

G

the dual geometric filtration with action of G.

In [9] is proved that the dual geometric filtration realizes the cohomological weight complex
and that it is unique up to filtered quasi-isomorphism. Recall that any bounded cochain com-
plex equipped with a bounded decreasing filtration induces a second quadrant spectral sequence
(Er)r≥0, which converges to the cohomology of the complex. A filtered quasi-isomorphism be-
tween two such filtered complexes is a filtered morphism inducing an isomorphism at the level
E1 of the induced spectral sequences.

We are going to prove that the dual geometric filtration with action of G is unique up to
equivariant filtered quasi-isomorphism. We actually show the existence and uniqueness, both
up to equivariant filtered quasi-isomorphism, of a cohomological weight complex with action of
G on the category of real algebraic G-varieties, using Théorème 3.5 of [13], which is a version
with action of Théorème 2.2.2 of [6]. We then prove that the dual geometric filtration with
action of G realizes the cohomological weight complex with action of G.

First denote by HoCG the localization of the category CG with respect to equivariant
filtered quasi-isomorphisms (we also call such morphisms quasi-isomorphism of CG) and, if
(K∗, δ) is a cochain G-complex, denote by GFcanK

∗ the canonical filtration of K∗ (see for
instance Definition 3.3 of [9]) equipped with the induced action of G. We have the following
result, which is the cohomological counterpart of Théorème 3.7 of [13] :

Theorem 2.3. The contravariant functor

GFcanC
∗ : VG(R)→ HoCG ; M 7→ GFcanC

∗(M)
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extends to a contravariant functor

GWC∗ : SchG
c (R)→ HoCG

verifying the two following conditions :

1. For an acyclic square

Ỹ
j
→֒ X̃

↓ π ↓ π

Y
i
→֒ X

(2.1)

in SchG
c (R), the simple filtered complex of the diagram

GWC∗(Ỹ )
j∗

←− GWC∗(X̃)
↑π∗ ↑π∗

GWC∗(Y )
i∗
←− GWC∗(X)

is acyclic, i.e. isomorphic in HoCG to the zero complex.

2. For an equivariant closed inclusion Y →֒ X, the simple filtered complex of the diagram

GWC∗(Y )←− GWC∗(X)

is isomorphic in HoCG to GWC∗(X \ Y ).

Such a functor GWC∗ is unique up to a unique equivariant filtered quasi-isomorphism and
we call it the cohomological weight complex with action of G.

Remark 2.4. • An acyclic square in SchG
c (R) is a commutative diagram (2.1) of objects

and morphisms of SchG
c (R) such that i is an equivariant inclusion of a closed subvariety,

Ỹ = π−1(Y ) and the restriction π : X̃ \ Ỹ → X \ Y is an equivariant isomorphism.

• For the definition of the simple complex associated to a cubical diagram of cochain filtered
complexes, we refer to [9] Definition 3.1. Notice that, if the cochain complexes are
elements of CG, the associated simple complex can be naturally equipped with the induced
action of G, considering the diagonal action on direct sums.

Proof (of theorem 2.3). As in the proof of Théorème 3.7 in [13], we show the existence of the
functor GWC∗ : SchG

c (R) → HoCG by using the functoriality of the cohomological weight
complex WC∗ : Schc(R) → HoC of [9] (Theorem 3.4) : in particular, if X is a real algebraic
G-variety, GWC∗(X) denotes its cohomological weight complex WC∗(X) equipped with the
action of G induced by (contravariant) functoriality.

Similarly to the proof of Théorème 3.7 of [13], the uniqueness is then given by Théorème
3.5 of [13], which is a version with action of the extension criterion Théorème 2.2.2 of [6] : the
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category CG is a category of cohomological descent, the functor GFcanC
∗ : VG(R)→ HoCG is

Φ-rectified (since it is defined on the category CG) and it verifies conditions (F1) and (F2). To
prove the last assertion, we can use the arguments of [9] Proof of Theorem 3.4 showing that
the functor FcanC

∗ : V(R) → HoC verifies the conditions (F1) and (F2) : these arguments
remain valid when we consider actions of G on the considered objects and morphisms.

Remark 2.5. • If X is a real algebraic G-variety, we have an isomorphism H∗(GWC∗(X)) ∼=
H∗(X), by Proposition 3.7 of [9]), and this isomorphism is furthermore equivariant. In-
deed, there is actually an isomorphism of functors between the functors φ ◦ WC∗ and
C∗(·) : see the proof of Proposition 3.7 of [9] and see also Remarque 3.9 of [13].

• The cohomological weight filtration W•, induced by WC∗ on the cohomology of real
algebraic varieties, as well as the associated cohomological weight spectral sequence (see
Corollary 3.8 of [9]), can be both equipped with the induced actions of G.

• If X is a compact nonsingular G-variety, its cohomological weight complex with action
GWC∗(X) is quasi-isomorphic in CG to GFcanC

∗(X) (we can adapt the proof of Proposi-
tion 3.11 of [9] to our framework with action).

Now, we show that the dual geometric filtration with action realizes the cohomological
weight complex with action. As a consequence, we obtain the uniqueness of GG•C∗ up to
equivariant filtered quasi-isomorphism. wcactcohom dgcwc

Proposition 2.6. The dual geometric filtration with action GG•C∗ : SchG
c (R) → CG induces

the cohomological weight complex with action GWC∗ : SchG
c (R)→ HoCG.

Proof. We denote again by GG•C∗ the functor SchG
c (R)→ HoCG obtained by composing the

the functor GG•C∗ : SchG
c (R)→ CG with the localization CG → HoCG.

First, this functor verifies the conditions 1 and 2 of theorem 2.3. Indeed, the morphisms
of the short exact sequences of complexes of Lemma 4.2 of [9] are equivariant if we consider
G-varieties.

Secondly, we show that GG•C∗ verifies the extension property as well. Let X be a nonsingu-
lar projective G-variety. The (equivariant) inclusion of the geometric filtration G•C∗(X) in the
canonical filtration F can

• C∗(X) induces an equivariant morphism between the dual canonical
filtration and the dual geometric filtration

(Fcan)
•
∨C

∗(X)→ G•C∗(X)

which is, because X is compact nonsingular, a filtered quasi-isomorphism (see the proof of
Proposition 4.3 of [9]), that is a quasi-isomorphism of CG. On the other hand, there is an
(equivariant) inclusion of the canonical filtration F •

canC
∗(X) in (Fcan)

•
∨C

∗(X) which is also
a quasi-isomorphism of CG. As a consequence, G•C∗(X) and F •

canC
∗(X) are isomorphic in

HoCG.

As for the homological counterpart of [14], the dual geometric filtration will induce the
cohomological equivariant weight filtration, that we construct in the next section.
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3 Cohomological equivariant weight filtration for real algebraic

G-varieties

Let G be a finite group.
Similarly to what we did in [14], we construct a weight filtration on the equivariant coho-

mology of real algebraic G-varieties. The equivariant cohomology we consider is defined by J.
van Hamel in [16] and coincide with the classical equivariant cohomology (see for instance [1])
for compact varieties. It is a mix of cohomology with compact supports and group cohomology.

Precisely, we define below a functor on bounded cochain G-complexes which computes this
equivariant cohomology, then extend it to the category of filtered bounded cochain G-complexes
and finally apply it to the dual geometric filtration with action.

We will then focus on the induced spectral sequences, which contain rich information about
the equivariant geometry of real algebraic G-varieties.

3.1 The functor L∗

We refer to [1] and [2] for background about group cohomology with coefficients in a module
(see also the first part of section 3.1 of [14]). In the following definition, we consider a functor
L∗ that we use to define the cohomology of the group G in a bounded cochain G-complex ; if
X is a real algebraic G-variety, the equivariant cohomology of X will be for us the cohomology
of the complex L∗(C∗(X)).

First denote by D+ the category of bounded below cochain complexes of Z2-vector spaces,
and by HoD+ its localization with respect to quasi-isomorphisms.

Definition and Proposition 3.1. Let K∗ be in DG. Consider ... → F2
∆2−−→ F1

∆1−−→ F0 →
Z→ 0 a resolution of Z by projective Z[G]-modules.

We define the cochain complex L∗(K∗) of D+ to be the total complex associated to the double
complex

(HomG(Fp,K
q))p,q∈Z.

The operation which associates to a complex K∗ of DG the complex L∗(K∗) of D+ is a covariant
functor.

If K∗ is in DG, denote by H∗(G,K∗) the cohomology of L∗(K∗). Since this last cochain
complex is the total complex of a double complex, we have the following two spectral sequences
which both converge to H∗(G,K∗) :

IE
p,q
2 = Hp(G,Hq(K∗))

IIE
p,q
1 = Hp(G,Kq)

}
=⇒ Hp+q(G,K∗).

Considering the first spectral sequence (called the Hochschild-Serre spectral sequence associated
to G and K∗), since group cohomology with coefficients in a module is independent of the
considered projective resolution, we can claim that so do H∗(G,K∗). We then call H∗(G,K∗)
the group cohomology of G with coefficients in the cochain complex K∗. In particular, the
composition of the functor L∗ with the localization D+ → HoD+ is also independent of the
considered projective resolution.
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Furthermore, this functor L∗ preserves quasi-isomorphisms of DG : if f : K∗ → M∗ is
an equivariant quasi-isomorphism, then it induces an isomorphism from the level IE2 of the
induced Hochschild-Serre spectral sequences and therefore between the cohomologies of G with
coefficients in K∗ and M∗.

We also denote by L∗ the induced functor HoDG → HoD+.

Now, we extend the functor L∗ to the categories of filtered cochain complexes CG and
C+, where C+ denotes the category of bounded below cochain complexes of Z2-vector spaces
equipped with a decreasing bounded filtration, and morphisms of filtered complexes.

Definition 3.2. Let (K∗, J•) be in CG. We define an induced bounded decreasing filtration J•

on L∗(K∗) by setting
J
αLk(K∗) := Lk(JαK∗).

As in [14] Proposition 3.7, we can show that, in HoC+, the couple (L
∗(K∗),J•) is indepen-

dent of the considered projective resolution, and, as in [14] Proposition 3.8, that the induced
functor L∗ : CG → HoC+ preserves filtered quasi-isomorphisms.

This induces a well-defined functor L∗ : HoCG → HoC+.

3.2 Cohomological equivariant weight complex, spectral sequence, filtration

We begin this part by the definition of the equivariant cohomology of real algebraic G-varieties,
for which we use the functor L∗ :

Definition 3.3. Let X be a real algebraic G-variety. Denote C∗
G(X) := L∗(C∗(X)) (considered

in HoD+, or in D+ if we fix a resolution of Z by projective Z[G]-modules). We call

H∗(X;G) := H∗(C∗
G(X))

the equivariant cohomology of X.

Remark 3.4. The Hochschild-Serre spectral sequence

IE
p,q
2 = Hp(G,Hq(X))⇒ Hp+q(X;G) (3.1)

allows to interpret the equivariant cohomology as a mix of cohomology with compact supports
and group cohomology, involving the very geometry of the action of the group on the variety.
This equivariant cohomology is the same as the one defined in [16] Chapter III, at least for
compact real algebraic G-varieties. Notice that if the group G is trivial, the equivariant co-
homology coincide with the cohomology with compact supports (in this case, we consider the

trivial resolution ...→ 0 −→ 0 −→ Z
id
−→ Z→ 0).

Example 3.5. Consider the sphere S1 given by the equation x2 + y2 = 1 in R
2 and suppose it

equipped with the action of the group G := Z/2Z given by the involution σ : (x, y) 7→ (−x, y).
We use the Hochschild-Serre spectral sequence to compute the equivariant cohomology of S1

(see also Examples 3.3 and 3.13 of [14]).
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The page IE2 is

Z2[S1]
∨

Z2[S1]
∨
· · · Z2[S1]

∨
· · ·

Z2[{p1}]
∨

Z2[{p1}]
∨
· · · Z2[{p1}]

∨
· · ·

where p1 denotes the point of coordinates (0, 1) and c∨ denotes the linear map Hk(S1) =
(Hk(S

1))∨ → Z2 which associates to the homology class c the value 1.

