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Abstract

In this paper, we develop a combined Finite Volumes - Finite Elements method
based on a time splitting to simulate some low-Mach flows. The mass conserva-
tion equation is solved by a Vertex-Based Finite Volume scheme using a τ -limiter.
The momentum equation associated with the compressibility constraint is solved
by a Finite Element projection scheme. The originality of the approach is twofold.
First, the state equation linking the temperature, the density and the thermo-
dynamic pressure is imposed implicitly. Second, the proposed combined scheme
preserves the constant states, in the same way as a similar one previously de-
veloped for the variable density Navier-Stokes system. Some numerical tests are
performed to exhibit the efficiency on the scheme. On one hand, academic tests
illustrate the ability of the scheme in term of convergence rates in time and space.
On the other hand, our results are compared to some of the literature by simu-
lating a transient injection flow.
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1 Introduction

Variable density - low Mach numbers flows have been widely studied in the recent
literature because of their applicability in various phenomena such as flows in high-
temperature gas reactors, meteorological flows, flows with convective and/or conductive
heat transfert, combustion processes and many others. In such cases, the resolution of
the full compressible Navier-Stokes system is not adapted, because of the sound waves
speed which move much faster than the entropy or the vorticity ones. Consequently,
this choice would impose a too strong time-step limitation in the framework of explicit
solvers, leading to unreachable numerical simulations. The Boussinesq incompressible
model is not a better alternative for such low-speed phenomena. Indeed, the compress-
ibility effects can not be totally canceled because of large variations of temperature and
density, even if pressure ones are much smaller. Consequently, some models have been
formally derived, leading to the filtering of the acoustic waves by the use of some formal
asymptotic expansions [24, 21, 30].

Like mentionned in [2], there exists two families of methods to compute flows at
low-Mach number regime. On one hand, there are the so-called density-based solvers,
corresponding to methods used for the simulation of supersonic and transonic flows,
which have been adapted to make them efficient and robust in the case of a low-Mach
flow [18, 28], using for example some preconditionning techniques [32, 23]. On the
other hand, there are the so-called pressure-based solvers, coming from the incompress-
ible case. The pressure variations become independent from the state equation, and are
coupled to the divergence condition on the velocity [26]. In that case, a fractional step
method initially developed in [6, 7, 31] and progressively improved in [13, 14, 12, 15, 16]
is used most of the time. The pressure field comes from the resolution of a Poisson equa-
tion, for which the right-hand side contains some time derivative of the density term
(see e.g. [2], Asymptotic approach 2). Concerning the space discretisation, lots of pa-
pers deal with Finite Element methods [19, 25], which can also been stabilized in the
case of convection dominated regimes [29, 22, 10, 11, 1]. Others are also devoted to
Finite Differences [27, 9, 20].

In this paper, we propose a combined Finite Volume - Finite Element method, which
was initially developed for the simulation of incompressible and variable density flows
[4]. This method is based on a time splitting allowing to solve the mass conservation
equation by a Finite Volume method, and the momentum equation associated with
the free divergence constraint on the velocity by a Finite Element one. It allows in
particular to preserve the stationary states and to ensure the discrete maximum prin-
ciple on the density [3]. It also has been used to simulate some mixture flows such as
avalanches [5]. Following the same philosophy, we propose to adapt this method to the
case of a low-Mach model, providing a new pressure-based solver. The originality of
our approach lies in the fact that the density is computed from the mass equation with
a Finite Volume method, the other variables of the problem being approximated by a
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Finite Element method. In our work, the equation of state in not explicitly imposed.
Moreover, the scheme recovers the properties of our previous proposed scheme at the
incompressible limit [4, 3].

The paper is organized as follows. In Section 2 the governing equations are recalled,
and the choice of the final system to be solved is justified among several equivalent sets
of equations. In Section 3, the combined Finite Volumes - Finite Elements is carefully
described. Section 4 is devoted to some numerical simulations to exhibit the ability of
the code. First, some analytical benchmarks are proposed and underline the accuracy
of the scheme. Then, a transient injection flow is simulated [2, 11, 1].

2 Governing equations

2.1 Choice of the system

The equations modelling low Mach number flows are derived by inserting the asymptotic
expansions of the variables with respect to the Mach number M of the problem in the
Navier-Stokes compressible equations [24, 2]. One of the characteristics of the process
is that the pressure splits into two terms. Denoting x ∈ R2 the space variable and
t ∈ R+

∗ the time one, we write:

p(x, t) = P (t) + π(x, t),

where P is called the thermodynamic pressure and π the dynamic pressure. P only
depends on t, and π is in the order of M2. According to single time scale and single
space scale asymptotics, the continuity, momentum and temperature equations, as well
as the equation of state for a calorifically perfect gas in adimensioned form in an open
polygonal domain Ω ⊂ R2 are given by [2]:

