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METHODOLOGY

High-throughput phenotyping of lateral 
expansion and regrowth of spaced Lolium 
perenne plants using on-field image analysis
Peter Lootens1*, Tom Ruttink1, Antje Rohde1,3, Didier Combes2, Philippe Barre2 and Isabel Roldán‑Ruiz1

Abstract 

Background: Genetic studies and breeding of agricultural crops frequently involve phenotypic characterization of 
large collections of genotypes grown in field conditions. These evaluations are typically based on visual observations 
and manual (destructive) measurements. Robust image capture and analysis procedures that allow phenotyping 
large collections of genotypes in time series during developmental phases represent a clear advantage as they allow 
non‑destructive monitoring of plant growth and performance. A L. perenne germplasm panel including wild acces‑
sions, breeding material and commercial varieties has been used to develop a low‑cost, high‑throughput phenotyp‑
ing tool for determining plant growth based on images of individual plants during two consecutive growing seasons. 
Further we have determined the correlation between image analysis‑based estimates of the plant’s base area and 
the capacity to regrow after cutting, with manual counts of tiller number and measurements of leaf growth 2 weeks 
after cutting, respectively. When working with field‑grown plants, image acquisition and image segmentation are 
particularly challenging as outdoor light conditions vary throughout the day and the season, and variable soil colours 
hamper the delineation of the object of interest in the image. Therefore we have used several segmentation methods 
including colour‑, texture‑ and edge‑based approaches, and factors derived after a fast Fourier transformation. The 
performance of the procedure developed has been analysed in terms of effectiveness across different environmental 
conditions and time points in the season.

Results: The procedure developed was able to analyse correctly 77.2 % of the 24,048 top view images processed. 
High correlations were found between plant’s base area (image analysis‑based) and tiller number (manual measure‑
ment) and between regrowth after cutting (image analysis‑based) and leaf growth 2 weeks after cutting (manual 
measurement), with r values up to 0.792 and 0.824, respectively. Nevertheless, these relations depend on the origin of 
the plant material (forage breeding lines, current forage varieties, current turf varieties, and wild accessions) and the 
period in the season.

Conclusions: The image‑derived parameters presented here deliver reliable, objective data, complementary to the 
breeders’ scores, and are useful for genetic studies. Furthermore, large variation was shown among genotypes for the 
parameters investigated.
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Background
Lolium perenne (perennial ryegrass) is a dominant spe-
cies of sown grasslands in temperate regions because of 

its excellent forage quality [11], and is also a primary turf 
species with rapid growth and establishment [22, 33]. For 
both applications, forage and turf, the perennial ryegrass 
plants are cut repeatedly throughout the season and need 
to resume growth from existing tillers and form new 
ones. Understanding these two processes, leaf growth 
and lateral expansion through the formation of new 
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tillers is therefore relevant to breed for optimal sward 
establishment, growth, tillering and persistence.

It is common practice during the first stages of per-
ennial ryegrass breeding to evaluate large collections of 
genotypes as spaced plants in the field [11, 28]. Destruc-
tive measurements at several moments throughout the 
season are combined with visual categorical scores of 
growth, regrowth and rust infection to select elite plants. 
Such evaluation methods are inexpensive in terms of 
investments, but can be time-consuming, do not provide 
detailed information and, in the case of visual scorings, 
are prone to subjectivity. For example, regrowth is usually 
evaluated by visual inspection of the plants a few days or 
weeks after mowing, without any reference to the status 
of the plant just before or after cutting. It is therefore 
usually not known whether a good score is due to a high 
capacity to resume growth from tillers already formed 
before cutting, or by the formation of new tillers in the 
periphery of the plant. Because these two processes 
might be controlled by different genetic factors, a clearer 
differentiation would allow quicker genetic progress. Fur-
thermore full exploitation of molecular tools to advance 
genetic improvement of perennial ryegrass depends on 
the availability of detailed phenotypic evaluation data 
[12]. For this purpose, methodologies that allow a higher 
level of resolution and precision in the determination of 
growth-related characteristics are required.

Recent advances in image analysis-based methods 
allow phenotyping large collections of plants in an objec-
tive, non-invasive way [30], enabling dynamic measure-
ments of plant growth and development. While the use 
of automatic phenotyping platforms suitable for the 
evaluation of plants in growth chambers or greenhouses 
has become common practice [9, 30], these systems are 
particularly suited for the screening of young plants 
in experiments of short duration (weeks to months) [5, 
14]. Linking results of evaluations carried out in indoor 
facilities and the behaviour of plants under field condi-
tions is challenging due to differences in environmental 
factors, soil characteristics, soil volume, etc. [9]. Thus, 
field evaluation of crops has clear advantages [2]. This is 
of particular importance in perennial species, such as L. 
perenne, for which it can be relevant to evaluate growth-
related parameters during a full growing season or even 
over several seasons [30]. In recent years spectacular 
progress has been achieved in the development of pheno-
typing methodologies that make use of image analysis to 
evaluate crop performance in the field [1]. However, the 
application of these methods to L. perenne and related 
species is rather limited as of today. For example, field-
based image analysis has been used to determine ground 
cover in turf grasses (e.g., in bermudagrass overseeded 
with perennial ryegrass [10, 26]. More recently, Hunt 

et  al. [12] described a methodology for the acquisition 
and processing of outdoor images to estimate dry mat-
ter of spaced, 4-month-old perennial ryegrass plants. The 
image analysis algorithm developed was based on colour 
segmentation, allowing efficient discrimination between 
green foliage and brown soil. The performance of this 
algorithm with older plants, recently cut plants contain-
ing brownish sections or photographed in different sea-
sons of the year with varying background (soil) colour 
was not investigated. Such a methodology is, however, 
required if the purpose is to estimate lateral expansion 
and the capacity to regrow after cutting, as this implies 
comparison of images of the same plant taken at different 
time points [12].