We compute the image of the cohomology class [S1]
∨
by the differential d2. For this sake,

we first represent [S1]
∨
by the linear map ϕ : C1(S

1)→ Z2 defined as follows. Suppose that A
is a connected one-dimensional closed semialgebraic subset of S1 with A 6= S1, then

ϕ([A]) :=

{
1 if p1 ∈ ∂A and A ∩ {x < 0} 6= ∅,

0 otherwise.

In particular, ϕ([S1]) = ϕ([S1 ∩ {x ≤ 0}]) + ϕ([S1 ∩ {x ≥ 0}]) = 1 + 0 = 1.
We then apply 1 + σ to ϕ : by definition, (1 + σ) · ϕ = ϕ + ϕ ◦ σ and, if A verifies the same
assumptions as above,

(ϕ+ ϕ ◦ σ)([A]) =

{
1 if p1 ∈ ∂A,

0 if p1 /∈ ∂A.

Now, we notice that (1 + σ) · ϕ = δ0(ψ) = ψ ◦ ∂1 where, if p is a point of S1,

ψ([{p}]) :=

{
1 if p = p1,

0 if p 6= p1,

and finally, (1 + σ) · ψ = ψ + ψ ◦ σ ≡ 0, since p1 is a fixed point under the action of G on S1.

As a consequence, d2([S1]
∨
) = 0 and IE2 = IE∞. As a conclusion, we obtain

Hk(S1;G) =





0 if k < 0,

Z2 if k = 0,

Z2 ⊕ Z2 if k ≥ 1.

Remark 3.6. Since, under the same assumptions,

Hk(S
1;G) =





Z2 ⊕ Z2 if k ≤ 0,

Z2 if k = 1,

0 if k > 1.

we can remark that, in the general case, there is no “classical” duality between equivariant
cohomology and equivariant homology such as for cohomology with compact supports and
Borel-Moore homology (see Proposition 2.2 of [9]).

Example 3.7. Keep the same hypothesis as in example 3.5 and suppose the action is now given
by the free involution σ : (x, y) 7→ (−x,−y). Using the same notation as above, we have

(ϕ+ ϕ ◦ σ)([A]) =

{
1 if p1 ∈ ∂A and A ∩ {x < 0} 6= ∅, or p2 ∈ ∂A and A ∩ {x > 0} 6= ∅,

0 otherwise
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where p2 is the point of coordinates (0,−1).
Therefore, (1 + σ) · ϕ = δ0(ψ) = ψ′ ◦ ∂1 where, if p is a point of S1,

ψ′([{p}]) :=

{
1 if p ∈ S1 ∩ {x < 0} or p = p2,

0 if p ∈ S1 ∩ {x > 0} or p = p1.

and (1 + σ) · ψ′ = ψ′ + ψ′ ◦ σ : [{p}] 7→ 1.

Consequently, d2([S1]
∨
) = [{p1}]

∨
and the Hochschild-Serre spectral sequence degenerates

at page IE3 :
0 0 0 · · · 0 · · ·

Z2[{p1}]
∨

Z2[{p1}]
∨

0 · · · 0 · · ·

and we obtain

Hk(S1;G) =





0 if k < 0,

Z2 if k = 0 or 1,

0 if k > 1.

We then consider the dual geometric filtration. We can apply the functor L∗, extended to
the categories of filtered cochain complexes, to induce a filtration on C∗

G(·) :

Definition 3.8. If X is a real algebraic G-variety, we denote

Λ•C∗
G(X) := L∗(G•C∗(X))

and we call this filtered complex of HoC+ (or C+ if we fix a projective resolution of Z by
projective Z[G]-modules) the cohomological equivariant geometric filtration of X.

The operation which associates to any real algebraic G-variety its cohomological equivari-
ant geometric filtration is a contravariant functor, since it is the composition of the functors
G•C∗ : SchG

c (R)→ CG and L∗ : CG → (Ho)C+.

We are going to show that the functor Λ•C∗
G : SchG

c (R) → HoC+ is unique up to filtered
quasi-isomorphism (of C+) in a way similar to theorem 2.3 and proposition 2.6 (see also the
homological counterpart Theorem 3.16 of [14]).

For K∗ a bounded cochain G-complex, we denote F•
canL

∗(K∗) := L∗(F •
canK

∗).

Theorem 3.9. The contravariant functor

FcanC
∗
G : VG(R)→ HoC+ ; M 7→ FcanC

∗
G(M)

extends to a contravariant functor

ΩC∗
G : SchG

c (R)→ HoC+

verifying the two following conditions :
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1. For an acyclic square

Ỹ
j
→֒ X̃

↓ π ↓ π

Y
i
→֒ X

in SchG
c (R), the simple filtered complex of the diagram

ΩC∗
G(Ỹ )

j∗

←− ΩC∗
G(X̃)

↑π∗ ↑π∗

ΩC∗
G(Y )

i∗
←− ΩC∗

G(X)

is acyclic, i.e. isomorphic in HoC+ to the zero complex.

2. For an equivariant closed inclusion Y →֒ X, the simple filtered complex of the diagram

ΩC∗
G(Y )←− ΩC∗

G(X)

is isomorphic in HoC+ to ΩC∗
G(X \ Y ).

Such a functor ΩC∗
G is unique up to a unique filtered quasi-isomorphism and we call it the

cohomological equivariant weight complex.

Proof. Existence : The composition of the functor GWC∗ : SchG
c (R) → HoCG with the func-

tor L∗ : HoCG → HoC+ verifies the extension, acyclicity and additivity properties, because
so do the functor GWC∗ (theorem 2.3), and because the functor L∗ preserves filtered quasi-
isomorphisms and commutes with the operation associating to a cubical diagram in CG its
simple filtered diagram (it is the cohomological counterpart of Proposition 3.10 of [14], ob-
tained by a direct computation). We denote this functor SchG

c (R)→ HoC+ by ΩC∗
G.

Uniqueness : The uniqueness of the cohomological equivariant weight complex with these
properties can be obtained in the same way as the uniqueness of the equivariant homological
weight complex (proof of Theorem 3.16 of [14]) : use Théorème 3.5 of [13] applied to the category
of cohomological descent C+ (Propriété (1.7.5) of [6]) and the functor FcanC

∗
G : VG(R) →

HoC+.

Remark 3.10. If X is a compact nonsingular G-variety, its cohomological equivariant weight
complex ΩC∗

G(X) is quasi-isomorphic in C+ to FcanC
∗
G(X) (because in this case GWC∗(X) is

quasi-isomorphic in CG to GFcanC
∗(X)).

Since, by proposition 2.6, the dual geometric filtration with action realizes the cohomological
weight complex with action (and because the functor L∗ preserves filtered quasi-isomorphisms),
we obtain :

Proposition 3.11. The cohomological equivariant geometric filtration Λ•C∗
G : SchG

c (R) →
HoC+ induces the cohomological equivariant weight complex ΩC∗

G : SchG
c (R)→ HoC+.
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If X is a real algebraic G-variety, we denote by GE∗(X) the spectral sequence induced by
the filtered cohomological equivariant weight complex : it is well-defined from page E1 and
coincide, from page E1, with the spectral sequence induced by the cohomological equivariant
geometric filtration. We call it the cohomological equivariant weight spectral sequence of X.
It converges to the equivariant cohomology H∗(X;G) of X and we denote by Ω the decreasing
filtration induced on H∗(X;G).

As in [12], [9] and [14], we reindex the cohomological equivariant weight spectral sequence by
setting GẼp,q

r = GE−q,p+2q
r−1 . We can then read the acyclicity and additivity of the cohomological

equivariant weight complex on the rows of the page two of this reindexed spectral sequence :
for instance, if we have an acyclic square (2.1), we have, for all q ∈ Z, a long exact sequence

· · · → GẼp,q
2 (X)→ GẼp,q

2 (Y )⊕ GẼp,q
2 (X̃)→ GẼp,q

2 (Ỹ )→ GẼp+1,q
2 (X)→ · · ·

As in [14], Proposition 3.17, we can also express the page two of GE∗ as the cohomology of the
group G with coefficients in the cohomological weight spectral sequence in the following sense :
for all p, q ∈ Z,

GẼp,q
2 = Hp

(
G, Ẽ∗,q

1

)
.

This leads in particular to consider the following (Hochschild-Serre) spectral sequences

q
IE

α,β
2 = Hα

(
G, Ẽβ,q

2

)
⇒ Hα+β

(
G, Ẽ∗,q

1

)
= GẼα+β,q

2 ,

which allows to obtain the following bounds on the cohomological equivariant weight spectral
sequence and filtration :

Proposition 3.12. Let X be a real algebraic G-variety of dimension d. For all r ≥ 2, p, q ∈ Z,
if GẼp,q

r 6= 0 then 0 ≤ q ≤ d and p ≥ 0, and, for all k ∈ Z, we have the inclusions

Hk(X;G) = Ω−dHk(X;G) ⊃ Ω−d+1Hk(X;G) ⊃ · · · ⊃ Ω0Hk(X;G) ⊃ Ω1Hk(X;G) = 0.

Proof. For the first part, for p, q ∈ Z, consider the spectral sequence

q
IE

α,β
2 = Hα

(
G, Ẽβ,q

2

)
⇒ GẼα+β,q

2 ,

and use the fact that, for α < 0, Hα(G, ·) = 0 and that, for all β ∈ Z, Ẽβ,q
2 6= 0 implies β ≥ 0,

q ≥ 0 and β + q ≤ d (see [9]).
Finally, we prove that Hk(X;G) = Ω−dHk(X;G) and Ω1Hk(X;G) = 0 by using the

equalities

ΩlHk(X;G) =
⊕

m≤−l

GẼk−m,m
∞ .

Remark 3.13. As in the homological framework of [14],

• the cohomological equivariant weight spectral sequence of a compact nonsingular real al-
gebraic G-variety coincides with its Hochschild-Serre spectral sequence (3.1) (see Propo-
sition 3.23 of [14]),
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• we can extract additivities expressed in terms of the spectral sequences

q
IIE

α,β
1 = Hα

(
G, Ẽβ,q

1

)

induced by the dual geometric filtration (see section 4 of [14]),

• if G is an odd-order group, we have, for any cochain G-complex K∗, L∗(K∗) = (K∗)G

and therefore Λ•C∗
G and GE∗ = (E∗)

G (see section 3.4 of [14]) : as a direct consequence,
in this case, we can recover the equivariant virtual Betti numbers of [4] on the rows of
GE2.

4 Products of equivariant weight filtrations

In the last section of [9], the Künneth isomorphism as well as the cup and cap products on
homology and cohomology are showed to be induced from the weight spectral sequences level. In
this part, we show how these products on the weight spectral sequences induce their equivariant
counterparts on the equivariant weight spectral sequences.

4.1 Equivariant Künneth isomorphism

Let G and G′ be two finite groups.
In this paragraph, we show the equivariant analog of Theorem 5.13 of [9] : if X is a real

algebraic G-variety and Y is a real algebraic G′-variety, then the G×G′-equivariant geometric
filtration of the product X × Y is filtered quasi-isomorphic to the tensor product of the equiv-
ariant geometric filtrations of X and Y . In order to prove this, we establish the equivariancy
of the quasi-isomorphism of Theorem 5.13 of [9] and we apply the functor L, considering a
particular projective resolution, namely the bar resolution.

We also give the cohomological counterpart of this filtered quasi-isomorphism, with respect
to the cohomological equivariant geometric filtration.

If E and F are respectively a Z[G]-module and a Z[G′]-module, we can equip the tensor
product E ⊗Z F with an action of G×G′ by setting

(g, g′) · (x⊗ y) := g · x⊗ g′ · y.