∂ρ

∂t
+∇ · (ρu) = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
+

1

γ
∇π − 1

Re
∇ · τ = − 1

Fr2 ρ ey, (2)

ρ

(
∂T

∂t
+ u · ∇T

)
− 1

γ

dP

dt
− 1

Re Pr
∆T = 0, (3)

P = (γ − 1)ρT, (4)

where ρ is the density, u the velocity and T the temperature. Here, τ is the viscosity
stress tensor defined by

τ = ∇u +∇uT − 2

3
∇ · u I,

and ey = (0, 1)T . The adimensional characteristic numbers of the flow are given by:
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• The gas specific heat ratio γ = 1.4,

• The Reynolds number

Re =
uref lref

ν
,

with uref and lref some characteristic velocity and length and ν the kinematic
viscosity of the flow,

• The Prandtl number
Pr =

µ cp
λ

=
ν

α
,

with µ the dynamic viscosity, cp the heat massic capacity, λ the heat conductivity
and α the heat diffusivity,

• The Froude number
Fr =

uref√
g lref

,

with g the scalar-valued norm of the gravity field.

By combining (1), (3) and (4), we obtain:

∇ · u = − 1

γP

dP

dt
+

γ − 1

Re PrP
∆T. (5)

In [2], two pressure-based schemes are proposed:

• In the first one, equations (2) and (3) are reformulated using (4), in order to make
the density variable disapear, to obtain:

∂u

∂t
+ u · ∇u =

(γ − 1)T

P

(
−1

γ
∇π +

1

Re
∇ · τ

)
− 1

Fr2 ey, (6)

∂T

∂t
+ u · ∇T =

(γ − 1)T

P

(
1

γ

dP

dt
+

1

Re Pr
∆T

)
. (7)

Equations (6) and (7) associated with the compressibility constraint (5) give a
system in (T,u, π, P ). The value of P is obtained either by an integration in space
on the domain of equation (5) leading to the conservation of the internal energy
over the total volume, or by an integration in space of equation (4) ensuring the
mass conservation.

• In the second one, the density ρ is kept as an unknown, and the system to be solved
is composed of (2)-(3)-(4) and (1), this last equation being used to express the
compressibility constraint imposed to the velocity field. Like before, an equation
has to be integrated in space to give the time evolution of P .
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In this work, we propose a new way to proceed, using the fact that the system
(1)-(2)-(3)-(4) is equivalent to the system (1)-(2)-(3) and (5). In particular, we easily
verify that the equation of state (4) is implicitly imposed. Indeed, with the notation

Dt =
∂

∂t
+ u · ∇, starting from (3) and using (5) to substitute the diffusive term, we

get:

DtT =
1

(γ − 1)ρ

(
dP

dt
+ P ∇ · u

)
. (8)

Combining (8) with (1) gives:

DtT =
1

(γ − 1)ρ

dP

dt
− P

(γ − 1)ρ2
Dtρ,

which is equivalent to:

DtT = Dt

(
P

(γ − 1)ρ

)
.

Consequently, supposing that the equation of state is initially fulfilled, we can deduce
(4). The thermodynamic pressure time evolution is determined by integrating (5) over
the domain Ω:

dP

dt
+
γP

|Ω|

∫
∂Ω

u.n =
γ(γ − 1)

|Ω|Re Pr

∫
∂Ω

∇T · n, (9)

where n is the outer unit normal to Ω on ∂Ω. In the following, we will consequently
consider the system (1)-(2)-(3)-(5) and (9), where the unknowns are ρ, T , u, π and P .

2.2 Initial and boundary conditions

The initial conditions for the system (1)-(2)-(3)-(5) and (9) are given in Ω by:

u(x, 0) = u0(x), T (x, 0) = T0(x), P (0) = P0, ρ(x, 0) =
P0

(γ − 1)T0(x)
.

Concerning the boundary conditions, we set ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅. We
impose:

u = uD on ∂Ω,

T = TD and ρ =
P

(γ − 1)TD
on ΓD,

∇T · n = ∇ρ · n = 0 on ΓN .

3 The combined Finite Volumes - Finite Elements

method

The combined Finite Volumes - Finite Elements scheme (C-FV-FE scheme) is based on
a time splitting, allowing in particular to solve equation (1) by a finite volumes solver,
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and equations (2), (3), (5) by a finite elements one, using the same strategy as the one
developed in [4] for the variable density incompressible Navier-Stokes system. We first
describe the splitting used in time in order to reach the globally optimal accuracy in
time according to the accuracy in time of each part of the scheme.

3.1 The time splitting

Let ∆t be the time step and tn = n∆t. We assume that P n−1, T n−1, ρn−1, un−1 and
πn−1 as well as P n, T n, ρn, un and πn are known approximated values, respectively at
times tn−1 and tn.