It is challenging to optimize and automatize an image 
analysis procedure, if image acquisition and image seg-
mentation should be able to cope with plants of different 
ages and images acquired at different dates under vary-
ing climates. Outdoor light conditions vary throughout 
the day and the season. In addition, moisture level and 
weed or algal growth affect soil colours, and make the 
delineation of the object of interest in the image difficult. 
Furthermore, ryegrass plants can display sectors with 
a yellow–brown colour just after cutting or after a rainy 
period, which are difficult to discriminate from the soil.

Standardization of light conditions can be achieved by 
one of the following options: (i) avoiding external light by 
photographing the plants during the night using flashes; 
(ii) using covers to eliminate or stabilize natural light, in 
combination with flashes; (iii) using a NIR (Near Infra-
red) camera instead of a digital single lens reflex camera 
(DSLR); and (iv) photographing in open air using flashes 
to partly stabilize the white balance. Options i and ii 
should render relatively uniform series of images in terms 
of exposure and colour temperature, which are ideal for 
colour-based segmentation methods. While option i is 
simpler, it can be logistically difficult. Option ii requires 
the use of a mobile construction to cover the plants for 
photographing (see for example [3, 12]), making it rather 
impractical when large plants are photographed. With 
regards to option iii, commercially available NIR cameras 
have a relatively low resolution and are more expensive 
than DSLR cameras. Therefore, option iv is currently 
the most straightforward to implement. This choice has 
implications for image processing and segmentation 
because colour segmentation alone cannot be used due 
to unstable light conditions [17, 27].

The aim of image segmentation is to partition the 
image into regions that are distinct from each other, but 
internally uniform with respect to certain properties 
[17], allowing to separate the plant from the background. 
Segmentation methods can be divided into several types 
[8, 19, 23] of which colour-based, texture-based, edge 
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detection-based and fast Fourier transformation are fre-
quently used. Colour-based segmentation, based on col-
our differences between plant and background, can make 
use of different colour spaces but in horticulture and agri-
culture RGB and HSV spaces are commonly used [20]. 
RGB is the standard colour space used by the detector 
of DSLR cameras but it does not correspond to the way 
humans see colour [21]. The HSV space is, for human 
interpretation, more convenient. As the Hue channel 
(H) is relatively invariant to light level and shading, seg-
mentation can be performed on the H dimension alone 
[31]. An alternative is to normalise the intensity levels of 
a colour channel using another colour channel (e.g. using 
the ratio of B/G in the RGB colour space) [7] or apply 
other transformations [20]. Although commonly used, 
colour-based segmentation methods might be less effec-
tive to process images taken outdoors. First, the param-
eters used for the colour segmentation are very sensitive 
to the white balance, which is affected by sun conditions 
(under cloudy conditions colours are perceived differ-
ently than under sunny conditions by imaging sensors). 
Second, although automatic light measurement by the 
camera generates images of the same quality (light, col-
our), the effective amount of light captured depends on 
the scene [20]. Third, light reflection on waxy leaves can 
result in bright or even white spots in the image, and 
corresponding colour values need to be included in the 
colour range for selection. Fourth, the presence of algal 
growth or weeds may hamper the correct identifica-
tion of the object of interest because they are also green. 
Texture-based segmentation methods make use of a vari-
ance operator to identify regions with different textures 
(different repeated pattern of different pixel intensities), 
enabling the separation of objects with the same col-
our but different textures (for example soil covered by 
green algae and a green grass plant, or between brown-
ish soil and brown plant parts) [21]. However, segmenta-
tion based on texture will be hard for thin-leaved, small 
plants compared to large plants displaying a more uni-
form texture. This problem is less pronounced in edge-
based segmentation methods, which identify regions in 
the image where brightness changes rapidly. Ideally edge 
detection leads to a set of connected curves that corre-
spond to the boundaries of the object [15]. Because this 
method is rather sensitive to noise, resulting in the detec-
tion of irrelevant features in the image, a Gaussian filter 
is usually applied before the edge detection procedure is 
executed [4]. Colour-, texture- and edge-based segmenta-
tion methods make use of the spatial domain of an image. 
Alternatively, an image can be converted by fast Fourier 
transformation to the so-called frequency domain show-
ing frequency and orientation. Erasing information from 
a location in the frequency transformation is equivalent 

to removing the corresponding information in every 
part of the spatial domain image [18, 21]. As a result, the 
rough plant contours can be selected as the main feature 
of an image.

From the characteristics of the different segmentation 
approaches summarized above, it is clear that combining 
information generated by different methods can result in 
a more accurate segmentation that exploits their comple-
mentarities. It follows that a considerable improvement 
in segmentation can result from the combination of col-
our, texture, and edge information [13, 17].

Here, we present a method for high-throughput phe-
notyping of lateral expansion and regrowth of spaced L. 
perenne plants based on images taken in the field using 
a DSLR camera placed on a tripod. During image pro-
cessing, information derived from different segmentation 
methods is compared and then combined via post-pro-
cessing integration enabling robust plant object recogni-
tion. We show that the combined approach renders better 
results than the different segmentation methods sepa-
rately and that the methodology developed is effective 
under different illumination conditions in outdoor envi-
ronments. Based on top view images taken at specific 
time points, the area covered by the L. perenne plants was 
determined in a standardized, quantitative way. We show 
high correlations between image analysis-based estimates 
of plant growth and manual measurements.