If CG denotes the category of filtered bounded chain G-complexes of Z2-vector spaces, and if
(K∗, F ) is now a filtered complex of CG and (M∗, J) a filtered complex of CG

′

, then the tensor
product (K ⊗Z2 M)∗ can be equipped with an action of G × G′, by considering the diagonal
action of G×G′. Furthermore, the induced filtration F ⊗ J (see [9] Definition 5.10) as well as
the induced differential are equivariant with respect to this action :

Lemma 4.1. The filtered complex ((K ⊗Z2 M)∗, F ⊗ J) can be considered as an element of
CG×G′

.
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Proof. We check that the action of G×G′ commutes with the differential. Let n be an integer,
z =

∑
i,j xi ⊗ yj ∈ (K ⊗Z2 M)n and (g, g′) ∈ G×G′.

If we denote by ∂ and ∂′ the respective differentials of K∗ and M∗, we have

d((g, g′) · z) = d



∑

i,j

g · xi ⊗ g
′ · yj




=
∑

i,j

[
∂(g · xi)⊗ g

′ · yj + g · xi ⊗ ∂
′(g′ · yj)

]

=
∑

i,j

[
g · ∂(xi)⊗ g

′ · yj + g · xi ⊗ g
′ · ∂′(yj)

]

= (g, g′) · d(z)

As a consequence, if X is a real algebraic G-variety and Y is a real algebraic G′-variety, the
tensor product G•C∗(X) ⊗ G•C∗(Y ) is a filtered G ×G′-complex of CG×G′

. We show that the
filtered quasi-isomorphism of Theorem 5.13 of [9] from G•C∗(X)⊗G•C∗(Y ) to G•C∗(X × Y ) is
(G×G′)-equivariant.

Proposition 4.2. The morphism of chain complexes

u : G•C∗(X) ⊗ G•C∗(Y )→ G•C∗(X × Y ) ; cX ⊗ cY 7→ cX × cY

is a filtered quasi-isomorphism of CG×G′

.

Proof. If c is a semialgebraic q-chain of X represented by a closed semialgebraic set A and c′

is a semialgebraic q′-chain of Y represented by a closed semialgebraic set B, then the product
c× c′ is by definition the q+ q′-chain represented by the product A×B (see [12] Appendix and
[9] Definition 5.1). If furthermore (g, g′) ∈ G×G′, we have

(g, g′) · c× c′ = (g, g′) · [A×B] = [g ·A× g′ · B] = g · c× g′ · c′.

Therefore, if z =
∑

i,j ci ⊗ c
′
j ∈ (C∗(X)⊗ C∗(Y ))n,

(g, g′) · u(z) = (g, g′) ·



∑

i,j

ci × c
′
j




=
∑

i,j

g · ci × g
′ · c′j

= u



∑

i,j

g · ci ⊗ g
′ · c′j




= u((g, g′) · z).
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As a direct consequence, the weight complex with action G×G′

WC∗(X × Y ) (see [13]
Théorème 3.5) is isomorphic to the filtered complex GWC∗(X) ⊗ G′

WC∗(Y ) in Ho CG. More-
over, the equivariancy of the filtered quasi-isomorphism u induces the equivariancy of the
isomorphism on spectral sequences from level one

⊕

p+s=a, q+t=b

Er
p,q(X) ⊗Er

s,t(Y )
∼
←− Er

a,b(G•C∗(X)⊗ G•C∗(Y ))
∼
−→ Er

a,b(X × Y )

and in particular the equivariancy of the Künneth isomorphism

WH∗(X)⊗WH∗(Y )→WH∗(X × Y )

(see [9] Corollary 5.14).

In a second time, we apply the functor LG×G′

∗ (see [14] section 3.1) to the equivariant
filtered quasi-isomorphism u. If we denote Λ•C

G
∗ := L∗ ◦ G•C∗, this provides us a filtered

quasi-isomorphism of C−

L∗(G•C∗(X)⊗ G•C∗(Y ))→ ΛCG×G′

∗ (X × Y ).

We are going to show that the filtered complex L∗(G•C∗(X)⊗G•C∗(Y )) is isomorphic in Ho C−
to the tensor product of the equivariant geometric filtrations Λ•C

G
∗ (X)⊗ Λ•C

G′

∗ (Y ) of X and
Y . Actually, we prove that, if we consider a particular projective resolution, these filtered
complexes are isomorphic in C−.

The resolution we consider is the bar resolution. The definition of the bar resolution we
consider can be found in [2]. The important point is that, if G is a finite group, all the modules
of the bar resolution are finitely generated.

Definition 4.3. Let G be a (not necessarily) finite group and k be a commutative unitary ring.
If n is a nonnegative integer, denote by Bn the tensor product of n + 1 copies of k[G] over k.
We make each Bn into a k[G]-module by considering the action of G on the first term k[G] of
Bn : it is a free k[G]-module, generated by the elements e⊗ g1 ⊗ · · · ⊗ gn.

If we define the applications

ǫ : B0 = k[G]→ k ;
∑

g∈G

agg 7→
∑

g∈G

ag

and, for n ≥ 1,

∂n :

Bn → Bn−1

g0 ⊗ · · · ⊗ gn 7→
n−1∑

i=0

(−1)ig0 ⊗ · · · ⊗ gi−1 ⊗ gigi+1 ⊗ gi+2 ⊗ · · · ⊗ gn + (−1)ng0 ⊗ · · · ⊗ gn−1,

we can form a free resolution

· · · → B2
∂2−→ B1

∂1−→ B0
ǫ
−→ k → 0

of k by k[G]-modules, called the bar resolution of k over G.
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Now, let us come back to the finite groups G and G′ we considered at the beginning of this
section and consider the bar resolutions of Z over G and G′, which we denote by B, resp. B′.
The tensor product of B and B′ is a projective resolution of Z by Z[G ×G′]-modules (see for
instance [1] Chapter V, Proposition (1.1)) and we are going to show the following :

Proposition 4.4. Let K∗ be a chain complex of DG and M∗ be a chain complex of DG′

. Then
we have a natural isomorphism

LG
B(K∗)⊗ L

G′

B′(M∗)→ LG×G′

B⊗B′(K∗ ⊗M∗)

of D− (DG and D− are the homological analogues of DG and D+ : see [14]).

To prove this property, we will use the fact that the resolutions B and B′ are finitely
generated together with the following :

Proposition 4.5 ([10] Chapter VI - 8, (8.10) and Proposition 8.3). Let B and B′ be respectively
finitely generated free Z[G] and Z[G′]-modules and let A, resp. A′, be a Z[G]-module, resp. a
Z[G′]-module.

The canonical morphism

HomG(B,A)⊗HomG′(B′, A′) → HomG×G′(B ⊗B′, A⊗A′)
f ⊗ f ′ 7→ {b⊗ b′ 7→ f(b)⊗ f ′(b′)}

is an isomorphism.

Proof (of Proposition 4.4). Let k ∈ Z. Then

(
LG
∗ (K∗)⊗ L

G′

∗ (M∗)
)
k

=
⊕

i+j=k

LG
i (K∗)⊗ L

G′

j (M∗)

=
⊕

i+j=k



⊕

p+q=i

HomG(B−p,Kq)


⊗



⊕

p′+q′=j

HomG′(B′
−p′ ,Mq′)




∼
−→

⊕

i+j=k, p+q=i, p′+q′=j

HomG×G′(B−p ⊗B
′
−p′ ,Kq ⊗Mq′)

=
⊕

i,p,q′

HomG×G′(B−p ⊗B
′
−(k−i−q′),Ki−p ⊗Mq′)

On the other hand, we have

LG×G′

k (K∗ ⊗M∗) =
⊕

r+s=k

HomG×G′




⊕

−p−p′=−r

B−p ⊗B
′
−p′ ,

⊕

q+q′=s

Kq ⊗Mq′




=
⊕

r,p,q′

HomG×G′

(
B−p ⊗B

′
−(r−p),Kk−r−q′ ⊗Mq′

)

=
⊕

i,p,q′

HomG×G′

(
B−p ⊗B

′
−(k−i−q′),Ki−p ⊗Mq′

)
(we set i := k − r − q′ + p).
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For each k ∈ Z, we then denote by ψk the isomorphism

(
LG
∗ (K∗)⊗ L

G′

∗ (M∗)
)
k

∼
−→ LG×G′

k (K∗ ⊗M∗)

and we can show by a direct computation that the morphisms ψ∗ commute with the differentials
of the two complexes LG

B(K∗) ⊗ LG′

B′(M∗) and LG×G′

B⊗B′(K∗ ⊗M∗), using the naturality of the
isomorphisms

HomG(B−p,Ki−p)⊗HomG′(B′
−(k−i−q′),Mq′)→ HomG×G′(B−p ⊗B

′
−(k−i−q′),Ki−p ⊗Mq′).

It remains to show that the above morphism ψ∗ is a morphism of filtered complexes :

Proposition 4.6. Suppose that K∗ is a chain complex of CG and M∗ is a chain complex of
CG

′

. Then the natural isomorphism

LG
B(K∗)⊗ L

G′

B′(M∗)→ LG×G′

B⊗B′(K∗ ⊗M∗)

is a filtered morphism of C− with respect to the induced filtrations (see [14], as well as [9]
Definition 5.10 for the definition of the tensor product of filtered complexes that we can extend
to the category C−).

Proof. Let J• and I• be the respective equivariant filtrations of K∗ and M∗ and denote by J•
and I• the induced filtrations on LG

∗ (K∗) and L
G′

∗ (M∗). Then, if k, l ∈ Z, we have

(J ⊗ I)l(L
G
∗ (K∗)⊗ L

G
∗ (M∗))k :=

⊕

i+j=k

∑

a+b=l

JaL
G
i (K∗)⊗ IbL

G′

j (M∗)

=
∑

a+b=l

⊕

i+j=k

LG
i (JaK∗)⊗ L

G′

j (IbM∗)

∼
−→

∑

a+b=l

LG×G′

k (JaK∗ ⊗ IbM∗)

= LG×G′

k

(
∑

a+b=l

JaK∗ ⊗ IbM∗

)
(B and B′ are finitely generated)

= LG×G′

k ((J ⊗ I)l(K∗ ⊗M∗)) .

We can finally apply this result to obtain the quasi-isomorphisms of C−

ΛCG
∗ (X)⊗ ΛCG′

∗ (Y )
∼
←− LG×G′

∗ (G•C∗(X) ⊗ G•C∗(Y )) −→ ΛCG×G′

∗ (X × Y ).

As a consequence :
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Theorem 4.7. Let X be a real algebraic G-variety and Y be a real algebraic G′-variety. There
is an isomorphism of Ho C−

ΛCG
∗ (X)⊗ ΛCG′

∗ (Y )→ ΛCG×G′

∗ (X × Y ).

Consequently, the tensor product of the equivariant weight complexes ΩCG
∗ (X) ⊗ ΩCG′

∗ (Y )
of X and Y is isomorphic in Ho C− to the equivariant weight complex ΩCG×G′

∗ (X × Y ) of the
product variety. In particular, we obtain a filtered isomorphism

ΩH∗(X;G) ⊗ΩH∗(Y ;G′)→ ΩH∗(X × Y ;G×G′).

Remark 4.8. The complexes ΩCG
∗ (X)⊗ΩCG′

∗ (Y ) and ΩCG×G′

∗ (X×Y ) are isomorphic in Ho C−
regardless of the considered representative of the equivariant weight complex in C− and of the
considered projective resolutions, by spectral sequences arguments : see Lemma 5.11 of [9] and
Proposition 3.7 of [14].

We end this part with the cohomological counterpart of 4.7 :

Theorem 4.9. Let X be a real algebraic G-variety and Y be a real algebraic G′-variety. The
complexes ΛC∗

G(X) ⊗ ΛC∗
G′(Y ) and ΛCG×G′

∗ (X × Y ) are isomorphic in HoC+.
As a consequence, the tensor product of the cohomological equivariant weight complexes

ΩC∗
G(X) ⊗ ΩC∗

G′(Y ) of X and Y is isomorphic in HoC+ to the cohomological equivariant
weight complex ΩC∗

G×G′(X × Y ) of the product, and we obtain a filtered isomorphism

ΩH∗(X;G) ⊗ ΩH∗(Y ;G′)→ ΩH∗(X × Y ;G×G′).