1. The thermodynamic pressure P n+1 is computed by the resolution of the ordinary
differential equation (9) using a BDF2-scheme in time and an extrapolation of
the temperature:

3P n+1 − 4P n + P n−1

2 ∆t
+
γP n+1

|Ω|

∫
∂Ω

un+1
D .n =

γ(γ − 1)

|Ω|Re Pr

∫
ΓD

∇(2T n − T n−1) · n.

(10)

2. The density ρn+1 at time tn+1 is computed by solving the continuity equation (1)
using a second order Runge-Kutta scheme in time:

ρn+ 1
2 − ρn

∆t
+∇ · (ρnun+ 1

2 ) = 0, (11)

ρn+1 − ρn

∆t
+

1

2

(
∇ · (ρnun+ 1

2 ) +∇ · (ρn+ 1
2 un+ 1

2 )
)

= 0, (12)

with

un+ 1
2 =

(2un − un−1) + un

2
=

3un − un−1

2
(13)

and:
∇ρn+ 1

2 · n = ∇ρn+1 · n = 0 on ΓN ,

ρn+1 =
P n+1

(γ − 1)TD
on ΓD.

3. The temperature T n+1 is computed by solving the temperature equation (3) using
a BDF2-scheme in time and an extrapolation of the velocity:

ρn+1

(
3T n+1 − 4T n + T n−1

2 ∆t
+ (2un − un−1) · ∇T n+1

)
−1

γ

(
3P n+1 − 4P n + P n−1

2 ∆t

)
− 1

Re Pr
∆T n+1 = 0 (14)

and:
∇T n+1 · n = 0 on ΓN ,

T n+1 = TD on ΓD.
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4. The velocity un+1 and the pressure πn+1 are computed by solving the momentum
equation (2) associated with the compressibility constraint (5) using a BDF2-
scheme in time and an extrapolation of the velocity:

ρn+1

(
3un+1 − 4un + un−1

2 ∆t
+ (2un − un−1) · ∇un+1

)
+

1

γ
∇πn+1 (15)

− 1

Re
∇ · τ n+1 = − 1

Fr2 ρ
n+1 ey,

∇ · un+1 = −3P n+1 − 4P n + P n−1

2γ∆t P n+1
+

γ − 1

Re PrP n+1
∆T n+1, (16)

with

∇ · τ n+1 = ∆un+1 +
1

3
∇
(
∇ · (2un − un−1)

)
.

and
un+1 = uD on ∂Ω.

Note that in [4], the second order in time was obtained thanks to a Strang splitting.
Indeed, the velocity used in the first step corresponding to the computation of the new
density ρn+1 was considered at time tn and not extrapolated at time (tn + tn+1)/2 as
indicated in (13), which is necessary to reach the second order accuracy. Note also that
in [2], the proposed time splitting is basically at order one, and a fixed-point procedure
is consequently added to increase the accuracy in time.

Remark 3.1. As it will be explained in the next section, such a way to proceed allows
in particular to solve the mass equation by a FV method. Consequently, it ensures
a local mass conservation, while preserving the maximum principle on the density at
the incompressible limit of the fluid. In that sense, the proposed numerical scheme
can be seen as a generalization of the one previously developed for the variable density
incompressible model [4]. Let us note moreover that in the case of another state equation
than (4), the scheme can also be easily adapted by modifying equations (3) and (5).

Remark 3.2. Instead of solving the temperature equation (14), we could have in mind
to use the state equation (4) to compute T n+1. Nevertheless, this would lead to a lack
of regularity of T n+1, which is necessary in the constraint (16) in order to derive the
values of un+1 and πn+1.

3.2 Space discretisation

The discretization in space is based on a triangulation of the domain Ω by a set of
triangles defining a regular mesh τh in the Ciarlet sense [8]. Each component of the
velocity uh is discretized by some P2-Lagrange finite elements, and the pressure πh
by some P1-Lagrange finite elements, leading to H1(Ω) conforming approximations
fulfilling the usual discrete LBB condition and consequently ensuring the stability of
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the discrete problem. The temperature Th is also discretized by some P2-Lagrange finite
elements, leading to a H1(Ω) conforming approximation. The density ρh is discretized
by piecewise constant values on a dual mesh τ ∗h associated with τh, allowing to consider a
vertex-based finite-volume schemes for the resolution of the mass equation. The density
field can also be interpreted as a P1-Lagrange finite elements field, since a value of the
density is naturally associated with each node of any triangles. The degrees of freedom
of each variable corresponding to the space associated discretizations are displayed in
Figure 1. For further details, we refer to [4].

Primal mesh τh

Dual mesh τ ∗h

uh and Th Dof

ρh and πh Dof

CA

A

Figure 1: Space discretization: patch ΩA. Meshes and Degrees of Freedom (DoF) for each variable.

