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L∞-stability of IMEX-BDF2 finite volume
scheme for convection-diffusion equation

Caterina Calgaro and Meriem Ezzoug

Abstract In this paper, we propose a finite volume scheme for solving a two-
dimensional convection-diffusion equation on general meshes. This work is based
on a implicit-explicit (IMEX) second order method and it is issued from the seminal
paper [2]. In the framework of MUSCL methods, we will prove that the local max-
imum property is guaranteed under an explicit Courant-Friedrichs-Levy condition
and the classical hypothesis for the triangulation of the domain.

Key words: Convection-diffusion equation, finite volume scheme, IMEX-BDF2
scheme,L∞-stability
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1 Introduction

Convection-diffusion processes appear in many areas of science, e.g. fluid dynamics
or heat and mass transfer. In the study of the evolution of a mixture, the system of
PDEs derives from the compressible Navier-Stokes equations. The mixture of two
viscous fluids is described by the densityρ ≥ 0, themass velocityfield v (which is
not solenoidal) and the pressurep. Following Kazhikhov and Smagulov [11], we set

u = v+λ ∇ ln(ρ), (1)
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ISSIG. Université de Gabès. 6032 Gabès, Tunisie
e-mail: meriemezzoug@yahoo.fr

1



2 Caterina Calgaro and Meriem Ezzoug

for some mass diffusion coefficientλ > 0. This Fick’s law describes the diffu-
sive fluxes of one fluid into the other. Clearly, thevolume velocityfield u satisfies
divu = 0 and we obtain the non-standard constraint divv =−div

(
λ ∇ ln(ρ)

)
, which

is relied on the definition of the pressurep. Using (1), the mass conservation equa-
tion becomes

∂ρ
∂ t

+div(ρu) = λ ∆ρ . (2)

The momentum equation can also be rewritten in order to obtain the Kazhikhov-
Smagulov model [11]. This model was firstly studied in [14, 1](see also references
therein). The mathematical analysis in a three-dimensional domain of Kazhikhov-
Smagulov type models was carried out in recent works [5, 8], where the authors
study the Kazhikhov-Smagulov models with a specific Korteweg stress tensor. The
numerical study of a Kazhikhov-Smagulov model for the two-dimensional case can
be found in [4], where the authors propose an hybrid finite volume-finite element
method combined with the backward Euler method in time. In order to generalize
the analysis given in [4] to second-order methods in time andspace, the first goal
is to recover theL∞-stability of the finite volume method used for the convection-
diffusion equation. This is the purpose of this paper.

2 Description of the numerical scheme

This section is devoted to the design of a numerical scheme toapproximate (2),
using the vertex-based MUSCL finite volume methods introduced in [13] and used
in [2] for a second-order accuracy in space, and an implicit-explicit (IMEX) linear
multistep methods [10] for a second-order in time.

Mesh definitions and notations.Let Ω be an open bounded polygonal subset on
R

2, with sufficiently regular boundary∂Ω , and[0,T] the time interval, forT > 0.
The discretization of (2) will be carried out on an unstructured triangular mesh. We
denote byTh a partition ofΩ composed of conforming and isotropic trianglesTk,
k∈ [1,K], with K ∈N

∗. TheTh is called theprimal mesh. We suppose the following
hypotheses:

(H1) Let{Th}h>0 be aregular family of triangulations ofΩ .
(H2) The triangulationTh is of weakly acute type(no triangle with an angle greater

thanπ/2).

For each elementT ∈ Th, we denoteBT the barycenter of the triangle,|T| the area
of T, andMi , M j1, M j2 the three vertices ofT. We also denote respectivelyMi j1 and
Mi j2 the middles of[MiM j1] and[MiM j2].
Let us construct thedual meshCh = {Ci , i ∈ [1, I ]}, which defines a second partition
of Ω , (I ∈N

∗ is the number of vertices ofTh). The dual finite volumeCi associated
with each vertexMi , i ∈ [1, I ], is a closed polygon obtained in the following way:
we join the barycenterBT of every triangleT ∈ Th which share the vertexMi with
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the middle point of every side ofT containingMi (see Fig. 1). IfMi ∈ ∂Ω , then we
complete the boundary ofCi by the segments joiningMi with the middle point of
boundary sides that containMi . Ci is often called the vertex-based control volume
around the nodeMi . Accordingly, we have

⋃
T∈Th

T = Ω̄ =
⋃

i∈[1,I ]Ci .

Moreover, if we denote|Ci | the area ofCi ∈ Ch, then|Ci |= ∑T,Mi∈T
|T|
3

.