Proof. First, we show that the cochain complexes G•C∗(X)⊗ G•C∗(Y ) and G•C∗(X × Y ) are
isomorphic in HoCG. Referring to the proof of Proposition 5.17 in [9], we have the following
quasi-isomorphisms in C :

G•C∗(X × Y )
u∨

−→ (G•C∗(X)⊗ G•C∗(Y ))∨
w
←− G•C∗(X)⊗ G•C∗(Y ).

Since the morphism u is equivariant (proposition 4.2), so is u∨. The morphism w is equivariant
as well : if (g, g′) ∈ G×G′, ϕ⊗ψ ∈ C∗(X)⊗C∗(Y ) and

∑
i,j ci⊗ c

′
j ∈ C∗(X)⊗C∗(Y ), we have

(g, g′) · (w(ϕ ⊗ ψ))



∑

i,j

ci ⊗ c
′
j


 = w(ϕ⊗ ψ)



∑

i,j

g−1 · ci ⊗ g
′−1
· c′j




=
∑

i,j

ϕ
(
g−1 · ci

)
ψ
(
g′

−1
· c′j

)

=
∑

i,j

(g · ϕ(ci))
(
g′ · ψ(c′j)

)

= w
(
(g, g′) · (ϕ⊗ ψ)

)


∑

i,j

ci ⊗ c
′
j
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As a consequence, G•C∗(X)⊗G•C∗(Y ) and G•C∗(X ×Y ) are isomorphic in HoCG via the
equivariant filtered quasi-isomorphisms u∨ and w of CG.

We can then apply the functor L∗
G×G′ to obtain an isomorphism of HoC+ between the

cohomological equivariant geometric filtration ΛCG×G′

∗ (X × Y ) of the product X × Y and the
cochain complex L∗

G×G′ (G•C∗(X)⊗ G•C∗(Y )). We then use the natural isomorphism of C+

LG(K
∗)⊗ LG′(M∗)→ LG×G′(K∗ ⊗M∗)

for K∗ ∈ CG and M∗ ∈ CG′

, obtained as in proposition 4.6 considering bar resolutions over
G and G′, to show that L∗

G×G′ (G•C∗(X)⊗ G•C∗(Y )) is isomorphic to the tensor product
ΛC∗

G(X) ⊗ ΛC∗
G′(Y ) of the cohomological equivariant geometric filtrations of X and Y .

4.2 Equivariant cup product

Let G be a finite group and let X be a real algebraic G-variety.
In this part, we will prove that the cup product on equivariant cohomology of real algebraic

G-varieties, defined in [16] Chapter III - 3, is filtered with respect to the cohomological equiv-
ariant weight filtration, from the cohomological equivariant weight spectral sequence level. It
will be induced by the cup product defined from the cohomological weight spectral sequence
level (see [9] Propositions 5.20), through the application of the functor L.

An important point of the study will consist in carrying the usual properties of cup product
on the equivariant cup product.

In [9], the cup product is defined in the localized category HoC as the composition

⌣ : G•C∗(X)⊗ G•C∗(X)
(u∨)−1◦w
−−−−−−→ G•C∗(X ×X)

∆∗

−−→ G•C∗(X)

where ∆∗ is the morphism of C induced by the diagonal map ∆ : X → X ×X ; x 7→ (x, x).
The isomorphism (u∨)−1 ◦ w of HoC is equivariant with respect to the actions induced by

the action of the product group G×G on X × Y , and induces an isomorphism

ΛC∗
G(X)⊗ ΛC∗

G(X) −→ ΛC∗
G×G(X ×X)

of HoC+ (see theorem 4.7). We are then going to show that the morphism ∆∗ induces a
morphism

ΛC∗
G×G(X ×X) −→ ΛC∗

G(X)

using the functoriality of L with respect to the group :

Proposition 4.10. Let G′ be a finite group and let ϕ : G→ G′ be a morphism of groups. Let
K∗ be a cochain complex of DG′

, resp. CG′

. Then K∗ can be considered as an element of DG,
resp. CG, via ϕ (if g ∈ G and x ∈ Kk, we set g · x := ϕ(g) · x), and ϕ induces furthermore a
morphism

T : L∗
G′(K∗) −→ L∗

G(K
∗)

of D+, resp C+.
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Proof. Let F
ǫ
−→ Z, resp. F ′ ǫ′

−→ Z, be a resolution of Z by projective Z[G]-modules, resp. Z[G′]-
modules. There exists an augmentation-preserving G-chain map τ : F → F ′, well-defined up
to homotopy, that is there exists a morphism of complexes τ : F → F ′ such that for g ∈ G
and x ∈ F , τ(g · x) = ϕ(g) · τ(x) and ǫ′ ◦ τ = ǫ, and τ is unique up to homotopy with these
properties (see [1] Chapter II - 6 and Chapter I - 7, Lemma 7.4).

The morphism τ then induces, for each k ∈ Z, a morphism

Tk : Lk
G′(K∗) =

⊕

p+q=k

HomG′(F ′
p,K

q)→
⊕

p+q=k

HomG(Fp,K
q) = Lk

G(K
∗),

given by the right-composition with τ : if g ∈ G, ψ ∈ HomG′(F ′
p,K

q) and x ∈ Fp,

ϕ(g) · (ψ ◦ τ(x)) = ψ(ϕ(g) · τ(x)) = ψ ◦ τ(g · x)).

Moreover, these morphisms commute with the differentials of the complexes L∗
G′(K∗) and

L∗
G(K

∗) (because τ : F → F ′ is a morphism of complexes). As a consequence, we obtain a
morphism of complexes of D+

T : L∗
G′(K∗)→ L∗

G(K
∗).

If now K∗ is a complex of CG′

with filtration J , then it is also a complex of CG via ϕ,
and we check that T is a morphism of filtered complexes. Let ψ ∈ HomG′(F ′

p, JαK
q), then

T (ψ) = ψ ◦ τ ∈ HomG(Fp, JαK
q), and therefore T (JαL

∗
G′(K∗)) ⊂ JαL

∗
G(K

∗).

Consider the group homomorphism δ : G → G ×G ; g 7→ (g, g). According to proposition
4.10, δ induces a morphism

ΛC∗
G×G(X ×X) = L∗

G×G(G
•C∗(X ×X))→ L∗

G(G
•C∗(X ×X)) = ΛC∗

G(X ×X),

the action of G on G•C∗(X ×X) being induced by the diagonal action of G on X ×X. Since
the diagonal map ∆ is equivariant if we consider the diagonal action of G on X×X, ∆ induces
a morphism

ΛC∗
G(X ×X) −→ ΛC∗

G(X).

We then call cup product and denote by ⌣ the composition

ΛC∗
G(X)⊗ ΛC∗

G(X) −→ ΛC∗
G×G(X ×X) −→ ΛC∗

G(X ×X) −→ ΛC∗
G(X)

of HoC+.

Theorem 4.11. The cup product

⌣ : ΛC∗
G(X)⊗ ΛC∗

G(X) −→ ΛC∗
G(X)

in HoC+ induces a morphism of spectral sequences

⌣ :
⊕

p+s=a,q+t=b

GEp,q
r (X)⊗ GEs,t

r (X) −→ GEa,b
r (X)

for r ≥ 1, and a cup product in equivariant cohomology

⌣ : H∗(X;G) ⊗H∗(X;G) −→ H∗(X;G)

which is filtered with respect to the cohomological equivariant weight filtration.
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Remark 4.12. The cup product⌣ on the equivariant cohomology coincides with the cup prod-
uct of [16] (III - 3 - (28)), at least for compact real algebraic G-varieties.

The cup product on the cohomological equivariant weight spectral sequence and filtration
is actually induced by the cup product on the cohomological weight spectral sequence through
the Hochschild-Serre spectral sequences

pEα,β
2 = Hα

(
G,Ep,β

1

)
⇒ GEp,α+β

1 = Hα+β
(
G,Ep,∗

0

)
, p ∈ Z.

Indeed, consider the functor L∗
G : DG → D+ induced by the bar resolution B over G.

If K∗ ∈ DG, we can consider the bounded filtration IF
• on L∗(K∗) which gives rise to the

Hochschild-Serre spectral sequence IE∗, and L∗(K∗) can then be considered as a complex of
C+. We obtain a functor IL

∗ : DG → C+, which preserves quasi-isomorphisms (since IE
p,q
1 =

HomG(Bp,H
q(K∗))) and then induces a functor

IL
∗ : HoDG → HoC+

If p is an integer, the Hochschild-Serre spectral sequence pE∗ is then the spectral sequence
induced by the filtered complex IL

∗(Ep,∗
0 ).

Now, fix two integers p and p′. The isomorphism G•C∗(X) ⊗ G•C∗(X) −→ G•C∗(X ×X)

of HoCG×G induces an isomorphism Ep,∗
0 (X)⊗ Ep′,∗

0 (X)→ Ep+p′,∗
0 (X ×X) of HoDG×G. We

apply the functor IL
∗
G×G to get a morphism

IL
∗
G

(
Ep,∗

0 (X)
)
⊗ ILG

(
Ep′,∗

0 (X)
)
→ IL

∗
G×G

(
Ep,∗

0 (X) ⊗ Ep′,∗
0 (X)

)
→ IL

∗
G×G

(
Ep+p′,∗

0 (X ×X)
)

(4.1)
of HoC+. The left-hand arrow is a natural isomorphism of C+ given by the following lemma :

Lemma 4.13. If K∗ ∈ DG and M∗ ∈ DG′

, there is a natural isomorphism

IL
∗
G(K

∗)⊗ IL
∗
G′(M∗)→ IL

∗
G×G′(K∗ ⊗M∗).

of filtered complexes of C+.

Proof. The morphism is given by proposition 4.5, as in the proof of proposition 4.4. We check
that the filtrations coincide on the two complexes above. On the one hand, we have
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IF
l(L∗

G(K
∗)⊗ L∗

G′(M∗))k =
⊕

i+j=k

∑

a+b=l

IF
aLi

G(K
∗)⊗ IF

bLj
G′(M

∗)

=
⊕

i+j=k

∑

a+b=l



⊕

r≥a

HomG(Br,K
i−r)


⊗



⊕

s≥b

HomG(B
′
s,M

j−s)




∼
−→

⊕

i+j=k

∑

a+b=l

⊕

r≥a

⊕

s≥b

HomG×G′(Br ⊗B
′
s,K

i−r ⊗M j−s)

=
∑

a+b=l

⊕

r≥a

⊕

s≥b

⊕

i

HomG×G′(Br ⊗B
′
s,K

i−r ⊗Mk−i−s)

=
∑

a

⊕

r≥a

⊕

s≥l−a

⊕

γ

HomG×G′(Br ⊗B
′
s,K

γ ⊗Mk−γ−r−s)

=
⊕

γ

∑

a

⊕

r≥a

⊕

N≥l+r−a

HomG×G′(Br ⊗B
′
N−r,K

γ ⊗Mk−N−γ),

and on the other hand,

IF
lLk

G×G′(K∗ ⊗M∗) =
⊕

N≥l

HomG×G′



⊕

α+β=N

Bα ⊗B
′
β,

⊕

γ+δ=k−N

Kγ ⊗M δ




=
⊕

N≥l

⊕

α+β=N

⊕

γ+δ=k−N

HomG×G′(Bα ⊗B
′
β,K

γ ⊗M δ)

=
⊕

N≥l

⊕

α+β=N

⊕

γ

HomG×G′(Bα ⊗B
′
β,K

γ ⊗Mk−N−γ)

=
⊕

γ

⊕

N≥l

⊕

r

HomG×G′(Br ⊗B
′
N−r,K

γ ⊗Mk−N−γ).