3.2.1 Solving the thermodynamic pressure

Assuming that the approximated values of P n, P n−1, T n
h and T n−1

h are known (step 1 of
the time splitting), the value of P n+1 is simply computed by using the discrete version
of equation (10), namely:

3P n+1 − 4P n + P n−1

2 ∆t
+
γP n+1

|Ω|

∫
∂Ω

un+1
D .n =

γ(γ − 1)

|Ω|Re Pr

∫
ΓD

∇(2T n
h − T n−1

h ) · n. (17)

3.2.2 Solving the temperature by a FE method

Assuming that ρn+1
h , T n

h , T n−1
h , un

h, un−1
h , P n+1, P n and P n−1 are known (step 3 of

the time splitting), the value of T n+1
h is computed by the resolution the equation (14),
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namely:

ρn+1
h

(
3T n+1

h − 4T n
h + T n−1

h

2 ∆t
+ (2un

h − un−1
h ) · ∇T n+1

h

)
−1

γ

(
3P n+1 − 4P n + P n−1

2 ∆t

)
− 1

Re Pr
∆T n+1

h = 0. (18)

It is performed considering its weak finite elements formulation, associated with the
boundary conditions specified in section 2.2.

3.2.3 Solving the velocity by a FE method

We detail here the projection method used to derive un+1
h and πn+1

h (step 4 of the time
splitting), contrary to [4] in which an Uzawa solver was considered. It constitutes a
natural adaptation from the section 4 of [15] to the low-Mach model case. We assume
that ρn+1

h , πn
h , P n+1, P n, P n−1 and T n+1

h are known, as well as the auxiliary variables
ũn
h, ũn−1

h , φn
h, and φn−1

h specific to the projection method (where (ũ0
h, φ

0
h) and (ũ1

h, φ
1
h)

are initialized in the same way as in [15]). First, the velocity field ũn+1
h which does not

fulfill the constraint (5) is computed by solving the weak finite elements formulation of
the parabolic equation:


ρn+1
h

(3ũn+1
h − 4ũn

h + ũn−1
h

2∆t
+ (2ũn

h − ũn−1
h ) · ∇ũn+1

h

)
+

1

γ
∇
(
πn
h +

4

3
φn
h −

1

3
φn−1
h

)
− 1

Re
∇ · τhn+1 = − 1

Fr2 ρ
n+1
h ey,

ũn+1
h |∂Ω = un+1

D ,

associated with boundary conditions on the velocity given in section 2.2. Then, the
pressure πh

n+1 is defined by :
πn+1
h = πn

h + φn+1
h .

Here, φn+1
h is the solution of the weak finite elements formulation of the elliptic equation

given by: 
∇ ·
(

1

ρn+1
h

∇φn+1
h

)
=

3γ

2∆t

(
∇ · ũn+1

h +
3P n+1 − 4P n + P n−1

2γ∆t P n+1

− (γ − 1)

Re PrP n+1
∆T n+1

h

)
,

∇φn+1
h · n|∂Ω = 0,

(19)

where for any triangle K ∈ τh we define:

1

ρn+1
h |K

=
1

3

∑
Ai∈K

1

ρn+1
h (Ai)

,
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with Ai the three vertices belonging to the triangle K.

Finally un+1
h is defined by:

un+1
h = ũn+1

h − 2 ∆t

3 γ ρn+1
h

∇φn+1
h . (20)

Remark 3.3. From the discrete point of view, ũn+1
h and φn+1

h are computed by some
finite element solver based on the usual variational formulations. Consequently, these
two fields both belong to H1(Ω). As we can see, it is not the case for un+1

h , and the
evaluation of its divergence can only be understood in a weak sense.

3.2.4 Solving the density with a FV method

Assuming that ρnh, un
h and un−1

h are known (step 2 of the time splitting), the value
of ρn+1

h is computed by the resolution of the discrete version of equations (11)-(12),
namely:

ρ
n+ 1

2
h − ρnh

∆t
+∇ · (ρnhu

n+ 1
2

h ) = 0,

ρn+1
h − ρnh

∆t
+

1

2

(
∇ · (ρnhu

n+ 1
2

h ) +∇ · (ρn+ 1
2

h u
n+ 1

2
h )

)
= 0,

with

u
n+ 1

2
h =

(2un
h − un−1

h ) + un
h

2
=

3un
h − un−1

h

2
.

The Finite-Volume method is carefully detailed in [4], and its generalization to ensure
the L∞-stability in the case of incompressible flows with the use of the so-called τ -

limiters is given in [3]. Here, we point out the fact that from values of u
n+ 1

2
h obtained

by the Finite Element scheme, we need to deduce values of u
∗,n+ 1

2
h at the interfaces of the

density control volumes surrounding each node of the triangulation. These interfaces
correspond to the dotted lines of the dual mesh τ ∗h displayed in Figure 1. Following the
same strategy as in the incompressible case [4], this value has to be piecewise constant
on each triangle K of the mesh τh. In the low-Mach case, it is given by:

u
∗,n+ 1

2
h |K =

3u∗,nh |K − u∗,n−1
h |K

2
, (21)

with:

u∗,nh |K =
1

|K|

∫
K

ũn
h −

2 ∆t

3 γ ρnh|K
∇φn

h|K .

