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L*-stability of IMEX-BDF2 finite volume
scheme for convection-diffusion equation

Caterina Calgaro and Meriem Ezzoug

Abstract In this paper, we propose a finite volume scheme for solvinga t
dimensional convection-diffusion equation on generallmesThis work is based
on a implicit-explicit IMEX) second order method and itésued from the seminal
paper [2]. In the framework of MUSCL methods, we will provatithe local max-

imum property is guaranteed under an explicit Couranteffitas-Levy condition

and the classical hypothesis for the triangulation of thaaio.

Key words: Convection-diffusion equation, finite volume scheme, IMBRF2
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1 Introduction

Convection-diffusion processes appear in many areaserfisej e.g. fluid dynamics
or heat and mass transfer. In the study of the evolution ofxdurg, the system of
PDEs derives from the compressible Navier-Stokes equatifime mixture of two
viscous fluids is described by the dengity> 0, themass velocityield v (which is
not solenoidal) and the pressupe~ollowing Kazhikhov and Smagulov [11], we set

u=v+AOIn(p), Q)
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for some mass diffusion coefficiedt > 0. This Fick's law describes the diffu-
sive fluxes of one fluid into the other. Clearly, thelume velocityfield u satisfies
divu = 0 and we obtain the non-standard constrainvaiv—div(A OIn(p)), which

is relied on the definition of the pressuypeUsing (1), the mass conservation equa-

tion becomes

(Z—erdiv(pu) =AAp. (2)

The momentum equation can also be rewritten in order to olke Kazhikhov-
Smagulov model [11]. This model was firstly studied in [14(dge also references
therein). The mathematical analysis in a three-dimensidm@ain of Kazhikhov-
Smagulov type models was carried out in recent works [5, 8fne the authors
study the Kazhikhov-Smagulov models with a specific Korgwsteess tensor. The
numerical study of a Kazhikhov-Smagulov model for the tviumehsional case can
be found in [4], where the authors propose an hybrid finiteiwva-finite element
method combined with the backward Euler method in time. bleoto generalize
the analysis given in [4] to second-order methods in time spate, the first goal
is to recover thd."-stability of the finite volume method used for the convettio
diffusion equation. This is the purpose of this paper.

2 Description of the numerical scheme

This section is devoted to the design of a numerical schenappooximate (2),
using the vertex-based MUSCIL finite volume methods intreduo [13] and used
in [2] for a second-order accuracy in space, and an impijcit (IMEX) linear
multistep methods [10] for a second-order in time.

Mesh definitions and notations.Let Q be an open bounded polygonal subset on
RR?, with sufficiently regular boundar§Q, and|0, T] the time interval, forT > 0.
The discretization of (2) will be carried out on an unstruetitriangular mesh. We
denote by.; a partition of Q composed of conforming and isotropic trianglgs

k € [1,K], with K € N*. The % is called thgrimal meshWe suppose the following
hypotheses:

(H1) Let{Z}n>0 be aregularfamily of triangulations ofQ.
(H2) The triangulation; is of weakly acute typéno triangle with an angle greater
thanrt/2).

For each elemeri € %, we denotéBr the barycenter of the trianglél | the area
of T, andM;, Mj,, Mj, the three vertices of . We also denote respectively;, and
M;j, the middles ofM;M;, ] and[MiM,].

Let us construct thdual mesié, = {%i,i € [1,1]}, which defines a second partition
of Q, (I € N*is the number of vertices of},). The dual finite volumés; associated
with each vertexM;, i € [1,1], is a closed polygon obtained in the following way:
we join the barycentdBr of every triangleT € %, which share the verteM; with
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the middle point of every side Gf containingV; (see Fig. 1). IV € Q, then we
complete the boundary &f by the segments joininlyl; with the middle point of
boundary sides that contalvy. %; is often called the vertex-based control volume
around the noddl;. Accordingly, we havéJrc z T = Q = Uiepr) G-

Moreover, if we denotézi| the area of6; € %, then|6i| = Y1y et %
Fori € [1,1], let ¥ (i) = {j € [1,1], % is a neighbor of4; } . For| = 1,2, we denote

I'ij(lT) the segmenivj, Br], Ai(jT|> its middle point,ni(jTl> the unit outward normal t@;

alongl'--(T> and|("| the length of ") ForT IhandM; € T, we have:
i i Ui

2 (T (T)
Zl|rij| Injj," = —[T[Oys, 3)
=

wherey; is theP1 basis function associated to the verxof T. For everys; € 6,
the boundary of; is

o= |J (runy). (4)
TMeT

ij1 ij2

Fig. 1 Dual mesh-Vertex based control volurdearound the nod#/;.