Since the two sums are equal, we get the result.

We then use the fact that the morphism T : L∗
G′(K∗) −→ L∗

G(K
∗) of D+ of proposition

4.10 is compatible with the filtrations IF
•. This provides a morphism

IL
∗
G×G

(
Ep+p′,∗

0 (X ×X)
)
→ IL

∗
G

(
Ep+p′,∗

0 (X ×X)
)

(4.2)

of HoC+, induced by the group homomorphism δ : G → G × G ; g 7→ (g, g). Finally, the
diagonal map ∆ : X → X ×X induces a morphism

IL
∗
G

(
Ep+p′,∗

0 (X ×X)
)
→ IL

∗
G

(
Ep+p′,∗

0 (X)
)

(4.3)

by functoriality.
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Definition and Proposition 4.14. We denote by ⌣ the composition

IL
∗
G

(
Ep,∗

0 (X)
)
⊗ ILG

(
Ep′,∗

0 (X)
)
−→ IL

∗
G

(
Ep+p′,∗

0 (X)
)

of the morphisms (4.1), (4.2) and (4.3) of HoC+.
It induces well-defined morphisms

⌣ :
⊕

α+γ=a,β+δ=b

pEα,β
r ⊗ p′Eγ,δ

r → p+p′Ea,b
r ,

on the spectral sequences pE∗, p ∈ Z, from page r = 1, which induce the cup products

⌣ : GEp,∗
1 ⊗

GEp′,∗
1 −→ GEp+p′,∗

1 ,

and the cup products on GEr, for r ≥ 1, and H∗(X;G), since all the cup products ⌣ are induced
by the same morphisms u∨, w, δ and ∆.

Inducing the equivariant weight spectral sequence’s cup product from the weight spectral
sequence’s cup product will allow us to carry the usual properties of the cup product on the
equivariant cup product :

Theorem 4.15. Let r ≥ 1. The cup product

⌣ :
⊕

p+s=a,q+t=b

GEp,q
r (X)⊗ GEs,t

r (X) −→ GEa,b
r (X)

is commutative.

Proof. The commutativity of the cup product

⊕

p+s=a,q+t=b

Ep,q
r (X)⊗ Es,t

r (X) −→ Ea,b
r (X)

on the cohomological weight spectral sequence (Proposition 5.20 of [9]) is given by the commu-
tativity of the diagram

Ep,q
r (X)⊗ Es,t

r (X)
Φ //

(u∨)−1
◦w

��

Es,t
r (X)⊗ Ep,q

r (X)

(u∨)−1
◦w

��

Ea,b
r (X ×X)

φ∗

//

∆∗
((PP

PP
PP

PP
PP

PP
Ea,b

r (X ×X)

∆∗
vv♥♥♥

♥♥
♥♥
♥♥
♥♥
♥

Ea,b
r (X)

(4.4)

where

• p+ s = a and q + t = b,
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• the morphism Φ is defined by Φ(ϕ⊗ ψ) := ψ ⊗ ϕ,

• the morphism φ is defined by φ(x, x′) := (x′, x) if (x, x′) ∈ X ×X.

The commutativity of the lower part is induced by the equality φ ◦∆ = ∆, while the upper
part is induced by the commutative diagrams

C∗(X)⊗ C∗(X)
Φ //

u

��

C∗(X) ⊗ C∗(X)

u

��
C∗(X ×X)

φ∗ // C∗(X ×X)

and

(C∗(X))∨ ⊗ (C∗(X))∨
Φ //

w

��

C∗(X))∨ ⊗ (C∗(X))∨

w

��
(C∗(X) ⊗ C∗(X))∨

Φ∨

// (C∗(X)⊗ C∗(X))∨

on the filtered chain level.
We then apply group cohomology to the diagram (4.4) for r = 1 and we set up the following

one

Hµ(G,Ep,q
1 (X)) ⊗Hρ(G,Es,t

1 (X))
Φ //

K
��

Hρ(G,Es,t
1 (X)) ⊗Hµ(G,Ep,q

1 (X))

K
��

Hα(G×G,Ep,q
1 (X)⊗ Es,t

1 (X))
Θ //

(u∨)−1
◦w

��

Hα(G×G,Ep,q
1 (X)⊗ Es,t

1 (X))
Φ∗ //

(u∨)−1
◦w

��

Hα(G×G,Es,t
1 (X) ⊗ Ep,q

1 (X))

(u∨)−1
◦w

��

Hα(G×G,Ea,b
1 (X ×X))

T
��

Θ // Hα(G×G,Ea,b
1 (X ×X))

φ∗

//

T

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣
Hα(G×G,Ea,b

1 (X ×X))

T
��

Hα(G,Ea,b
1 (X ×X))

φ∗

//

∆∗

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲

Hα(G,Ea,b
1 (X ×X))

∆∗

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣

Hα(G,Ea,b
1 (X))

(4.5)
where

• µ+ ρ = α,

• the morphism

K : Hµ(G,Ep,q
1 (X)) ⊗Hρ(G,Es,t

1 (X))→ Hα(G×G,Ep,q
1 (X)⊗ Es,t

1 (X))

is the composition of the Künneth isomorphism of cochain complexes with the natural
isomorphism of proposition 4.4 (we consider Ep,q

1 (X) and Es,t
1 (X) as cochain complexes

concentrated in 0),
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• the morphisms Θ are induced by the morphism θ : Fµ ⊗ Fρ → Fρ ⊗ Fµ ; x⊗ y 7→ y ⊗ x
if F is a projective resolution over G,

• T is the morphism given by proposition 4.10, induced by the augmentation-preserving
G-chain map τ : F → F ⊗ F , which is itself induced by the group homomorphism
δ : G→ G×G.

We show that the diagram (4.5) is commutative.
First, we have T ◦Θ = T . Indeed, θ ◦ τ : F → F ⊗F is also an augmentation-preserving G-

chain map and therefore, by the uniqueness up to homotopy of such a map, there is an homotopy
between τ and θ ◦τ , which induces an homotopy between (θ ◦τ)∗ and τ∗ : HomG(F ⊗F,M)→
HomG(F,M), for any Z[G]-module M .

The other diagrams constituting the diagram (4.5) are also commutative, thanks to the
commutativity of the diagram (4.4) and the functoriality of group cohomology.

As a consequence, the cup product

⌣ :
⊕

α+γ=a,β+δ=b

pEα,β
2 ⊗ p′Eγ,δ

2 → p+p′Ea,b
2 ,

is commutative and so are the induced cup products on ∗Er, from r = 2, and GEr, from r = 1,
since all the morphisms of the diagram (4.5) are induced by morphisms defined on the filtered
chain level (the differentials of the spectral sequences ∗Er and GEr are therefore compatible
with these morphisms).

Theorem 4.16. Let r ≥ 1. The cup product

⌣ :
⊕

p+s=a,q+t=b

GEp,q
r (X)⊗ GEs,t

r (X) −→ GEa,b
r (X)

is associative.

Proof. The associativity of the cup product on the cohomological weight spectral sequence is
given by the commutative diagram
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Ep1,q1
r (X)⊗ Ep2,q2

r (X) ⊗Ep3,q3
r (X)

(u∨)−1
◦w⊗id

ss❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢
id⊗(u∨)−1

◦w

,,❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳

Ep1+p2,q1+q2
r (X ×X)⊗ Ep3,q3

r (X)

∆∗⊗id
��

(u∨)−1
◦w

++❳❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
Ep1,q1

r (X) ⊗ Ep2+p3,q2+q3
r (X ×X)

id⊗∆∗

��

(u∨)−1
◦w

ss❢❢❢❢❢❢
❢❢❢

❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢

Ep1+p2,q1+q2
r (X)⊗ Ep3,q3

r (X)

(u∨)−1
◦w

��

Ep1+p2+p3,q1+q2+q3
r (X ×X ×X)

(∆×idX)∗

ss❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢❢

❢❢
(idX×∆)∗

++❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳

Ep1,q1
r (X)⊗ Ep2+p3,q2+q3

r (X)

(u∨)−1
◦w

��

Ep1+p2+p3,q1+q2+q3
r (X ×X)

∆∗
++❳❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳
Ep1+p2+p3,q1+q2+q3

r (X ×X)

∆∗
ss❢❢❢❢❢

❢❢❢
❢❢❢

❢❢❢❢
❢❢❢

❢❢❢
❢❢

Ep1+p2+p3,q1+q2+q3
r (X)

(4.6)
where, if (x, x′) ∈ X ×X, ∆× idX(x, x′) = (x, x, x′) ∈ X ×X ×X.

We first make precise why the diagram (4.6) is indeed commutative. The commutativity
of its upper part is given by the commutativity of the following diagram, on the filtered chain
level,

(C∗(X))∨ ⊗ (C∗(X))∨ ⊗ (C∗(X))∨

w⊗id

ss❢❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢
id⊗w

++❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳❳
❳❳❳

❳❳❳

(C∗(X) ⊗ C∗(X))∨ ⊗ (C∗(X))∨

ω

++❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳

(C∗(X))∨ ⊗ (C∗(X) ⊗ C∗(X))∨

ω′

ss❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢

(C∗(X ×X))∨ ⊗ (C∗(X))∨

u∨⊗id

OO

w

��

(C∗(X)⊗ C∗(X)⊗ C∗(X))∨ (C∗(X))∨ ⊗ (C∗(X ×X))∨

id⊗u∨

OO

w

��
(C∗(X ×X)⊗ C∗(X))∨

(u⊗id)∨
33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

(C∗(X) ⊗ C∗(X ×X))∨

(id⊗u)∨
kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

(C∗(X ×X ×X))∨
u∨

kk❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳ u∨

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

where ω(ϕ⊗ ψ)(c1 ⊗ c2 ⊗ c3) = ϕ(c1 ⊗ c2) · ψ(c3).
The lower part of (4.6) is commutative by functoriality, since (∆×idX)◦∆ = (idX×∆)◦∆.

The commutativity of the left and right parts of (4.6) is then given by the following property
of the cohomological weight spectral sequence :

Lemma 4.17. Let f : Y → Y ′ and h : Z → Z ′ be two morphisms of Schc(R). Then the
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following diagram of spectral sequences is commutative, from r = 1,

Ep,q
r (Y ′)⊗ Es,t

r (Z ′)
f∗⊗h∗

//

(u∨)−1◦w
��

Ep,q
r (Y )⊗ Es,t

r (Z)

(u∨)−1◦w
��

Ep+s,q+t
r (Y ′ × Z ′)

(f×h)∗ // Ep+s,q+t
r (Y × Z)

It is induced by the commutative diagrams

C∗(Y )⊗C∗(Z)
f∗⊗h∗//

u

��

C∗(Y
′)⊗ C∗(Z

′)

u

��
C∗(Y × Z)

(f×h)∗ // C∗(Y
′ × Z ′)

and

(C∗(Y ))∨ ⊗ (C∗(Z))
∨

w

��

(C∗(Y
′))∨ ⊗ (C∗(Z

′))∨
f∗⊗h∗

oo

w

��
(C∗(Y )⊗ C∗(Z))

∨ (C∗(Y
′)⊗ C∗(Z

′))∨
(f∗⊗h∗)∨oo

on the filtered chain level.