Remark 3.4. Definition (21) of u
∗,n+ 1

2
h |K allows to ensure that in the case of a con-

stant flow density in space (and consequently also constant in temperature), the scheme
preserves the constant states imposed in the continuous model by the incompressibility
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constraint. In other words, the weak divergence property in the sense of the Finite El-
ement projection method (see Remark 3.3) is transfered to the Finite Volume method,
as it was proved in the context of a direct resolution by an Uzawa solver in [4].

Remark 3.5. In the incompressible case, let us note that the developed scheme allows
to preserve the constant states. Indeed, let assume the following properties:

(H1) P n = P n−1 = P n−2,

(H2) T n
h = T n−1

h are constant in space,

(H3) ρnh is constant in space,

(H4)
∫
∂Ω

un+1
D · n = 0.

We want to prove that T n+1
h = T n

h and ρn+1
h = ρnh. First, (17) with assumptions (H1),

(H2) and (H4) lead to P n+1 = P n. Then, the weak formulation of (19) at time tn

writes:∫
ΩA

1

ρnh
∇φn

h · ∇ψA =
3γ

2∆t

(∫
ΩA

∇ · ũn
h ψA +

3P n − 4P n−1 + P n−2

2γ∆t P n

∫
ΩA

ψA

+
γ − 1

RePrP n

∫
ΩA

∇T n
h · ∇ψA

)
,

where ψA is the P1 basis function associated to an internal node A and ΩA is the support
of ψA (see Figure 1). Assumptions (H1), (H2) and (H4) lead to:∫

ΩA

(
ũn
h −

2∆t

3γρn+1
h

∇φn
h

)
· ∇ψA = 0,

and definition (20) of un
h gives: ∫

ΩA

un
h · ∇ψA = 0.

It is the analogous of relation (23) in [4], which allows to obtain:∫
∂CA

u∗,nh · n = 0,

where CA is the FV control volume associated to node A. Then, (H3) leads to ρn+1
h = ρnh.

Finally, equation (18) and assumptions (H1) and (H2) give T n+1
h = T n

h .

4 Numerical simulations

4.1 Analytical Benchmarks

4.1.1 Constant density

We first want to illustrate the fact that for incompressible flows, if the density and the
temperature are initially homogeneous, then they remain constant (see Remark 3.5).
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It was already done for the density in the case of the variable density incompressible
system using an Uzawa solver (see [4]). To do this, we consider the following analytical
solution: 

uex(x, y) = 4

(
−y(x− 1)2(x+ 1)2(y − 1)(y + 1)
x(y − 1)2(y + 1)2(x− 1)(x+ 1)

)
,

ρex = 1,

Tex =
1

γ − 1
Pex = 1,
πex = 0,

(22)

in the square domain Ω = [−1, 1]2. A source term in the right hand side of equation (2)
is consequently added instead of the gravity term. Boundary conditions are Dirichlet
ones on the whole boundary of Ω for all variables (i.e. ΓD = ∂Ω). Simulations are
performed on unstructured meshes at Re = 1 and Pr = γ up to time tf = 1 = N∆t
with ∆t = hmax = 0.0625 and hmax the maximum space step of the mesh. We give in
Table 1 the values of max

0≤n≤N
||ρnh − ρex||L∞(Ω) and max

0≤n≤N
||T n

h − Tex||L∞(Ω).

max
0≤n≤N

||ρnh − ρex||L∞(Ω) max
0≤n≤N

||T n
h − Tex||L∞(Ω)

2.56e-13 1.09e-13

Table 1: Constant density case, errors in density and temperature.

We observe on Table 1 that the density and the temperature remain constant nearly
to the machine error during the whole simulation time, as it can be seen at the final
time tf in Figure 2 on the mesh corresponding to hmax = 0.0625. We observe that
the density local maximum error is located in the vicinity of the boundaries. This
well-balanced property of the scheme ensures the preservation of the constant values of
density and temperature, in the case where the velocity field is divergence free.

4.1.2 Analytical solution

Now, in order to investigate the accuracy of the scheme, convergence tests are performed
for a non-solenoidal velocity field. The analytical solution is given by:

uex(t, x, y) = − 1

γ(2 + sin(2πt))

(
2(γ − 1)(2 + cos(2πt))

(1 + x2 + y2)2
+ π cos(2πt)

)(
x
y

)
,

ρex(t, x, y) =
2 + sin(2πt)

(γ − 1)(2 + cos(2πt))
(1 + x2 + y2),

Tex(t, x, y) =
2 + cos(2πt)

1 + x2 + y2
,

Pex(t) = 2 + sin(2πt),
πex(t, x, y) = sin(x) sin(y) sin(2πt),

(23)
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Density Temperature

Horizontal velocity Vertical velocity

Figure 2: Density, temperature and the two velocity components at tf = 1, for the mesh hmax = 0.0625.

in the square Ω = [−1, 1]2. The Reynolds and Prandtl numbers are respectively equal
to 1 and γ, the gravity term is not considered and appropriated source terms are added
in the right-hand-sides of equations (1), (2) and (3). Dirichlet boundary conditions are
considered on the whole boundary of Ω for the velocity, and non-homogeneous Neumann
boundary conditions are prescribed on the whole boundary of Ω for the temperature
and density (i.e. ΓN = ∂Ω).