For i ∈ [1, I ], let V (i) =
{

j ∈ [1, I ], C j is a neighbor ofCi
}

. For l = 1,2, we denote

Γ (T)
i j l

the segment[Mi j l BT ], A(T)
i j l

its middle point,n(T)
i j l

the unit outward normal toCi

alongΓ (T)
i j l

and|Γ (T)
i j l

| the length ofΓ (T)
i j l

. ForT ∈ Th andMi ∈ T, we have:

2

∑
l=1

|Γ (T)
i j l

|n(T)
i j l

=−|T|∇ψi , (3)

whereψi is theP1 basis function associated to the vertexMi of T. For everyCi ∈Ch,
the boundary ofCi is

∂Ci =
⋃

T,Mi∈T

(
Γ (T)

i j1
∪Γ (T)

i j2

)
. (4)
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Fig. 1 Dual mesh-Vertex based control volumeCi around the nodeMi .

IMEX-BDF2 finite volume scheme.Here, we describe the finite volume scheme
for solving (2). In order to obtain the density reconstruction on the interfacesΓ (T)

i j l
,

we use the MUSCL technique with a multislope gradient reconstruction. Concern-
ing the time discretization, we adapt the implicit-explicit (IMEX) linear 2-step meth-
ods usingextrapolated BDF2scheme for the convective term combined withim-
plicit BDF2 scheme for the diffusive term. The velocity fieldu(t,x) ∈R

2 is a given
function verifying the divergence free condition. For the space discretization, the
usual vertex-based finite volume scheme on control volumeCi , for all i ∈ [1, I ],
reads
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d
dt

∫

Ci

ρ(t,x)dx+
∫

∂Ci

ρ(t,x)u(t,x) ·ndσ = λ
∫

∂Ci

∇ρ(t,x) ·ndσ . (5)

We denote by∆ t the time step andtn = n∆ t, n≥ 0, but variable time steps can also
be used. Then, the approximate solutionρn

i , i ∈ [1, I ], at timetn, verifies

ρn
i ≈

1
|Ci |

∫

Ci

ρ(tn,x)dx.

In particular, the numerical approximation of the density is a piecewise constant
function in space on the control volumeCi . For the time discretization, we consider
the implicit BDF2 scheme and an extrapolated BDF2 scheme following [10]. With
this choice, we obtain a second-order accuracy in time. Then, the equation (5) is
rewritten as follows, for eachi ∈ [1, I ] andn≥ 1,

ρn+1
i −

2λ
3

∆ t
|Ci |

∫

∂Ci

∇ρ(tn+1,x) ·ndσ =
4
3

ρn
i −

4
3

∆ t
|Ci |

∫

∂Ci

ρ(tn,x)u(tn,x) ·ndσ

−
1
3

ρn−1
i +

2
3

∆ t
|Ci |

∫

∂Ci

ρ(tn−1,x)u(tn−1,x) ·ndσ .

(6)
In order to approximate∇ρ(tn+1,x) in (6), we consider aP1-finite element approach
for the density such that

ρn+1
|T

≈ ∑
M j∈T

ψ j ρn+1
j , for all T ∈ Th,

with {ψ j} j∈[1,I ] the canonical basis of the usualP1 finite element space. Using (3)

and (4), we findρn+1
i , i ∈ [1, I ], n≥ 1, verifying the following second-orderIMEX-

BDF2 finite volume scheme:

ρn+1
i +

2λ
3

∆ t
|Ci |

∑
T,Mi∈T

|T| ∑
M j∈T

∇ψi ·∇ψ j ρn+1
j

=
4
3

ρn
i −

4
3

∆ t
|Ci |

∑
T,Mi∈T

2

∑
l=1

|Γ (T)
i j l

| Gn
i j l

(
ρn

i j l ,ρ
n
j l i

)

−
1
3

ρn−1
i +

2
3

∆ t
|Ci |

∑
T,Mi∈T

2

∑
l=1

|Γ (T)
i j l

| Gn−1
i j l

(
ρn−1

i j l
,ρn−1

j l i

)
.

(7)

Here we denote byGi j l

(
ρ1,ρ2

)
a numerical flux that satisfies the consistency, con-

servativity and monotonicity properties. In particular, for any constant functionρ1,
we have

∑
k∈V (i)

|Γ (T)
ik | Gik

(
ρ1,ρ1

)
= 0. (8)

In [2], Gi j l is the upstream flux, but many other numerical fluxes can be considered,
as for instance Lax-Friedrichs or Engquist-Osher fluxes. Weunderline that for multi-
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physics coupled models, a particular attention must be paidin the approximation of
the continuous velocity associated to any point of∂Ci (see [3]).