Now, we want to show the associativity of the cup product

⌣ :
⊕

α+γ=a,β+δ=b

pEα,β
2 ⊗ p′Eγ,δ

2 → p+p′Ea,b
2 ,

that is the commutativity of the following diagram (4.7). For the sake of readability, we denote

• H∗
G(·) := H∗(G, ·),

• E1 := E1(X),

• ρi,j := ρi + ρj and ρ := ρ1 + ρ2 + ρ3 if ρ = p, q or µ.
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H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2
G

(

E
p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

id⊗K

,,❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳

K⊗id

rr❢❢❢❢❢
❢❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢

H
µ1,2
G×G

(

E
p1,q1
1 ⊗ E

p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

(

u∨
)

−1
◦w⊗id

��

H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2,3
G×G

(

E
p2,q2
1 ⊗ E

p3,q3
1

)

id⊗
(

u∨
)

−1
◦w

��
H

µ1,2
G×G

(

E
p1,2,q1,2
1 (X × X)

)

⊗ H
µ3
G

(

E
p3,q3
1

)

T⊗id

��

H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2,3
G×G

(

E
p2,3,q2,3
1 (X × X)

)

id⊗T

��
H

µ1,2
G

(

E
p1,2,q1,2
1 (X × X)

)

⊗ H
µ3
G

(

E
p3,q3
1

)

∆∗⊗id

��

H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2,3
G

(

E
p2,3,q2,3
1 (X × X)

)

id⊗∆∗

��
H

µ1,2
G

(

E
p1,2,q1,2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

K

��

H
µ1
G

(E
p1,q1
1 ) ⊗ H

µ2,3
G

(

E
p2,3,q2,3
1

)

K

��
H

µ
G×G

(

E
p1,2,q1,2
1 ⊗ E

p3,q3
1

)

(

u∨
)

−1
◦w

��

H
µ
G×G

(

E
p1,q1
1 ⊗ E

p2,3,q2,3
1

)

(

u∨
)

−1
◦w

��
H

µ
G×G

(

E
p,q
1 (X × X)

)

T

��

H
µ
G×G

(

E
p,q
1 (X × X)

)

T

��
H

µ
G

(

E
p,q
1 (X × X)

)

∆∗

,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨
H

µ
G

(

E
p,q
1 (X × X)

)

∆∗

rr❡❡❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡❡❡❡
❡❡❡❡

❡

H
µ
G

(

E
p,q
1

)

(4.7)
In order to prove that the diagram (4.7) is commutative, we fill it with commutative dia-

grams in the following way. We show up below the left part of the obtained diagram, the right
part being symmetric :
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H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2
G

(

E
p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

K⊗id

ss❢❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢

H
µ1,2
G×G

(

E
p1,2,q1,2
1 (X × X)

)

⊗ H
µ3
G

(

E
p3,q3
1

)

T⊗id

��

H
µ1,2
G×G

(

E
p1,q1
1 ⊗ E

p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

(u∨)−1
◦ w ⊗ id

oo K //

T⊗id

��

H
µ
G×G×G

(

E
p1,q1
1 ⊗ E

p2,q2
1 ⊗ E

p3,q3
1

)

T0

��

T1

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠

H
µ1,2
G

(

E
p1,2,q1,2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

K

��

H
µ1,2
G

(

E
p1,2,q1,2
1 (X × X)

)

⊗ H
µ3
G

(

E
p3,q3
1

)

∆∗
⊗ id

oo

K

��

H
µ1,2
G

(

E
p1,q1
1 ⊗ E

p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

(u∨)−1
◦ w ⊗ id

oo

K

��
H

µ
G×G

(

E
p1,2,q1,2
1 ⊗ E

p3,q3
1

)

(u∨)−1◦w

��

H
µ
G×G

(

E
p1,2,q1,2
1 (X × X) ⊗ E

p3,q3
1

)∆∗⊗idoo

(u∨)−1◦w

��

T

++❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
H

µ
G×G

(

E
p1,q1
1 ⊗ E

p2,q2
1 ⊗ E

p3,q3
1

)
(u∨)−1◦w⊗idoo T //

H
µ
G

(

E
p1,q1
1 ⊗ E

p2,q2
1 ⊗ E

p3,q3
1

)

(u∨)−1◦w⊗idss❢❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢❢

❢❢❢
❢❢❢

❢

H
µ
G

(

E
p1,2,q1,2
1 (X × X) ⊗ E

p3,q3
1

)

(u∨)−1◦w

,,❳❳❳❳❳
❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

H
µ
G×G

(

E
p,q
1 (X × X)

)

T

��

H
µ
G×G

(

E
p,q
1 (X × X × X)

)

∆∗
1oo T //

H
µ
G

(

E
p,q
1 (X × X × X)

)

∆∗
0

��

∆∗
1

pp❛❛❛❛❛❛❛❛❛❛❛❛❛❛❛
❛❛❛❛❛❛❛❛❛

❛❛❛❛❛❛❛❛❛
❛❛❛❛❛❛❛❛❛

❛❛❛❛❛❛❛❛❛
❛❛❛❛❛❛❛❛❛

❛❛❛❛❛❛❛❛❛
❛❛❛❛❛❛❛❛❛

❛❛❛❛❛❛❛❛❛
❛❛❛❛

H
µ
G

(

E
p,q
1 (X × X)

)

∆∗

//
H

µ
G

(

E
p,q
1

)

(4.8)
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In the diagram (4.8) above and in its symmetric,

• for (x, y) ∈ X×X, ∆1(x, y) := (x, x, y) ∈ X×X×X and ∆2(x, y) := (x, y, y) ∈ X×X×X,

• for x ∈ X, ∆0(x) := (x, x, x),

• T0 is the morphism given by proposition 4.10, induced by the augmentation-preserving
G-chain map τ0 : F → F ⊗ F ⊗ F , which is itself induced by the group homomorphism
G→ G×G×G ; g 7→ (g, g, g),

• T1 is the morphism given by proposition 4.10, induced by the augmentation-preserving
G × G-chain map τ1 : F ⊗ F → (F ⊗ F ) ⊗ F , which is itself induced by the group
homomorphism G×G→ (G×G)×G ; (g, g′) 7→ (g, g, g′),

• T2 is the morphism given by proposition 4.10, induced by the augmentation-preserving
G × G-chain map τ2 : F ⊗ F → F ⊗ (F ⊗ F ), which is itself induced by the group
homomorphism G×G→ G× (G×G) ; (g, g′) 7→ (g, g′, g′).

Notice that, by uniqueness up to homotopy of the augmentation-preserving G×G-chain map
F ⊗F → (F ⊗F )⊗F induced by the group homomorphism G×G→ (G×G)×G ; (g, g′) 7→
(g, g, g′), τ1 is homotopic to τ⊗id. In the same manner, τ2 is homotopic to id⊗τ . Furthermore,
τ0 is homotopic to τ1◦τ and τ2◦τ , by uniqueness up to homotopy of the augmentation-preserving
G-chain map F → F⊗F⊗F induced by the group homomorphismG→ G×G×G ; g 7→ (g, g, g).

Finally, the diagrams

H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2
G

(

E
p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

)

K⊗id

ss❢❢❢❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢❢
❢❢❢

❢❢
id⊗K

++❳❳❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳

H
µ1,2
G×G

(

E
p1,q1
1 ⊗ E

p2,q2
1

)

⊗ H
µ3
G

(

E
p3,q3
1

) K // Hµ
G×G×G

(

E
p1,q1
1 ⊗ E

p2,q2
1 ⊗ E

p3,q3
1

)

H
µ1
G

(

E
p1,q1
1

)

⊗ H
µ2,3
G×G

(

E
p2,q2
1 ⊗ E

p3,q3
1

)Koo

and

H
µ
G

(

E
p1,q1
1 ⊗ E

p2,q2
1 ⊗ E

p3,q3
1

)

(u∨)−1◦w⊗idtt❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤

id⊗(u∨)−1◦w **❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

H
µ
G

(

E
p1,2,q1,2
1 (X × X) ⊗ E

p3,q3
1

)

(u∨)−1◦w ++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

H
µ
G

(

E
p1,q1
1 ⊗ E

p2,3,q2,3
1 (X × X)

)

(u∨)−1◦wss❤❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤

H
µ
G

(

E
p,q
1 (X × X × X)

)

connecting the left and right parts of diagram (4.7) are also commutative : the first one by
associativity of the Künneth isomorphism and the second one by functoriality of group coho-
mology applied to the topmost part of the diagram (4.6)).
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The associativity of the cup product

⌣ :
⊕

α+γ=a,β+δ=b

pEα,β
2 ⊗ p′Eγ,δ

2 → p+p′Ea,b
2

then induces the associativity of the cup products on ∗Er, r ≥ 2, and on GEr, r ≥ 1, by the
same arguments as for the commutativity.

We conclude this section by showing that the cup product is functorial in the following
meaning :

Theorem 4.18. Let Y be a real algebraic G-variety and f : X → Y an equivariant morphism.
For all r ≥ 1 and all p, q, s, t ∈ Z, the diagram

GEp,q
r (Y )⊗ GEs,t

r (Y )
f∗⊗f∗

//

⌣

��

GEp,q
r (X)⊗ GEs,t

r (X)

⌣

��
GEp+s,q+t

r (Y )
f∗

// GEp+s,q+t
r (X)

is commutative.

Remark 4.19. It is just the usual formula

f∗(c ⌣ c′) = f∗(c)⌣ f∗(c′)

of cup product.

Proof. The functoriality of the cup on the cohomological weight spectral sequence is given by
the commutativity of the diagram

Ep,q
r (Y )⊗ Es,t

r (Y )
f∗⊗f∗

//

(u∨)−1◦w
��

Ep,q
r (X)⊗ Es,t

r (X)

(u∨)−1◦w
��

Ep+s,q+t
r (Y × Y )

(f×f)∗ //

∆∗

��

Ep+s,q+t
r (X ×X)

∆∗

��

Ep+s,q+t
r (Y )

f∗

// Ep+s,q+t
r (X)

for r ≥ 1 (it is commutative thanks to lemma 4.17 and the equality ∆ ◦ f = (f × f) ◦∆).
The commutative diagram establishing the functoriality of the cup product on ∗E2 is then
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Hµ(G,Ep,q
1 (Y ))⊗Hρ(G,Es,t

1 (Y ))
f∗⊗f∗

//

K
��

Hµ(G,Ep,q
1 (X)) ⊗Hρ(G,Es,t

1 (X))

K
��

Hα(G×G,Ep,q
1 (Y )⊗ Es,t

1 (Y ))

(u∨)−1
◦w

��

f∗⊗f∗

// Hα(G×G,Ep,q
1 (X)⊗ Es,t

1 (X))

(u∨)−1
◦w

��

Hα(G×G,Ea,b
1 (Y × Y ))

T
��

(f×f)∗ // Hα(G×G,Ea,b
1 (X ×X))

T
��

Hα(G,Ea,b
1 (Y × Y ))

(f×f)∗ //

∆∗

��

Hα(G,Ea,b
1 (X ×X))

∆∗

��

Hα(G,Ea,b
1 (Y ))

f∗

// Hα(G,Ea,b
1 (X))

(with α := µ+ ρ, a := p+ s and b := q + t).

Remark 4.20. The commutativity, the associativity and the functoriality of the cup product
on GEr, r ≥ 1, induces the commutativity, the associativity and the functoriality of the cup
product on the equivariant cohomology H∗(X;G).

4.3 Equivariant cap product

In this last paragraph, we define a cap product on the Hochschild-Serre spectral sequences
∗Er and ∗Er, r ≥ 1, of X, induced by the cap product on its weight spectral sequences (see
[9] Propositions 5.20). This equivariant cap product will induce one on its equivariant weight
spectral sequences, which itself induces a cap product on the equivariant cohomology and ho-
mology of X, showing in particular that this last cap product is filtered with respect to the
equivariant weight filtrations. Similarly to what we did for the equivariant cup product, we
carry the usual properties of cap product from the weight spectral sequences to the equivariant
weight spectral sequences.

We consider the definition of the cap product given in Remark 5.24 of [9] : if h denotes the
filtered morphism of C

G•C∗(X)⊗ (G•C∗(X) ⊗ G•C∗(X)) → G•C∗(X)
ϕ⊗ (a⊗ b) 7→ ϕ(a) · b

(see Definition 5.21 of [9] for the definition of the tensor product of a complex of C, resp. C+,
and a complex of C, resp. C−), then the cap product of X can be defined in the localized
category HoC as the composition

⌢ : G•C∗(X)⊗G•C∗(X)
id⊗∆∗−−−−→ G•C∗(X)⊗G•C∗(X×X)

id⊗u−1

−−−−−→ G•C∗(X)⊗(G•C∗(X)⊗G•C∗(X))
h
−→ G•C∗(X).
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If we take into account the action of G on X, the leftmost morphism id ⊗ ∆∗ induces a
morphism

ΛC∗
G(X)⊗ ΛCG

∗ (X)→ ΛC∗
G(X)⊗ ΛCG

∗ (X ×X).