Methods
Plant material and field trial description
A total of 501 genotypes constituting a diverse genetic 
and morphological collection were planted in a nursery 
in Melle, Belgium (N50°59′32″ E3°46′59″). Genotypes 
from four main sources were considered: ‘forage breed-
ing lines’ (n =  117), ‘current forage varieties’ (n =  50), 
‘current turf varieties’ (n  =  69) and ‘wild accessions’ 
(n =  265). ‘Forage breeding lines’ comprises genotypes 
from different European breeding programs, ‘current for-
age varieties’ and ‘current turf varieties’ comprise geno-
types from commercial varieties, and ‘wild accessions’ 
comprises genotypes from natural accessions originating 
from across Europe. Individual plants containing 3–5 till-
ers and trimmed to 5 cm were planted at 75 cm spacing 
within and between rows in a randomised block design 
with three blocks and one clonal replicate per genotype 
per block. The field was established on October 2009, and 
was maintained for three consecutive years with regular 
weeding and fertilisation. The plants were cut at 6-week 
intervals during 2010 (March 17th (Y1C1), May 4th 
(Y1C2), June 15th (Y1C3), July 29th (Y1C4), September 
6th (Y1C5) and October 26th (Y1C6) (Additional file 1: 
Fig. S1). During 2011 all plants were cut on March 16th 
(Y2C1); in the period May–June 2011 individual plants 
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were cut around 3  weeks after their respective heading 
date (Y2C2), and all plants were again cut at the same day 
on July 14th (Y2C3), and August 29th (Y2C4).

Image acquisition
Top view images were taken from each individual plant 
directly after cutting (W0) and 1 week after (W1) for the 
time points Y1C2 to Y1C6 and Y2C1, Y2C3 and Y2C4 
(Fig.  1; Additional file  1: Fig. S1). Images were acquired 
using a DSLR camera (D90, Nikon Corporation, Japan) 
with a 35 mm lens (AF-S NIKKOR 35 mm 1:1.8G, Nikon 
Corporation, Japan) or a 24  mm lens (AF-S NIKKOR 
24 mm 1:2.8D, Nikon Corporation, Japan) and three wire-
less remote speedlights (SB-R200, Nikon Corporation, 
Japan) controlled with a wireless commander (SU-800, 

Nikon Corporation, Japan). The images for the first three 
time points (Y1C2, Y1C3 and Y1C4) were saved as JPG 
files. For the later dates also NEF (raw) images were 
recorded, as this offers more possibilities for correction 
of the white balance, exposure or contrast without data 
loss. A tripod (055XPROB +  804RC2, Manfrotto, Italy) 
was used, with the camera placed in perpendicular ori-
entation with respect to the soil surface. The distance 
between the camera objective and the soil was 90  cm. 
Images were taken using the Live View function of the 
camera for the ease and speed of working. Before taking 
images the white balance of the camera was adjusted to 
the weather conditions (cloudy or sunny), and an image 
was taken of a reference card (Grey card, Novoflex) 
to transform from pixel-scale dimensions to cm-scale 
dimensions, and to have a colour-neutral reference. The 
resolution of the images was 74.36 pixels per cm at soil 
surface when using the 35 mm lens and 49.57 pixels per 
cm when using the 24 mm lens.

Image analysis procedure
To optimise the image analysis procedure we chose a 
subset of 25 genotypes (in three replicates, 75 plants) that 
represent the broad range of phenotypic diversity (such 
as base area after cutting, tiller number, plant height and 
increase in leaf length after cutting) present in the plant 
collection of 501 genotypes. This subset of 1200 images, 
representing clonal replicates and different time points of 
these 25 genotypes, covered various aspects of variation 
present in the complete set (501 genotypes and 24,048 
images), ranging from light spectral quality and intensity, 
to plant size and colour, and variation in soil background 
conditions (dry, wet, algae coverage present, small weeds 
present). Once an optimised and validated procedure was 
established, it was applied on the total of 24,048 images 
of all plants and time points.

Overall description
The images were processed using an automatic program 
developed in WiT (8.3 sp7, Dalsa Digital Imaging Inc., 
Canada) (Additional file 2: Fig. S2). Each image was seg-
mented using eight segmentation methods available in 
WiT (here called C1, C2, T1, T2, E1, E2, E3 and E4) as 
described below. In addition, based on the resulting mask 
for each segmentation method, a composite mask image 
was constructed in which each binary mask had a weight 
of 1/8th of a maximum intensity of 255. For this compos-
ite mask image the pixel intensity threshold was set at 128. 
This means that in the composite mask, a pixel belongs 
to the object (i.e., the ryegrass plant) if it belongs to the 
masks derived from at least four (out of eight) methods 
[256 (possible intensities) divided by 8 (methods) mul-
tiplied by 4 (correct methods) =  128]. For the resulting 

Fig. 1 Top view images of the same L. perenne plant. Plants were 
cut every 6 weeks in Year 1. Immediately after the cut an image was 
taken showing the base area of the plant (W0, week 0), after 1 week 
of regrowth a second image was taken showing the outgrowth area 
(W1, week 1). The selected plant (red outline) and convex hull (blue 
outline) found by the image analysis algorithm are superimposed on 
the images. Based on these selections plant variables are calculated. 
Here, one image (Y1C4W0) was not correctly analysed and the 
derived data was not used
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composite mask only the largest object was kept and used 
to produce an object outline overlay on the original image, 
depicting the edge of the final selection. This image was 
stored. After all images had been processed automatically, 
we determined by visual inspection if the automatic delin-
eation of the ryegrass plant was correct. The images where 
parts of the plants were not detected or mismatched were 
not used for the between-method comparisons described 
below. Examples are shown in Fig. 1.

Segmentation methods
An overall scheme of the image analysis procedure is 
shown in Additional file  2: Fig. S2. Eight different seg-
mentation methods were combined. These include col-
our-based methods (C1, C2), texture-based methods (T1, 
T2) and edge based-methods (E1–E4) (Table 1). Intensity 
values for the HSV colour space used within WiT range 
from 0 to 255 for all channels.

For all segmentation methods except C2 the RGB 
image was converted to an HSV colour space to enable an 
easier selection of the green colour: greenish leaves can 
easily be found between intensities of 35 and 100 of the 
Hue (H) colour channel. We used threshold boundaries 
for the H, S and V colour channels of 35–100, 50–255 
and 40–226, respectively. The resulting image, which is 
a raw mask, was then cleaned using a dilate-erode pro-
cess to remove small objects not related to the plant, and 
the holes within this mask were filled. This procedure of 
cleaning up the raw mask was the same for all methods.