In (7), ρi j l andρ j l i denote the density reconstructions on the segmentsΓ (T)
i j l

, for
l = 1,2. In order to reach a second-order accuracy in space, we use the MUSCL tech-
nique [13] with a multislope gradient reconstruction. IntroducingM̂ = [M j1M j2]∩

(MiA
(T)
i j l

) andN̂ ∈ [Mk1Mk2]∩ (MiA
(T)
i j l

), we define

pup
i j l

=
ρi −ρN̂

‖MiN̂‖
and pdown

i j l =
ρM̂ −ρi

‖MiM̂‖
.

Then,ρi j l is the density evaluated at nodeA(T)
i j l

, defined as:

ρi j l = ρi + p̂i j l ‖MiA
(T)
i j l

‖, with p̂i j l = pup
i j l

Lim
( pdown

i j l

pup
i j l

)
,

where Lim is a so-called ”τ-limiter” (for details see [2]). In particular, they have the
following result:

Lemma 1. There exists some coefficientsωi j l k ≥ 0, k∈ V (i), such that

ρi j l −ρi = ∑
k∈V (i)

ωi j l k
(
ρi −ρk

)

holds, and furthermore, they verify∑k∈V (i) ωi j l k ≤
7τ
12CTh, where the constant CTh

characterizes the mesh regularity (but it is more general than the classical Ciarlet
ratio) andτ > 0 is used in the definition of theτ-limiter.

3 L∞-stability of the numerical scheme

The IMEX-BDF2 finite volume scheme (7) is rewritten as linearsystem:

A ρn+1 = Fn, (9)

where the matrixA and the right hand sideFn are defined as follows:

Ai,i = 1+2λ ∆ t ∑
T,Mi∈T

‖ ∇ψi ‖
2, Ai, j = 2λ ∆ t ∑

T,Mi 6=M j∈T

∇ψi ·∇ψ j , ∀i, j ∈ [1, I ],

Fn
i =

4
3

ρn
i −

4
3

∆ t
|Ci |

∑
T,Mi∈T

2

∑
l=1

|Γ (T)
i j l

| Gn
i j l

(
ρn

i j l
,ρn

j l i

)

−
1
3

ρn−1
i +

2
3

∆ t
|Ci |

∑
T,Mi∈T

2

∑
l=1

|Γ (T)
i j l

| Gn−1
i j l

(
ρn−1

i j l
,ρn−1

j l i

)
, ∀i ∈ [1, I ].

Under the hypotheses (H1) and (H2) on the meshTh, the matrixA is an M-matrix.
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Remark 1.The hypothesis (H2), necessary to establish error estimates, is classical
for the vertex-centered finite volume scheme [12] or the combined finite volume-
finite element scheme [9]. Obviously, the M-matrix propertystill holds for Delaunay
triangulations (see [6], Sect. 3.4).

Now, we prove the following result:

Proposition 1. If for any n≥ 1, we haveρn−1 ≥ 0 andρn ≥ 0, then the right hand
side of linear system (9) satisfyFn ≥ 0 under the CFL condition:

∆ t ≤ min
1≤i≤I

|Ci |
2
3

(7τ
12

CTh +2
)
‖ u ‖i,∞ ∑

T,Mi∈T

(
|Γ (T)

i j1
|+ |Γ (T)

i j2
|
) , (10)

with ‖ u ‖i,∞= max
T,Mi∈T

‖ uT ‖l2(R2) whereuT is the cell average velocity.

Proof. Let i ∈ [1, I ] andn≥ 1. Thanks to (8), the i-th row of (9) is given by:

(
A ρn+1

)
i
=

4
3

ρn
i −

4
3

∆ t
|Ci |

∑
T,Mi∈T

2

∑
l=1

|Γ (T)
i j l

|
(

Gn
i j l

(
ρn

i j l ,ρ
n
j l i

)
−Gn

i j l

(
ρn

i ,ρn
i

))

−
1
3

ρn−1
i +

2
3

∆ t
|Ci |

∑
T,Mi∈T

2

∑
l=1

|Γ (T)
i j l

|
(

Gn−1
i j l

(
ρn−1

i j l
,ρn−1

j l i

)
−Gn−1

i j l

(
ρn−1

i ,ρn−1
i

))
.

(11)

Let us introduce some definitions and notations dropping thetime indices, such that

∆ρi j l = ρi j l −ρi, ∆̃ρi j l = ρ j l i −ρi, for l = 1,2.