Furthermore, if K∗ is cochain complex of CG andM∗ is a chain complex of CG
′

, then the tensor
product of K∗⊗M∗ can be naturally considered as an element of CG×G′

and we have a natural
isomorphism of C−

LB
G(K

∗)⊗ LG′

B′(M∗)→ LG×G′

B⊗B′(K
∗ ⊗M∗),

so that the group homomorphism δ : G → G × G ; g 7→ (g, g) induces (by the homological
version of proposition 4.10) a morphism

ΛC∗
G(X)⊗ΛCG

∗ (X×X)
∼=
−→ LG×G

∗ (G•C∗(X)⊗G•C∗(X×X))→ LG
∗ (G

•C∗(X)⊗G•C∗(X×X)).

Finally, since the above morphism id⊗ u−1 and h are equivariant with respect to the diagonal
actions of G, they induce morphisms

LG
∗ (G

•C∗(X)⊗ G•C∗(X ×X))→ LG
∗ (G

•C∗(X) ⊗ (G•C∗(X)⊗ G•C∗(X)))→ ΛCG
∗ (X),

and we call cap product, and denote by ⌢, the composition

ΛC∗
G(X)⊗ΛCG

∗ (X)→ ΛC∗
G(X)⊗ΛCG

∗ (X×X)→ LG
∗ (G

•C∗(X)⊗G•C∗(X×X))→ ΛCG
∗ (X).

Theorem 4.21. The cap product

⌢ : ΛC∗
G(X) ⊗ ΛCG

∗ (X) −→ ΛCG
∗ (X)

in Ho C− induces a morphism of spectral sequences

⌢ :
⊕

s−p=a,t−q=b

GEp,q
r (X) ⊗ GEr

s,t(X) −→ GEr
a,b(X)

for r ≥ 1, and a cap product in equivariant cohomology and homology

⌢ : H∗(X;G) ⊗H∗(X;G) −→ H∗(X;G)

which is filtered with respect to the cohomological and homological equivariant weight filtrations.

Remark 4.22. We do not know if the above cap product on equivariant cohomology and ho-
mology is the same as the one of [16] (III - 3 - (31)).

We now induce the cap product from the cohomological and homological weight spectral
sequences through the Hochschild-Serre spectral sequences ∗Er and ∗Er, r ≥ 1.

First, we define the homological analog IL∗ : DG → C− of the functor IL
∗, and extend it

into a functor HoDG → Ho C− : it associates to a complex K∗ of DG the complex L∗(K∗)
equipped with the filtration IF• which induces the Hochschild-Serre spectral sequence IE

p,q
1 =

HomG(F−p,H
q(K∗))⇒ Hp+q(L∗(K∗)) = Hp+q(G,K∗).

We then apply this functor IL∗ to the equivariant morphism ∆∗, which induces a morphism

IL
∗
G

(
Ep,∗

0 (X)
)
⊗ IL

G
∗

(
E0

p′,∗(X)
)
→ IL

∗
G

(
Ep,∗

0 (X)
)
⊗ IL

G
∗

(
E0

p′,∗(X ×X)
)
,
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and we use a natural isomorphism of C− similar to the one in lemma 4.13 to induce, via δ, a
second morphism

IL
∗
G

(
Ep,∗

0 (X)
)
⊗IL

G
∗

(
E0

p′,∗(X ×X)
) ∼=
−→ IL

G×G
∗

(
Ep,∗

0 (X) ⊗ E0
p′,∗(X ×X)

)
→ IL

G
∗

(
Ep,∗

0 (X)⊗ E0
p′,∗(X ×X)

)
.

Finally, h ◦ (id⊗ u−1) induces a third morphism

IL
G
∗

(
Ep,∗

0 (X)⊗ E0
p′,∗(X ×X)

)
→ IL

G
∗

(
E0

p′−p,∗(X)
)
,

and we obtain a cap product

⌢ : IL
∗
G

(
Ep,∗

0 (X)
)
⊗ IL

G
∗

(
E0

p′,∗(X)
)
→ IL

G
∗

(
E0

p′−p,∗(X)
)

in Ho C− which induces well-defined cap products

⌢ :
⊕

γ−α=a,δ−β=b

pEα,β
r ⊗ p′Er

γ,δ →
p′−pEr

a,b,

on the spectral sequences ∗E∗ and ∗E∗, from page one, which induce the cap products

GEp,∗
1 ⊗

GE1
p′,∗ →

GE1
p′−p,∗

and the cap products on GEr and GEr, for r ≥ 1 and the cap product on H∗(X;G) and
H∗(X;G) (all the cap products are induced by the morphisms ∆, δ, u and h).

We will thereafter induce the usual properties of cap product from the weight spectral
sequences onto the equivariant ones. Notice that, since there is no duality between the co-
homological and homological equivariant spectral sequences (remark 3.6), we have no hope to
obtain a formula of the type ψ(ϕ ⌢ c) = (ψ ⌣ ϕ)(c). Nevertheless, such a property is verified
for the weight spectral sequences and we will use it to establish the other formulae of the cap
product :

Proposition 4.23. Let r ≥ 1 and let p, q, s, t ∈ Z. Now, let ϕ ∈ Ep,q
r and c ∈ Er

s,t. Then

ϕ ⌢ c is the unique element of Er
s−p,t−q such that for all ψ ∈ Es−p,t−q

r = (Er
s−p,t−q)

∨,

ψ(ϕ ⌢ c) = (ψ ⌣ ϕ)(c).

Proof. If u−1(∆∗(c)) =
⊕

α+γ=s,β+δ=t

aα,β ⊗ bγ,δ ∈
⊕

α+γ=s,β+δ=t

Er
α,β ⊗ E

r
γ,δ then

ϕ ⌢ c = h


ϕ⊗




⊕

α+γ=s,β+δ=t

aα,β ⊗ bγ,δ




 =

⊕

α+γ=s,β+δ=t

ϕ(aα,β) · bγ,δ.

Therefore, if ψ ∈ Es−p,t−q
r = (Er

s−p,t−q)
∨,

ψ(ϕ ⌢ c) =
⊕

α+γ=s,β+δ=t

ϕ(aα,β) · ψ(bγ,δ).
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On the other hand, since (u∨)−1 =
(
u−1

)∨
, we have

(ψ ⌣ ϕ)(c) = (ϕ ⌣ ψ)(c)

= ∆∗ ◦
(
u−1

)∨
◦ w(ϕ⊗ ψ)(c)

= w(ϕ ⊗ ψ) ◦ u−1 ◦∆∗(c)

=
⊕

α+γ=s,β+δ=t

ϕ(aα,β) · ψ(bγ,δ)

= ψ(ϕ ⌢ c)

The uniqueness comes from the fact that the linear space Er
s−p,t−q is finite-dimensional.

Theorem 4.24. Let r ≥ 1 and let p, q, p′, q′, s, t ∈ Z. If ϕ ∈ GEp,q
r , c ∈ GEr

s,t and ψ ∈
GEp′,q′

r ,
then

(ψ ⌣ ϕ)⌢ c = ψ ⌢ (ϕ ⌢ c). (4.9)

Proof. We first show formula (4.9) on the weight spectral sequences, using proposition 4.23 :

if ϕ1 ∈ E
p1,q1
r and ϕ2 ∈ E

p2,q2
r , then, for all ψ ∈ E

s−(p1+p2),t−(q1+q2)
r , we have

ψ(ϕ1 ⌢ (ϕ2 ⌢ c)) = (ψ ⌣ ϕ1)(ϕ2 ⌢ c)

= ((ψ ⌣ ϕ1)⌣ ϕ2)(c)

= (ψ ⌣ (ϕ1 ⌣ ϕ2))(c)

= ψ((ϕ1 ⌣ ϕ2)⌢ c).

We then express formula (4.9) on the non-equivariant weight spectral sequences with the
following commutative diagram

Ep′,q′

r ⊗ Ep,q
r ⊗ Er

s,t

(u∨)−1
◦w⊗id

tt❥❥❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

id⊗id⊗∆∗

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯

Ep+p′,q+q′

r (X ×X)⊗ Er
s,t

∆∗⊗id
��

Ep′,q′

r ⊗ Ep,q
r ⊗ Er

s,t(X ×X)

id⊗h◦(id⊗u−1)
��

Ep+p′,q+q′

r ⊗ Er
s,t

id⊗∆∗

��

Ep′,q′

r ⊗ Er
s−p,t−q

id⊗∆∗

��

Ep+p′,q+q′

r ⊗ Er
s,t(X ×X)

h◦(id⊗u−1) **❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

Ep′,q′

r ⊗ Er
s−p,t−q(X ×X)

h◦(id⊗u−1)tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐

Er
s−(p+p′),t−(q+q′)
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The next step consists in showing that formula (4.9) is true on the Hochschild-Serre spectral
sequences ∗E2 and

∗E2, that is we are going to prove that the following diagram is commutative :

H
µ′

G

(

E
p′,q′

1

)

⊗ H
µ
G

(

E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t

)

K⊗id

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

id⊗id⊗∆∗

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲

H
µ′+µ
G×G

(

E
p′,q′

1 ⊗ E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t

)

(

u∨
)

−1
◦w⊗id

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
µ
G

(

E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t(X × X)

)

id⊗K

��
H

µ′+µ
G×G

(

E
p′+p,q′+q
1 (X × X)

)

⊗ H
−ρ
G

(

E
1
s,t

)

T⊗id

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G×G

(

E
p,q
1 ⊗ E

1
s,t(X × X)

)

id⊗T

��
H

µ′+µ
G

(

E
p′+p,q′+q
1 (X × X)

)

⊗ H
−ρ
G

(

E
1
s,t

)

∆∗⊗id

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
p,q
1 ⊗ E

1
s,t(X × X)

)

id⊗h◦(id⊗u−1)

��
H

µ′+µ
G

(

E
p′+p,q′+q
1

)

⊗ H
−ρ
G

(

E
1
s,t

)

id⊗∆∗

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
1
s−p,t−q

)

id⊗∆∗

��
H

µ′+µ
G

(

E
p′+p,q′+q
1

)

⊗ H
−ρ
G

(

E
1
s,t(X × X)

)

K

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
1
s−p,t−q(X × X)

)

K

��
H

−ρ+µ′+µ
G×G

(

E
p′+p,q′+q
1 ⊗ E

1
s,t(X × X)

)

T

��

H
−ρ+µ+µ′

G×G

(

E
p′,q′

1 ⊗ E
1
s−p,t−q(X × X)

)

T

��
H

−ρ+µ′+µ
G

(

E
p′+p,q′+q
1 ⊗ E

1
s,t(X × X)

)

h◦(id⊗u−1) ++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲

H
−ρ+µ+µ′

G

(

E
p′,q′

1 ⊗ E
1
s−p,t−q(X × X)

)

h◦(id⊗u−1)ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

H
−(ρ−(µ′+µ))
G

(

E
1
s−(p′+p),t−(q′+q)

)

(4.10)
Similarly to what we did to prove the properties of the cup product on ∗E2, we show the

commutativity of previous diagram (4.10) by filling it with commutative diagrams. We do in
the following way. The left and right parts of (4.10) become respectively :
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H
µ′

G

(

E
p′,q′

1

)

⊗ H
µ
G

(

E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t

)

K⊗id

ss❤❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

H
µ′+µ
G×G

(

E
p′+p,q′+q
1 (X × X)

)

⊗ H
−ρ
G

(

E
1
s,t

)

T⊗id

��

H
µ′+µ
G×G

(

E
1
p′,q′

⊗ E
1
p,q

)