For C2 the RGB image was used, and the ratio between 
the blue (B) and the green (G) colour channel was 

calculated. In this ratio image the plant appears with 
a lower intensity than the background. A threshold of 
0.625 was used to select the plant object.

The calculations for the texture and edge based meth-
ods (T1, T2 and E1–E4) were all based on the saturation 
(S) channel of the HSV colour space. This colour channel 
was chosen because of its high contrast between back-
ground and object. In T1 a fast Fourier transform opera-
tor was used to calculate a frequency domain image. 
After using a cosine filter with a radius of 25, a reverse 
fast Fourier transform was calculated resulting in a spa-
tial domain image. The threshold was set at 110. Intensi-
ties above this value were used to delineate the raw mask. 
T2 makes use of an entropy operator. This operator cal-
culates the entropy of the input image pixel values in a 
specified neighbourhood (100 × 100) around each pixel. 
In this context, the entropy value of a pixel is a measure 
of the disorder in the neighbouring pixels. High intensity 
changes within a limited area due to the transition from 
plant to the background results in an entropy image in 
which the plant gets a higher intensity than the back-
ground. The threshold was set at 4.7.

For the edge-based methods, E1–E4, a Gaussian filter 
with a filter size of 5 × 5 was used first to achieve a two-
dimensional smoothing of the input image. This avoided 
the selection of irrelevant edges. E1 used a gradient mag-
nitude and direction filter based on Prewitt filter weights. 
A threshold was set at 29. E2 used a two-dimensional 
convolution operator with a 3 × 3 kernel. The elements 
in the kernel were set to 1 except for the middle ker-
nel value, which was set to 15. A scale factor by which 

Table 1 Description of  the different segmentation methods [colour-based (C); texture-based (T); edge-based (E)] used 
during the images analysis of top view images of L. perenne plants

Name Segmentation 
method

Colour space—
channel

Domain Method (WiT) Extra tools used

Before After

C1 Colour threshold HSV–HSV Spatial Threshold Dilate, fill holes, erode, selection 
of the largest object

C2 Colour threshold RGB‑B/G Spatial Threshold Dilate, fill holes, erode, selection 
of the largest object

T1 Texture HSV‑S Frequency Fast Fourier transform and  
cosine filter

Dilate, fill holes, erode, selection 
of the largest object

T2 Texture HSV‑S Spatial Entropy measurement Dilate, fill holes, erode, selection 
of the largest object

E1 Edge HSV‑S Spatial Gradient magnitude and  
direction filter (Prewitt)

Gauss filter Dilate, fill holes, erode, selection 
of the largest object

E2 Edge HSV‑S Spatial Two dimensional convolution Gauss filter Dilate, fill holes, erode, selection 
of the largest object

E3 Edge HSV‑S Spatial Prewitt edge detection Gauss filter Dilate, fill holes, erode, selection 
of the largest object

E4 Edge HSV‑S Spatial Refine edges based on Prewitt Gauss filter Dilate, fill holes, erode, selection 
of the largest object
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all values in the convolved image are divided was set to 
13. The threshold was set at an intensity of 230. For E3 
an edge-detect operator was used to detect areas of high 
slope using a Prewitt gradient type operation. The thresh-
old was set at 27. Finally, E4 used a refine edges operator 
based on a Prewitt kernel with a threshold set at 15. On 
the resulting image of the raw mask a threshold intensity 
of 1 was applied.

The parameter settings for the different methods, as 
described above, were determined using a selected sub-
set of 40 images taken at different time points throughout 
two subsequent growing seasons, representing different 
light colour (depending on the time of the day that the 
images are taken), different background colour or tex-
ture, different plant size, etc. Histograms of sections of 
the images belonging to the plant or the background were 
extracted. Based on inspection lines showing local inten-
sities, and based on visual interpretation of the image, 
values were optimised in an iterative process. Based on 
the visual inspection of the results of each method and 
the composite mask (combining information from all 8 
methods), overlaid on the original image (Fig. 1), the suc-
cess rate per time point was determined. Based on these 
results, the threshold settings of the different segmen-
tation methods were refined. Finally, an optimum was 
found so that a maximum number of images was cor-
rectly analysed and with similar success rates for all time 
points. In the final analysis for the optimisation stage 
these optimal settings were used for all images (1200 in 
total).

Evaluation and comparison of segmentation methods
The performance of the eight segmentation methods 
was evaluated according to the methodology described 
by Van Rijsbergen [29] and Smochina [25]. Precision (P), 
Recall (R), and the harmonic mean of P and R (F value, 
denoted as parameter F  =  2PR/(P  +  R)) were deter-
mined. The parameter P estimates how many pixels in 
the mask of the corresponding segmentation method do 
really belong to the object of interest. The parameter R 
estimates how many pixels of the object (i.e. plant) are 
included in the mask.

Comparisons using these three parameters were car-
ried out at two levels. First, the agreement between 
methods was evaluated in a pairwise fashion by using the 
mask generated by one of the methods as ground-truth 
and calculating P, R, and F for the mask generated by the 
other method. In total 28 comparisons (8 ×  7/2) were 
made per image, and all 1200 images are used for this 
analysis. Second, we selected by visual inspection a sub-
set of images in which the overlay of the composite mask 
(see above) fitted precisely on the plant (Fig. 1). For these 
images, the image analysis procedure accurately outlined 

the plant object, and we used the composite mask as the 
ground-truth. The eight different segmentation methods 
were then compared to that composite mask to establish 
the correctness of each method. Note that because only 
for the correctly analysed images a ground-truth area (i.e. 
composite mask) was available, the correctness of the 
methods is slightly overestimated.

Image analysis‑based parameters
Once the image analysis procedure had been set up, 
the images of 501 genotypes and all time points (24,048 
images in total) were processed in an automatic way. For 
each correctly processed image, the number of pixels 
contained in the composite mask corresponds to the area 
covered by the plant either directly after cutting (termed 
‘base area’; W0), or 1 week later (termed ‘outgrowth area’; 
W1). Pixel data were converted to cm2. The short term 
regrowth after cutting, here termed ‘regrowth’, was cal-
culated as outgrowth area minus base area at a given cut 
(e.g. Y1C2W1–Y1C2W0, Fig. 1).