Thanks to Lemma 1, there exists forl = 1,2, some coefficientsωi j l k ≥ 0, k∈ V (i),
such that

∆ρi j l = ∑
k∈V (i)

ωi j l k
(
ρi −ρk

)
, with ∑

k∈V (i)

ωi j l k ≤
7τ
12

CTh.

Also, there exists forl = 1,2, some coefficients̃ωi j l k ≥ 0, k∈ V (i), such that

∆̃ρi j l = ∑
k∈V (i)

ω̃i j l k
(
ρk−ρi

)
, with ∑

k∈V (i)

ω̃i j l k ≤ 2.

Next, for 0< δi j l < 1, l = 1,2, we consider the following quantities:

Ei j l =
|Γ (T)

i j l
|

|Ci |

∂Gi j l

∂ρ1

(
ρi + δi j l ∆ρi j l , ρi + δi j l ∆̃ρi j l

)
, l = 1,2,

Fi j l = −
|Γ (T)

i j l
|

|Ci |

∂Gi j l

∂ρ2

(
ρi + δi j l ∆ρi j l , ρi + δi j l ∆̃ρi j l

)
, l = 1,2.

Of course, by monotonicity of the numerical flux, we have Ei j l ≥ 0 and Fi j l ≥ 0.
Hence, using the mean value theorem, the numerical scheme (11) is rewritten as
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follows:

(
Aρn+1

)
i
=

4
3

ρn
i −

4
3

∆ t ∑
T,Mi∈T

∑
k∈V (i)

2

∑
l=1

(
ωi j l kE

n
i j l

(
ρn

i −ρn
k

)
− ω̃i j l kF

n
i j l

(
ρn

k −ρn
i

))

−
1
3

ρn−1
i +

2
3

∆ t ∑
T,Mi∈T

∑
k∈V (i)

2

∑
l=1

(
ωi j l kE

n−1
i j l

(
ρn−1

i −ρn−1
k

)
− ω̃i j l kF

n−1
i j l

(
ρn−1

k −ρn−1
i

))
.

(12)
Finally, we obtain the following equations for eachi ∈ [1, I ] and for alln≥ 1:

(
Aρn+1

)
i
= aii ρn

i + bii ρn−1
i + ∑

k∈V (i)

(
aik ρn

k + bik ρn−1
k

)
, (13)

whereaii , bii , aik andbik are easily determined from (12). Clearly, we have

aii + bii + ∑
k∈V (i)

(
aik + bik

)
= 1. (14)

Moreover, by choosing the time step∆ t such that for alli ∈ [1, I ],

∆ t ≤

(

∑
T,Mi∈T

∑
k∈V (i)

2

∑
l=1

(4
3
(ωi j l kE

n
i j l
+ ω̃i j l kF

n
i j l
)−

2
3
(ωi j l kE

n−1
i j l

+ ω̃i j l kF
n−1
i j l

)
))−1

,

(15)
we have

0 ≤ aii +bii ≤ 1 and 0≤ aik +bik ≤ 1. (16)

Hence, (13), (14) and (16) allow us to conclude that for eachi ∈ [1, I ],
(

Aρn+1
)

i
is

written as convex combination ofρn
i , ρn−1

i , ρn
k andρn−1

k , k∈ V (i). ⊓⊔

Finally, as a consequence of Proposition 1, and recalling that an M-matrix is invert-
ible with positive inverse, we obtain:

Theorem 1.Let the velocity fieldu divergence free and the initial densityρ0 such
that ρ0(x) ≥ 0. Then, under the CFL condition (10) and the hypotheses (H1) and
(H2) on the mesh, the linear system (9) is invertible, and

ρn+1 ≥ 0, ∀ n≥ 1. (17)

Numerical results.Here we consider structured meshes onΩ =]−1,1[2, a station-
ary rotating velocity fieldu = (x2,−x1) and a small diffusion coefficientλ = 10−6.

Settingr =
√
(x1+0.5)2+ x2

2, the discontinuous initial condition isρ0 = 1000 if
r ≤ 0.25 andρ0 = 1 if r > 0.25. The computations are performed for different val-
ues ofh ≥ 0.004, until T = 0.3. In Fig. 2 we show the evolution of the density
contours (left) and the solution profiles for some horizontal sections (right). We can
remark that the maximum principle is well verified using the IMEX-BDF2 scheme,
unlike other classical order two schemes, such as Crank-Nicolson Adams-Bashforth
or Crank-Nicolson Runge-Kutta. Some other numerical results can be found in [7].
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Fig. 2 The evolution of the density contours (left) and the solution profiles (right) forλ = 10−6.
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