The simulations are performed on unstructured grids in the range 1/150 ≤ hmax ≤
1/50, up to the final time tf = 0.2, using ∆t = hmax. In order to evaluate the per-
formances of the splitting proposed in section 3.1, the C-FV-FE scheme results are
compared with the ones obtained using some fixed-point iterations, following the same
idea as in [2] (see Appendix A for the description of the corresponding fixed-point algo-
rithm). In that case, the fixed-point iterations are performed until the L2-norm of two
successive iterates is smaller than 10−10 for all variables. From the practical point of
view, we observe that the fixed point converges in 6 or 7 iterations for the worst cases.
Finally, these results are also compared to those obtained with one of the schemes pro-
posed in [2] (pressure-based solver, asymptotic approach 1), for which some fixed-point
iterations are required.

We observe, whatever the considered scheme, that the thermodynamic pressure P
converges at order 2 in the L∞(0, tf ) norm. We plot in Figure 3 the L∞(0, tf ;L2(Ω))

13



norm of the errors on the density ρh, the temperature Th, the velocity uh and the
dynamic pressure πh as a function of hmax in a log/log scale. On one hand, all schemes
provide a convergence rate at order 2 for the density, the temperature and the velocity.
Concerning the dynamic pressure, a rate slightly larger than 1.5 is obtained. More
precisely, for the C-FV-FE scheme, a rate between 1.65 and 1.85 is observed, as we can
see in Table 2. These results are in good agreement with the incompressible constant
density case, for which it was proved in [17] that the errors in time in the L2(Ω)-
norm for the velocity and the pressure are of order 2 and 3/2 respectively. In fact, the
numerical convergence rate obtained for the dynamic pressure is slightly better than the
theorical expected one. On the other hand, we can see that the results obtained using
the C-FV-FE scheme with or without a fixed–point iterations procedure correspond to
the same orders of convergence. In particular, the errors are quite the same, except
a small difference in the density error. In conclusion, the fixed-point iterations are
not necessary for the C-FV-FE scheme. Furthermore, it should be pointed out that
the fixed-point iterations are crucial for the scheme proposed in [2]. Indeed, without
the fixed–point iterations, the scheme does not converge for the dynamic pressure, and
orders of convergence are smaller than one for the velocity and the temperature.

In Figure 4, we plot the L∞(0, tf ;L2(Ω)) error on the discrete state equation, defined
by:

errh = max
0≤n≤N

∣∣∣∣∣∣T n
h −

P n

(γ − 1)ρnh

∣∣∣∣∣∣
L2(Ω)

,

obtained with the C-FV-FE scheme. As explained in section 2.1, the state equation is
imposed implicitly. As we can see, errh converges towards zero at order 2, what corre-
sponds to the expected behaviour because of the previous convergence rates obtained
in ρh, Th and P .
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Density error
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C-FV-FE with fixed point iterations

Slope 2

10−2.2 10−2 10−1.8
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Velocity error

C-FV-FE
C-FV-FE with fixed point iterations

Ref. [2]
Slope 2

10−2.2 10−2 10−1.8

10−3
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Temperature error

C-FV-FE
C-FV-FE with fixed point iterations

Ref. [2]
Slope 2

10−2.2 10−2 10−1.8

10−2

10−1

Dynamic pressure error

C-FV-FE
C-FV-FE with fixed point iterations

Ref. [2]

Slope 3/2

Figure 3: Errors in L∞(0, tf ;L2(Ω)) norm versus hmax, log/log scale.
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hmax Error P Rate Error ρ Rate Error T Rate Error u Rate Error π Rate
2.00e-2 5.12e-3 - 2.84e-3 - 3.31e-3 - 8.49e-4 - 6.44e-2 -
1.56e-2 3.31e-3 1.76 1.76e-3 1.94 2.13e-3 1.79 4.72e-4 2.38 4.29e-2 1.65
1.11e-2 1.74e-3 1.89 9.04e-4 1.95 1.06e-3 2.05 2.10e-4 2.38 2.38e-2 1.73
7.81e-3 8.95e-4 1.89 4.54e-4 1.96 5.48e-4 1.87 1.03e-4 2.02 1.26e-2 1.80
6.67e-3 6.53e-4 1.99 3.32e-4 1.97 3.87e-4 2.19 7.48e-5 2.02 9.39e-3 1.85

Table 2: C-FV-FE scheme. Errors in L∞(0, tf ;L2(Ω)) norm and corresponding convergence rates.