Manual measurements
We counted the number of tillers of each individual 
plant prior to each cut (in what follows ‘tiller number’) 
and recorded the plant height 2  weeks after each cut 
by measuring with a ruler the length of the longest leaf 
when stretched vertically. Plant height data were used to 
calculate leaf growth per growing degree day for each cut 
(in what follows ‘leaf growth’). These measurements were 
only carried out in Year 1. Minimum and maximum daily 
temperatures were measured in a weather station within 
a distance of 500 m from the field trial. A base tempera-
ture of 0 °C was used for the calculation of thermal time.

Data analysis
To estimate the correspondence and complementarity 
between image analysis-derived data and manual meas-
urements we compared sets of data as follows. First 
we determined the correlation between ‘leaf growth’ 
over 2  weeks after cutting (manual measurement) and 
‘regrowth’ (derived from image analysis). Second, we cor-
related ‘tiller number’ (manual measurement) and ‘base 
area’ (derived from image analysis).

Finally, we plotted the changes in ‘base area’ over the 
whole growing season and calculated the total lateral 
expansion during the first growing season, here termed 
‘first year lateral expansion’ (Fig.  1), as the slope of the 
regression for the base areas (W0) of Y1C2, Y1C3, Y1C4, 
and Y1C5 (cm2 °C day−1). Only plants with at least three 
valid observations were used to estimate ‘first year lateral 
expansion’.

In all these calculations average values per genotype 
were derived from data of the three clonal replicates in 
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the field trial. Correlations were calculated using Statis-
tica (v12, StatSoft Inc., Tulsa, Oklahoma, US).

Results
Overall evaluation of the image analysis segmentation 
methodology
We first used colour segmentation on the earliest series 
of images taken. No single segmentation method resulted 
in a satisfactory number of images that were correctly 
analysed over all series (a series refers here to a set of pic-
tures taken at a single time point, e.g. Y1C2W0), because 
of the large variation in light quality and intensity, back-
ground and plant characteristics among the different 
series of images (data not shown). Therefore, we com-
bined the masks of eight segmentation methods into a 
composite mask to improve the robustness of the over-
all image analysis procedure. We analysed all the images 
of 75 plants (corresponding to 25 genotypes) across two 
growing seasons. We inspected visually whether the over-
lay composite mask correctly outlined the actual plant 
form in each image and found that 86.2 % of the images 
were correctly analysed (Fig. 2). This shows that the com-
bination of different segmentation methods allows a cor-
rect assessment of the images, independent of the light 
conditions, background characteristics, and plant size 
throughout two growing seasons. An exception con-
cerns the mages of Y2C1W1, of which only 22.7 % were 
correctly analysed. This low success rate was because at 
the time of image acquisition the soil had a similar tex-
ture as the plant due to suboptimal weeding. Under these 

circumstances typically E4 and E1 yielded poor results. 
This further shows that field management is an integral 
part of proper image acquisition and contributes to the 
quality of downstream image processing.

Over all cutting periods, 84.5 % of the images of plants 
that were just cut (W0) were correctly analysed, while 
87.5  % of the images of plants that were allowed to 
regrow for 1  week (W1) were correctly analysed. After 
elimination of Y2C1W1 data, the success rate increased 
from 87.5 to 96.8  %, demonstrating a higher success 
rate for images of plants that were allowed to regrow 
for 1 week and which displayed fewer brownish sectors. 
Indeed, after 1 week of regrowth most visible plant parts 
are green and are easier to delineate using image analysis 
(Fig. 1).

Comparison of segmentation methods
The overlap of the masks defined by independent seg-
mentation methods was evaluated based on all 1200 
images. Per image, the resulting mask of one method 
was treated as ground-truth, irrespective of whether the 
image was correctly analysed or not, and compared to 
the masks defined by each of the other seven segmen-
tation methods. Thus, per image a total of 28 pairwise 
comparisons were made. The average of all harmonic 
mean (F) values for all 1200 images was used for pairwise 
comparisons of methods (Table  2). The highest corre-
spondence across all images was found between methods 
E1 and E3 (96.2 %), followed by E1 and E4 (92.1 %), and 
E3 and E4 (89.4 %). These are all edge-based. E2 displayed 
the lowest correspondence with all other segmentation 
methods (average F values between 50.6 and 59.1 %). The 
two colour-based methods C1 and C2 showed 77.8  % 
correspondence, while the texture-based methods T1 
and T2 showed 66.8  % correspondence. Other combi-
nations showed intermediate values. This clearly shows 
that the different methods can be complementary, even 
though some methods with high correspondence may be 
redundant.

Performance of the different segmentation methods 
relative to the composite mask
Next, we compared the masks derived from the differ-
ent segmentation methods to the composite mask. Since 
here we were primarily interested in how accurate the 
different methods could find the ryegrass plant in the 
image, we used only the 1034 images (86.2 % of the com-
plete set) in which visual inspection confirmed that the 
composite mask accurately outlined the plant object.