⊗ H
−ρ
G

(

E
1
s,t

)

(u∨)−1
◦ w ⊗ id

oo K //

T⊗id

��

H
−ρ+µ′+µ
G×G×G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t

)

T0

��

T1

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

H
µ′+µ
G

(

E
p′+p,q′+q
1

)

⊗ H
−ρ
G

(

E
1
s,t

)

id⊗∆∗

��

H
µ′+µ
G

(

E
p′+p,q′+q
1 (X × X)

)

⊗ H
−ρ
G

(

E
1
s,t

)

∆∗
⊗ id

oo

K

��

∆∗⊗∆∗

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

H
µ′+µ
G

(

E
p′,q′

1 ⊗ E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t

)

(u∨)−1
◦ w ⊗ id

oo

K

��
H

µ′+µ
G

(

E
p′+p,q′+q
1

)

⊗ H
−ρ
G

(

E
1
s,t(X × X)

)

K

��

H
−ρ+µ′+µ
G×G

(

E
p′+p,q′+q
1 (X × X) ⊗ E

1
s,t

)

∆∗⊗∆∗

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣

T

--❬❬❬❬❬❬❬❬
❬❬❬❬❬

❬❬❬❬❬
❬❬❬❬❬

❬❬❬❬❬
❬❬❬❬❬

❬❬❬❬❬
❬

∆∗⊗id

��

H
−ρ+µ′+µ
G×G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t

)

(u∨)−1
◦ w ⊗ id

oo T // H−ρ+µ′+µ
G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t

)

(u∨)−1◦w⊗id

��
H

−ρ+µ′+µ
G×G

(

E
p′+p,q′+q
1 ⊗ E

1
s,t(X × X)

)

T

��

H
−ρ+µ′+µ
G×G

(

E
p′+p,q′+q
1 ⊗ E

1
s,t

)

id⊗∆∗oo T // H−ρ+µ′+µ
G

(

E
p′+p,q′+q
1 ⊗ E

1
s,t

)

id⊗∆∗

qq❝❝❝❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝❝
❝❝

H
−ρ+µ′+µ
G

(

E
p′+p,q′+q
1 (X × X) ⊗ E

1
s,t

)

∆∗⊗idoo

H
−ρ+µ′+µ
G

(

E
p′+p,q′+q
1 ⊗ E

1
s,t(X × X)

)

h◦(id⊗u−1) // H−(ρ−(µ′+µ))
G

(

E
1
s−(p′+p),t−(q′+q)

)
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H
µ′

G

(

E
p′,q′

1

)

⊗ H
µ
G

(

E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t

) id⊗id⊗∆∗ //

id⊗K

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

H
µ′

G

(

E
p′,q′

1

)

⊗ H
µ
G

(

E
p,q
1

)

⊗ H
−ρ
G

(

E
1
s,t(X × X)

)

id⊗K

��
H

−ρ+µ′+µ
G×G×G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t

)

T0

��

T2

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G×G

(

E
p,q
1 ⊗ E

1
s,t

)Koo
id ⊗ (id ⊗ ∆∗)

//

id⊗T

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G×G

(

E
p,q
1 ⊗ E

1
s,t(X × X)

)

id⊗T

��
H

µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
p,q
1 ⊗ E

1
s,t

)

id ⊗ (id ⊗ ∆∗)

//

K

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
p,q
1 ⊗ E

1
s,t(X × X)

)

id ⊗ h(id ⊗ u
−1)

//

K

��

H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
1
s−p,t−q

)

id⊗∆∗

��

K

zz✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈

H
−ρ+µ′+µ
G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t

)

id⊗id⊗∆∗

��

H
−ρ+µ′+µ
G×G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t

)

id ⊗ id ⊗ ∆∗

//Too H
−ρ+µ′+µ
G×G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t(X × X)

)

id⊗h(id⊗u−1)

��

T

qq❝❝❝❝❝❝❝❝❝
❝❝❝❝❝

❝❝❝❝❝❝
❝❝❝❝❝❝

❝❝❝❝❝
❝❝❝❝❝

❝❝❝❝

H
−ρ+µ′+µ
G

(

E
p′,q′

1 ⊗ E
p,q
1 ⊗ E

1
s,t(X × X)

)

id⊗h(id⊗u−1)

��
H

−ρ+µ′+µ
G

(

E
p′,q′

1 ⊗ E
1
s−p,t−q

)

id⊗∆∗

��

H
−ρ+µ′+µ
G×G

(

E
p′,q′

1 ⊗ E
1
s−p,t−q

)

id⊗∆∗

��

Too

H
−ρ+µ′+µ
G

(

E
p′,q′

1 ⊗ E
1
s−p,t−q(X × X)

)

h(id⊗u−1)

��

H
−ρ+µ′+µ
G×G

(

E
p′,q′

1 ⊗ E
1
s−p,t−q(X × X)

)

Too H
µ′

G

(

E
p′,q′

1

)

⊗ H
−ρ+µ
G

(

E
1
s−p,t−q(X × X)

)

K

oo

H
−ρ+µ′+µ
G

(

E
1
s−p−p′,t−q−q′

)
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Finally, since the morphisms in the above diagrams are defined on the filtered chain level,
the formula (4.10) is also true on the induced spectral sequences ∗Er and ∗Er for r ≥ 2, and
GEr and GEr for r ≥ 1.

Theorem 4.25. Let Y be a real algebraic G-variety and f : X → Y an equivariant morphism.
Let r ≥ 1 and let p, q, s, t ∈ Z. If ϕ ∈ GEp,q

r (Y ) and c ∈ GEr
s,t(X), then

ϕ ⌢ f∗(c) = f∗(f
∗(ϕ)⌢ c). (4.11)

Proof. We first prove that formula (4.11) on the non-equivariant weight spectral sequences :
suppose ϕ ∈ Ep,q

r (Y ) and c ∈ Er
s,t(X), then, for any ψ ∈∈ Es−p,t−q

r (Y ), we have

ψ (ϕ ⌢ f∗(c)) = (ψ ⌣ ϕ) (f∗(c))

= f∗ (ψ ⌣ ϕ) (c)

= (f∗(ψ)⌣ f∗(ϕ)) (c)

= f∗(ψ) (f∗(ϕ)⌢ c)

= ψ (f∗ (f
∗(ϕ)⌢ c)) .

We then express formula (4.11) with the commutative diagram

Ep,q
r (Y )⊗ Er

s,t(X)

id⊗f∗

tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥ f∗⊗id

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

Ep,q
r (Y )⊗ Er

s,t(Y )

id⊗∆∗

��

Ep,q
r (X) ⊗ Er

s,t(X)

id⊗∆∗

��
Ep,q

r (Y )⊗ Er
s,t(Y × Y )

h(id⊗u−1)

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏
Ep,q

r (X)⊗ Er
s,t(X ×X)

h(id⊗u−1)

��
Er

s−p,t−q(X)

f∗tt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

Er
s−p,t−q(Y )

Finally, we prove the formula (4.11) on ∗E2 and ∗E2, showing that the following diagram is
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commutative :

Hµ
G (Ep,q

1 (Y ))⊗H−ρ
G

(
E1

s,t(X)
)

id⊗f∗

ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣
f∗⊗id

++❲❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲

Hµ
G (Ep,q

1 (Y ))⊗H−ρ
G

(
E1

s,t(Y )
)

id⊗∆∗

��

Hµ
G (Ep,q

1 (X)) ⊗H−ρ
G

(
E1

s,t(X)
)

id⊗∆∗

��

Hµ
G (Ep,q

1 (Y ))⊗H−ρ
G

(
E1

s,t(Y × Y )
)

K
��

Hµ
G (Ep,q

1 (X)) ⊗H−ρ
G

(
E1

s,t(X ×X)
)

K
��

H−ρ+µ
G×G

(
Ep,q

1 (Y )⊗ E1
s,t(Y × Y )

)

T
��

H−ρ+µ
G×G

(
Ep,q

1 (X)⊗ E1
s,t(X ×X)

)

T
��

H−ρ+µ
G

(
Ep,q

1 (Y )⊗ E1
s,t(Y × Y )

)

h(id⊗u−1)

''PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

H−ρ+µ
G

(
Ep,q

1 (X)⊗ E1
s,t(X ×X)

)

h(id⊗u−1)
��

H−ρ+µ
G

(
E1

s−p,t−q(X)
)

f∗ss❣❣❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣❣
❣❣❣

❣❣

H−ρ+µ
G

(
E1

s−p,t−q(Y )
)

To this end, we fill it by commutative diagrams as follows. Since the involved morphisms are
defined on the filtered chain level, the formula (4.11) is induced on ∗Er and ∗Er for r ≥ 2, and
on GEr and GEr for r ≥ 1.
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H
µ
G

(

E
p,q
1 (Y )

)

⊗ H
−ρ
G

(

E
1
s,t(X)

)

id⊗f∗

qq❞❞❞❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

❞❞❞❞❞
❞❞❞❞❞

f∗⊗id

--❩❩❩❩❩❩❩
❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩

❩

K

��
H

µ
G

(

E
p,q
1 (Y )

)

⊗ H
−ρ
G

(

E
1
s,t(Y )

)

id⊗∆∗

��

H
−ρ+µ
G×G

(

E
p,q
1 (Y ) ⊗ E

1
s,t(X)

)

T

��
id⊗f∗

yysss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss
ss

f∗⊗id

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
H

µ
G

(

E
p,q
1 (X)

)

⊗ H
−ρ
G

(

E
1
s,t(X)

)

id⊗∆∗

��
H

µ
G

(

E
p,q
1 (Y )

)

⊗ H
−ρ
G
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Remark 4.26. Let X be a real algebraic G-variety of dimension d. The semialgebraic chain
[X] belongs to G−dCd(X). Notice that the complex G−dC∗(X) is concentrated in degree d and
therefore, we have

• Λ−dC
G
k (X) = HomG(F−d+k,G−dCd(X))

• dEα,β
2 = dEα,β

∞ =

{
H−α(G,G−dCd(X)) if β = 0,

0 otherwise,

• GẼp,d
2 = H−p(G,G−dCd(X)).

In particular, the semialgebraic chain [X] can be considered as a class of dE0,0
2 = GẼ0,d

2 =
GE−d,2d

1 = GE−d,2d
∞ = (G−dCd(X))G and we can consider the equivariant cap product with [X]

pD : pEα,β
r → d−pEr

−α,−β

on ∗Er, for r ≥ 2,
GD : GEp,q

r → GEr
−d−p,2d−q

on GEr, for r ≥ 1, and
DG : ΩpHk(X;G)→ Ω−p−nHn−k(X;G)

on H∗(X;G).

When X is compact nonsingular,

Ẽp,q
2 = Ẽp,q

∞ =

{
Hq(X) if q = 0,

0 otherwise,

and the spectral sequences ∗
IE degenerate at page two, the reindexed equivariant weight spectral

sequences of X being, from page r = 2, the Hochschild-Serre spectral sequences associated
to X and G (remark 3.13 and Proposition 3.23 of [14]). Furthermore, the Poincaré duality
isomorphism

D : Hk(X)→ Hn−k(X),

which is induced by morphisms defined on the (filtered) chain level (see section 5.6 of [9]),
induces an isomorphism of Hochschild-Serre spectral sequences from page two :

DG : GẼp,q
2 = Hp(G,Hq(X))→ Hp(G,Hd−q(X)) = GẼ2

−p,d−q.

This isomorphism of spectral sequences then induces an equivariant Poincaré duality iso-
morphism on the equivariant cohomology and homology of X

DG : ΩpHk(X;G)→ Ω−p−nHn−k(X;G)

(here, the equivariant weight filtration Ω coincides with the filtration induced by the Hochschild-
Serre spectral sequence), which coincides with the equivariant Poincaré duality of [16] Theorem
4.2 (see also Remark 5.3).
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39, rue Frédéric Joliot Curie
13453 Marseille Cedex 13, France
fabien.priziac@univ-amu.fr

Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Marseille, France

44