10−2.2 10−2 10−1.8

10−3

10−2
errh

Slope 2

Figure 4: Error in L∞(0, tf ;L2(Ω)) norm on the discrete state equation versus hmax, C-FV-FE scheme, log/log scale.

4.2 The transient injection flow

This benchmark was initially proposed in [2] and also considered in [11] and [1].
Considering the adimensioned equations, the domain is defined by a rectangle Ω =
[−1.5 ; 1.5]× [0 ; 7] (see Figure 5), defining a cavity in which a callorifically perfect gas
is initially at rest. The inital temperature and thermodynamic pressure values are given
by:

T0 = 300 and P0 = 1. (24)

The Reynolds, the Prandtl and the Froude numbers of the fluid are respectively equal
to Re = 40, Pr = 0.71 and Fr = 0.042. Zero Dirichlet boundary conditions for the
velocity and zero Neumann ones for the temperature are specified on all boundaries,

except for a small hole in the bottom wall defined by ΓD =
[
− l

2
;
l

2

]
×{0}, with l = 0.2:
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ṁD

TD

T0

p0

Figure 5: The cavity Ω.

u(t, x, y)|∂Ω\ΓD
= 0,

∇T · n|∂Ω\ΓD
= 0.

On ΓD, the fluid is injected at the temperature TD = 600, subject to a parabolic
inflow profile. The momentum is imposed from t = 0 up to tf = 6 by:

(ρu)D(x, y) =

(
0 ;

6× 2.87 · 10−3 ṁD

l2 (γ − 1)

(
l2

4
− x2

))T

for 0 ≤ t ≤ 6, (25)

where ṁD = 1 is the average momentum. Because of this kind of boundary condition,
the C-FV-FE scheme has to be a little adapted. As in [2], instead of solving (10), we
first compute the new pressure P n+1 by solving a global conservation of mass equation
associated to an extrapolation of the temperature, namely:

P n+1 =
(
(γ − 1)|Ω|ρ0 + 2.87 · 10−3 ṁD l t

n+1
)(∫

Ω

1

2T n − T n−1

)−1

. (26)

Then, the velocity is updated on ΓD:

un+1
D =

(
0,

2.87 · 10−3 TD
P n+1

6ṁD

l2

(
l2

4
− x2

))T

=

(
0,

258.3

P n+1

(
l2

4
− x2

))T

,

and the following of the scheme remains the same.
Note that in [11] and [1], different boundary conditions are considered. Conse-

quently, the time evolution of the temperature is relatively similar but not exactly
comparable with the results presented in [2]. If the boundary conditions given in [11]
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are enforced in the C-FV-FE scheme, we can observe analogous temperature distribu-
tion and velocity field as those presented in [11].

First of all, we check the grid convergence property. We use some structured meshes
like the one displayed in Figure 6. We plot in Figure 7 the isovalues of the temperature
at tf = 6. Results are obtained on three meshes corresponding respectively to grids
60× 60, 120× 120 and 180× 180, and using ∆t = hmax. Even if the jet obtained with
the 60 × 60 grid seems to be a little delayed, we can see by comparing the solutions
obtained for grids 120× 120 and 180× 180 that they are very close to each other. Also,
we plot in Figure 8 the evolution of the velocity components ux and uy and of the
temperature T along the vertical lines x = 0, x = −L/4 and horizontal ones y = H/4,
y = H/2 and y = 3H/4 at t = 6. The temperature distribution and the velocity field
are nearly the same in both cases, so that the grid convergence can be considered as
achieved.

Figure 6: Grid Mesh 4× 4.

In order to confirm the observations made in section 4.1.2, we compare in Figure 9
the velocity and temperature distributions obtained with the C-FV-FE scheme and with
the scheme from [2] (pressure-based solver, asymptotic approach 1 with 15 iterations in
the fixed-point process) at time tf = 6 on a 120× 120 grid. These solutions look very
similar and are in good agreement with those reported in [2]. Nevertheless, although
the shape of the cross-sections showed in Figure 8 are comparable to the profiles plotted
in Figures 8 and 9 in [2], the amplitudes obtained with the C-FV-FE scheme are slightly
greater than those computed in [2]. These differences can be explained by the ability
of our scheme to preserve locally the density of the fluid.

Finally, we want to investigate the thermodynamic pressure evolution. Similarly to
[2], neglecting the diffusive term in (9), we get:

dP

dt
+
γP

|Ω|

∫
ΓD

u.n ' 0. (27)
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Figure 7: C-FV-FE scheme, temperature at t = 6. From the left to the right: Grids 60× 60, 120× 120 and 180× 180.
40 isovalues from 330 to 600, uniform distribution.