A high Recall (R) in combination with a high Preci-
sion (P) is ideal. A high Recall in combination with a low 
Precision indicates a mask that overestimates the area of 
the ryegrass plant. The harmonic mean of P and R, also 

Fig. 2 Percentage of correctly analysed images for the different time 
points over two growing seasons. Y year, C cut; black bars represent 
images of plants that are just cut, base area (W0); grey bars represent 
images of plants that were allowed to regrow for one week after cut‑
ting, outgrowth area (W1) (mean, n = 75)



Page 8 of 14Lootens et al. Plant Methods  (2016) 12:32 

called the F value, represents the performance of object 
recognition. The highest F values were found for E3 
(92.8 %) and E1 (92.0 %) (Fig. 3). E3 had a slightly lower R 
than E1 whereas E1 had a slightly lower P. This indicates 
that E1 overestimates the plant area more than E3. E2, 
another edge-detection method, had the lowest F value 
(57.9 %). The method clearly finds the object (high R) but 
overestimates its area (low P). The colour-based meth-
ods (C1 and C2) had an intermediate F value of 78.1 and 
85.0 % respectively. C2 performs better than C1 in terms 
of R. T1, a texture-based method, displays an intermedi-
ate performance, between E2 and the colour-based meth-
ods. In comparison to E2, the R of T1 is lower but the P is 
higher. T2 and E4 show slightly lower F values compared 
to E3 and E1. Nevertheless, both show a higher R but a 
lower P.

The colour-based method C1, the texture-based 
method T1, and the edge-based method E2 display 
higher F values for W1 (Fig.  4b) than for W0 images 
(Fig.  4a). Segmentation methods C2, T2, E1, E3, and 
E4 performed in a similar way for W0 and W1 images, 
and were less dependent on the fine structure of the 
plant.

Description of plant growth characteristics during the first 
year based on image analysis
A total of 24,048 images were processed using the pro-
cedure developed. For 77.2  % of these images (18,565 
images) the procedure yielded correctly analysed images. 
Based on temporal series of images of base area (W0) 
and outgrowth area (W1) taken at repeated cuts during 
the first growing season (Y1), three different aspects of 
plant growth dynamics were assessed for each genotype. 
We present results for the whole collection of genotypes 
and for four subsets (forage breeding lines, current for-
age varieties, current turf varieties and wild accessions), 
expected to differ morphologically.

First, by subtracting the base area (W0) from the out-
growth area at 1 week after cutting (W1) (Fig. 1), we esti-
mated the short-term regrowth after cutting, here termed 
‘regrowth’. This measurement is related to the capacity to 
quickly regain leaf surface and photosynthetic active bio-
mass. ‘Regrowth’ varies throughout the season (Fig. 5a), 
consistent with general seasonal growth patterns and 
environmental constraints. Cut Y1C2 in spring and Y1C3 
in early summer are characterised by relatively strong 
‘regrowth’. Y1C4 represents summer growth depression 
after flowering and during warmer months with lower 
water availability. At cut Y1C5 in autumn, plants show 
‘regrowth’ that is on average comparable to that in spring. 
As expected, at all cuts, ‘regrowth’ of forage types (breed-
ing forage lines and current forage varieties) was higher 
than that of turf types and wild accessions.

Table 2 Overlap of the masks derived from eight different segmentation methods [colour-based (C); texture-based (T); 
edge-based (E)] described in  Table  1 estimated as  the average of  F values (=harmonic mean of  precision and  recall), 
n = 1200

Colour segmentation Texture segmentation Edge based segmentation

C1 C2 T1 T2 E1 E2 E3 E4

C1 77.8 65.7 72.8 74.4 50.6 75.0 71.5

C2 79.7 76.5 77.7 58.5 78.1 75.5

T1 66.8 65.9 50.9 66.4 63.3

T2 88.6 56.3 88.1 86.8

E1 57.1 96.2 92.1

E2 56.1 59.1

E3 89.4

Fig. 3 Precision (P, %), recall (R, %), and harmonic mean of precision 
and recall (F, %) of the different segmentation methods [colour‑based 
(C); texture‑based (T); edge‑based (E)] for all time points together. The 
composite mask derived from eight segmentation methods was used 
as the ground truth in these comparisons (mean and SE, n ≤ 75)
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Second, by plotting ‘base area’ (W0) calculated for sub-
sequent cuts in year 1, we investigated the plant growth 
over a whole growing season (Fig.  6a). This increase in 
‘base area’ is mainly due to the production of new tillers 
in the periphery of the plant. Strong lateral expansion 
growth is observed early in the season (between Y1C2 
and Y1C3), followed by a period of little increase during 
summer after flowering (between Y1C3 and Y1C4), and 
further lateral expansion in autumn (between Y1C4 and 
Y1C5). Also in this case, lateral expansion was higher for 
forage types (forage breeding lines and current forage 
varieties), as compared to current turf varieties and wild 
accessions.

Third, a linear regression of the ‘base area’ measured 
directly after cutting (W0) across the entire first grow-
ing season (Fig.  1) reflects the global lateral expansion 
growth, here termed ‘first year lateral expansion’. This is an 
important factor for sward closure during the first grow-
ing season. For the 501 genotypes, the first year lateral 
expansion was on average 0.059 ±  0.001  cm2  °C  day−1 
with a maximum of 0.141  cm2  °C  day−1. Breeding for-
age lines and current forage varieties show significantly 
higher first year lateral expansion rates than wild acces-
sions and current turf varieties, which is to be expected 
as current forage varieties are selected for productivity 
and sward forming capacity (Fig. 6b). It should be noted 
here that the cutting frequency applied in this experi-
ment was probably not sufficient to stimulate vigorous 

lateral expansion in turf types, typically selected to very 
frequent cutting. A relatively large phenotypic variation is 
present in the genepool, indicating that further improve-
ment for this trait is possible. For instance, a number of 
wild accessions have higher ‘first year lateral expansion’ 
rates than the average within forage breeding genotypes, 
current forage genotypes, or current turf genotypes.

Correlation between on‑field measurements and image 
analysis data
Next, we compared counts of ‘tiller number’ and meas-
urements of ‘leaf growth’ on the one side with the 
image analysis derived parameters ‘base area’ (W0) and 
‘regrowth’, respectively, to estimate whether image analy-
sis could replace and/or yield complementary data for the 
evaluation of plant growth.

‘Leaf growth’ after the cut was variable throughout 
the season (Fig. 5b), consistent with summer depression 
around Y1C4 as observed in the ‘regrowth’ measure-
ments based on image analysis (Fig.  5a). However, the 
estimated ‘leaf growth’ was lower at Y1C3 than at Y1C2. 
This was not the case for image analysis-based regrowth 
estimations (Fig.  5a). Probably, young plants grow ini-
tially in the vertical direction, which is not easily detected 
using top view images. The correlations between ‘leaf 
growth’ after cutting and ‘regrowth’ were 0.645, 0.608, 
0.792 and 0.790, respectively, for Y1C2, Y1C3, Y1C4, and 
Y1C5 when all 501 genotypes were considered together 

a b

Fig. 4 Precision (P, %), recall (R, %), and harmonic mean of precision and recall (F, %) of the different segmentation methods [colour‑based (C); 
texture‑based (T); edge‑based (E)]. a Images of plants that were just cut (base area; W0); b Images of plants that have regrown for 1 week (out‑
growth area; W1). The composite mask derived from eight segmentation methods was used as the ground truth in these comparisons (mean and 
SE, n ≤ 75)
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(Table  3; Fig.  5c). The correlations were all statistically 
significant. However, the correlation values are different 
for the different groups and depend on the cut consid-
ered (Additional file 3: Fig. S3). This illustrates that plants 
that are able to resume growth quickly after cutting can 
be identified using image analysis, but that the two ways 
of measurements can reflect different aspects of growth, 
and are therefore at least partially complementary. This is 
because both, variation in the rate of outgrowth of leaves 
as well as variation in leaf orientation (erect or prostrate), 

affect the estimation of ‘regrowth’ estimates, while ‘leaf 
growth’ measurement concerns the longest leaf of the 
plant 2 weeks after cutting, irrespective of its orientation.

‘Tiller number’ increased rapidly between Y1C2 
and Y1C3 (Fig.  6c). While ‘tiller number’ continued to 
increase throughout the first growing season in cur-
rent and forage breeding lines types, it almost stabilised 
after Y1C3 in early summer in turf types and wild acces-
sions. On average, wild accessions produced significantly 
less tillers per plant than other groups. The correlations 

Fig. 5 a Regrowth (cm2 °C day−1) and b leaf growth (cm °C day−1) versus thermal time (°C day) and c leaf growth (cm °C day−1) versus regrowth 
(cm2 °C day−1) for different groups of genotypes and for the total collection in Year 1 (mean and SE, n = 501)
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between ‘base area’ and the ‘tiller number’ ranged 
between 0.721 and 0.782, with the highest correlations at 
Y1C2 in spring and Y1C5 in autumn (Table 3; Additional 
file 4: Fig. S4). This shows that ‘base area’ increased due 
to the formation of new tillers. The relation between the 
‘base area’ (Fig. 6a) and ‘tiller number’ (Fig. 6c), remained 
relatively constant over all groups in the first three cuts 
(Y1C2–Y1C4; Fig.  6d). This relation changed late in the 

season (Y1C5): while the ‘base area’ kept on increasing, 
the increase in ‘tiller number’ became lower than earlier 
in the season, so that the overall tiller density decreased 
in autumn (Y1C5).

Taken together, our data demonstrate that image analy-
sis provides measurements of plant growth that are rel-
evant for the evaluation of plant performance under field 
conditions. These estimations are largely correlated but 

Fig. 6 a Evolution of base area (cm2) versus thermal time (°C day−1), b first year lateral expansion (cm2 °C day−1) for different groups of genotypes 
and for the total collection in Year 1, c evolution of tiller number versus thermal time (°C day−1), and d relation between tiller number (–) and base 
area (cm2) (mean and SE, n = 501)
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for some aspects are also complementary to morpho-
logical measurements. The main advantages of the image 
analysis procedure presented here are its objectivity 
and the fact that it can be applied easily to thousands of 
plants at repeated time points in the season.

Discussion
Method development
Here we present a new image analysis method to phe-
notype (re)growth characteristics of field-grown L. per-
enne plants. The method is robust to daily and seasonal 
changes in light conditions and to different background 
(~soil) colours and textures. When applied to a total of 
24,048 images of plants that were just cut or after a short 
period of regrowth, and recorded at different time points 
throughout the season, 77.2  % of the images were cor-
rectly processed, allowing quantitative estimations of 
plant size (‘base area’ and ‘outgrowth area’).

Given the difficulties associated to the acquisition of 
images outdoor and their processing, the development 
of a robust methodology able to cope with differing light 
intensity and spectrum and with different backgrounds 
is not a simple task. In our experience, one operator can 
take a series of 500 images in about 2  h, which allows 
photographing a few thousand plants on a weekly basis. 
While images of a whole field can be captured in only 
a few hours, still light conditions (spectral quality and 
intensity) may change during this period. We suggest 
using speedlights and semi-automated settings on the 

camera: a minimum diaphragm opening to have suffi-
cient depth of field and a minimum shutter speed, which 
equals the maximum synchronisation time of the flashes. 
For image processing here we combine the power of 
eight segmentation methods in a highly automatized way. 
Further improvements are however possible at the level 
automation of the image analysis step with online extrac-
tion of parameters. Furthermore, given the high corre-
lation detected for some pair-wise comparisons among 
the eight methods tested here, a subset of segmentation 
methods could possibly be chosen. By preference, the 
methods with the highest Precision (P) and Recall (R), 
which are fast to execute should be selected. Segmen-
tation methods with low P and R could be eliminated if 
they do not have a significant contribution to the quality 
of the segmentation. Finally, a dynamic parameter choice 
using the fixed place of the plant (middle of the image) 
and the background (sides and corners of the image) and 
their local colour, texture, and edge characteristics could 
be used to further increase the number of correctly eval-
uated images. Further, for the edge based segmentation 
we only used Prewitt based methods as only these were 
available in the software, but the Canny edge detection 
procedure might render improved results [24]. Never-
theless, a comparison would be required as the Canny 
procedure involves a more complex computation and is 
thus processor/time demanding [24]. Moreover, our cur-
rent procedure can be further optimized in terms of the 
number of correctly analyzed images and the processing 
time needed per image, which now ranges from seconds 
to tens of seconds.