Using the value of (ρu)D given in (25), and the state equation (4) to evaluate ρD, we
can explicitly solve (27) to obtain an approximation of the thermodynamic pressure:

P (t) ' P0 +
258.3 γ

750 |Ω|
t. (28)

Figure 10 displays the evolution of the approximate thermodynamic pressure given by
(28), the one computed with the C-FV-FE scheme by equation (26) and also by the
scheme from [2] on a 120× 120 grid. Once again, results are close to each other.

Remark 4.1. In order to give a justification to the approximation used in the derivation

of (27), we computed the average values in time of
γP

|Ω|

∫
∂Ω

u.n and
γ(γ − 1)

|Ω|RePr

∫
∂Ω

∇T · n

with the C-FV-FE scheme, and obtained the values of 2.26e− 02 and 4.62e− 04 respec-
tively. Consequently, as the second term is two orders of magnitude below the first one,
here it can be neglected. This fact can also explain that the pressure given by (28) in
slightly lower that the one computed using the C-FV-FE scheme, since the second term
is not only very small, but also positive.
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Figure 8: Evolution of ux, uy and T along the lines x = 0, x = −L/4, y = H/4, y = H/2 and y = 3H/4 at t = 6, for the
grids 120× 120 and 180× 180.
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Figure 9: Temperature and velocity at t = 6. Left: C-FV-FE scheme. Right: scheme in Ref. [2]. Top: temperature - 40
isovalues from 330 to 600, uniform distribution. Bottom: velocity.
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Pressure computed with the scheme in Ref. [2]
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Figure 10: Evolution of the thermodynamic pressure.
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5 Conclusion

In this article, a combined Finite Volume - Finite Element method based on a time
splitting has been developed. The main ingredients are:

• to solve the mass conservation equation by a FV method instead of exploiting the
equation of state;

• to solve the temperature and the momentum equations by a FE method, using a
projection method in order to fulfill the constraint (5);

• to keep a particular definition of the velocity (see (21)) in order to verify the
divergence constraint also in the FV scheme.

We have compared the numerical results of our C-FV-FE method with those obtained
implementing one of the schemes proposed in [2], showing that all of them are of order
two. We have also verified that our scheme allows to preserve the constant states as
well as the maximum principle on the density at the incompressible limit of the fluid.
We underline that a fixed-point iterations procedure is not necessary, and consequently
the C-FV-FE scheme achieves the computation faster than other schemes proposed in
the literature. Finally, we have investigated a problem of injection of hot gas into a
cavity filled with the same gas, obtaining results very similar to those reported in the
literature. Nevertheless, the adequacy of the C-FV-FE method for more challenging
laminar or turbulent flow situations remains to be investigated. We intend to do this
in a future work.
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A Appendix

In this section, we will detail the fixed-point iterations algorithm. We perform a loop
of index l. Knowing P n+1,l, T n+1,l, un+1,l and πn+1,l, we show how to compute P n+1,l+1,
T n+1,l+1, un+1,l+1 and πn+1,l+1. Note that for a generic variable a, an+1,0 = an.

1. The new density ρn+1, l+1 is computed by solving:

ρn+ 1
2
, l+1 − ρn

∆t
+∇ · (ρnun+ 1

2
, l) = 0, (29)

ρn+1, l+1 − ρn

∆t
+

1

2

(
∇ · (ρnun+ 1

2
, l) +∇ · (ρn+ 1

2
, l+1un+ 1

2
, l)
)

= 0, (30)

with:

un+ 1
2
, l =

un + un+1, l

2
.
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2. The thermodynamic pressure P n+1, l+1 is computed by:

3P n+1, l+1 − 4P n + P n−1

2 ∆t
+
γP n+1, l+1

|Ω|

∫
∂Ω

un+1
D .n =

γ(γ − 1)

|Ω|Re Pr

∫
ΓD

∇T n+1, l · n.

(31)

3. The temperature T n+1, l+1 is computed by solving:

ρn+1, l+1

(
3T n+1, l+1 − 4T n + T n−1

2 ∆t
+ un+1, l · ∇T n+1, l

)
−1

γ

(
3P n+1, l+1 − 4P n + P n−1

2 ∆t

)
− 1

Re Pr
∆T n+1, l+1 = 0, (32)

4. The velocity un+1, l+1 and the pressure πn+1, l+1 are computed by solving:

ρn+1, l+1

(
3un+1, l+1 − 4un + un−1

2 ∆t
+ un+1, l · ∇un+1, l

)
+

1

γ
∇πn+1, l+1

− 1

Re
∇ · τ n+1, l+1 = − 1

Fr2ρ
n+1,l+1 ey,

∇ · un+1, l+1 = −3P n+1, l+1 − 4P n + P n−1

2γ∆t P n+1, l+1
+

γ − 1

Re PrP n+1, l+1
∆T n+1, l+1,

with

∇ · τ n+1, l+1 = ∆un+1, l+1 +
1

3
∇
(
∇ · un+1, l

)
.
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