More sophisticated field-based phenotyping platforms 
have been developed, such as the tractor-pulled multi-
sensor platform BreedVision, that carries a light source 
allowing exclusion of environmental light [3] could 
increase throughput of image acquisition. Another option 
is using unmanned aerial vehicles (UAV), provided that 
the resolution is sufficient for accurate individual plant 
identification and characterisation. Both options, how-
ever, are expensive and not accessible to most institutes 
involved in forage crop breeding and research at this 
moment. Our system has several advantages: it is inex-
pensive, it has a high-throughput (it takes about 8–10 s 
to take an image), non-specialised staff can be involved in 
image acquisition, and standard DSLR cameras are suf-
ficiently robust for common outdoor weather conditions.

Applications and perspectives
The evaluation of L. perenne plants for breeding and 
selection purposes is typically based on the assignment of 
visual scores, rendering poor resolution to discriminate 
differential genotypic responses. Such visual observa-
tions are inexpensive but can be biased by the examiner 

Table 3 Correlation (r) between leaf growth (cm °C day−1) 
based on  height at  2  weeks after  cutting and  regrowth 
(cm2  °C  day−1) determined by  image analysis (top panel) 
and  between tiller number and  base area (cm2) deter-
mined by image analysis (bottom panel), at four consecu-
tive cuts (between C2 and C5 of the first growing season)

All correlations were significant (p < 0.05). The highest r values per group 
are depicted in italics. The highest r values for all groups or for all cuts are 
underlined

Genotype groups Y1C2 Y1C3 Y1C4 Y1C5 Y1 all cuts

Correlation between regrowth and leaf growth

Forage breeding lines 0.543 0.425 0.758 0.769 0.567

Current forage varieties 0.765 0.508 0.685 0.523 0.626

Current turf varieties 0.735 0.682 0.651 0.753 0.770

Wild accessions 0.462 0.316 0.548 0.595 0.529

All groups 0.645 0.608 0.792 0.790 0.686

Correlation between base area and tiller number

Forage breeding lines 0.758 0.682 0.636 0.669 0.824

Current forage varieties 0.847 0.793 0.686 0.824 0.799

Current turf varieties 0.769 0.576 0.461 0.609 0.638

Wild accessions 0.826 0.739 0.726 0.740 0.727

All 0.782 0.731 0.721 0.755 0.769
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and may not be sufficiently accurate for targeted crop 
improvement [16, 30]. With the recent developments in 
high-throughput genotyping for breeding purposes, the 
demand for quantitative phenotypic data is also increas-
ing, to a point that phenotyping and not genotyping is 
becoming the bottleneck for genetic improvement of 
crops [6, 32]. We show here that image analysis-based 
on-field phenotyping can render quantitative evaluations 
of growth parameters, probably at the level of resolu-
tion required for detailed investigation of the underlying 
genetic mechanisms and enabling more precise selection 
in perennial ryegrass.

Although it was not our prime objective to define the 
best image analysis-derived parameters to quantify (re)
growth in perennial ryegrass, the parameters ‘regrowth’, 
‘base area’ and ‘first year lateral expansion’, as defined 
in this work, seem to reproduce quite well the expected 
overall seasonal responses and the differences between 
groups of genotypes from different origins. It is therefore 
possible to use our image-analysis based methodology to 
describe and follow-up the growth of individual peren-
nial ryegrass genotypes in the field.

Further, our results demonstrate a relatively high cor-
relation between data derived from images and manual 
measurements. This was the case for the whole collection 
of 501 genotypes, but also within the different groups 
considered (breeding forage lines, current forage varie-
ties, current turf varieties and wild accessions). In gen-
eral, higher correlation values were obtained across cuts 
and genotypes between ‘base area’ and ‘tiller number’ 
than between ‘regrowth’ and ‘leaf growth’. In this lat-
ter case, top view images as considered here might not 
be sufficient to capture vigorous leaf elongation of plants 
with an erect growth pattern. Combination with side-
view images or the use of UAV based technologies using 
digital elevations models (DEMs) could enable to esti-
mate plant height and might render better estimates if the 
purpose is to obtain reliable information of ‘leaf growth’. 
Our finding that tiller number can be estimated with a 
relatively high accuracy from top view images of plants 
that have been just cut is interesting, as counting tillers is 
time-consuming and not readily done in practical breed-
ing programs. With our methodology it is therefore pos-
sible to get rather good estimates of tillering, which is an 
important determinant of forage yield and turf quality.

The set of plant parameters derived from image analy-
sis could be extended in the future, using our method-
ology as start point. Here, we have focused on lateral 
expansion over a whole season and on growth after cut-
ting over a short period of time (1 week). Growth over a 
period of a few weeks could be considered but the meth-
odology presented here, in its own, is probably inefficient 

for the estimation of green biomass accumulation in 
larger plants, as leaf density increases [12]. As mentioned 
above, combination of top- and side-view images or UAV 
derived DEMs could allow estimating the plant biovol-
ume, helping to get accurate estimates of green mass of 
large plants.

Finally, although not tested here, we anticipate that the 
high-throughput, inexpensive image analysis procedure 
presented here can be easily extrapolated to other for-
age and turf species. In addition, the set of plant traits 
extracted from the images can be extended in the future, 
possibly in combination with side-view images able to 
capture information on leaf density and plant habit (erect 
or prostrate). This would make the estimation of dry mat-
ter accumulation in larger plants possible.

Conclusion
We have developed a low-cost high-throughput pheno-
typing system and an image analysis procedure allowing 
a correct evaluation of 77.2 % of the top view images of 
field-grown perennial ryegrass plants. It was possible to 
quantify base area in an objective, quantitative way and to 
monitor lateral expansion and regrowth during a growing 
season under field conditions. We demonstrate that the 
image-derived variables are complementary to manually 
measured variables such as tiller number and leaf growth. 
This additional growth describing variables are important 
for genetic dissection of those traits.
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