IMEX-BDF2 finite volume scheme.Here, we describe the finite volume scheme
for solving (2). In order to obtain the density reconstroiston the interfacesj(lT),

we use the MUSCL technique with a multislope gradient retangon. Concern-
ing the time discretization, we adapt the implicit-exgl{tMEX) linear 2-step meth-
ods usingextrapolated BDFZcheme for the convective term combined wiith
plicit BDF2 scheme for the diffusive term. The velocity fiaidt,x) € R? is a given
function verifying the divergence free condition. For thpase discretization, the
usual vertex-based finite volume scheme on control vol@ndor all i € [1,1],
reads
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E/ p(t,x)dx+/ p(t,x)u(t,x)-ndo = A Op(t,x)-ndo. (5)
dt J« 0% %

We denote byt the time step ant' = nAt, n > 0, but variable time steps can also
be used. Then, the approximate solut@hi < [1,1], at timet", verifies

n_ 1

il ) p(t",x)dx

o~
In particular, the numerical approximation of the densgyaipiecewise constant
function in space on the control volur@. For the time discretization, we consider
the implicit BDF2 scheme and an extrapolated BDF2 schentedoig [10]. With
this choice, we obtain a second-order accuracy in time. Tthenequation (5) is
rewritten as follows, for eache [1,1] andn > 1,

21 At 4 4 At
n+1_ =2 = 0 tn+l’x .ndo = n tn,X u tn,X -ndo
P 3 |€i| Jow d ) L 32 314 Wp( M)
_ Zan-1, &40 n-1 n-1 .
3P +3| |/ p(t"Hx)u(t"*)x) -ndo.

(6)
In order to approximatgp (t"+1,x) in (6), we consider ®;-finite element approach
for the density such that

p‘”T+1~MZ g e, forall T e %,
with {¢;} 1) the canonical basis of the usugy finite element space. Using (3)

and (4), we fingp™™, i € [1,1], n> 1, verifying the following second-ordéMEX-
BDF2 finite volume scheme

2\ At
P+ T|'S Ow- Dy pMt
I |(€|TV;€T| |MZ€ | iP
4 4 At
=3P 3 |%|T’;€le| i | Gl (el pfh) (7)
1 n1 2 At
Yol teih.
3 3 |%|Tr;eT|Zl| iji IJ| i P )

Here we denote bg;j, (pl,pz) a numerical flux that satisfies the consistency, con-
servativity and monotonicity properties. In particulam, &ny constant functiop;,

we have )
> L7 Gi(p1,p1) = 0. ®)
ke7 (i)

In [2], Gjj, is the upstream flux, but many other numerical fluxes can bsidered,
as for instance Lax-Friedrichs or Engquist-Osher fluxesuldderline that for multi-
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physics coupled models, a particular attention must beipalte approximation of
the continuous velocity associated to any poind@f (see [3]).

In (7), pij, and pj,i denote the density reconstructions on the segnEhTté for
| =1,2.1norder to reach a second-order accuracy in space, wa@s#4SCL tech-
nique [13] with a multislope gradient reconstruction. tntacingM = [Mj, M;,] N

(MiAi(J-Tl)) andN M, Mi,] N (MiAi(p), we define

pp= PPN g pown_ Pu— A
M|

Then,g;j, is the density evaluated at noA%TI>, defined as:

T pdown

~ 1

pij, = pi+ Pij, ”MiAi(h)”v with  pij, = p.]pl-lm( pjbp ),
1

where Lim is a so-calledr™-limiter” (for details see [2]). In particular, they haveeth
following result:

Lemma 1. There exists some coefficientg > 0, k€ (i), such that

P —pi= Y @jk(oi—p)
keTi)

holds, and furthermore, they verif§ic ;) wjk < I—EC% where the constant &

characterizes the mesh regularity (but it is more generahtthe classical Ciarlet
ratio) andt > Ois used in the definition of thelimiter.

3 L*-stability of the numerical scheme

The IMEX-BDF2 finite volume scheme (7) is rewritten as linegstem:
A pn+1 Fn (9)

where the matriXA and the right hand side” are defined as follows:

Aj = 1+ 214t 0@ % Aj=2)4t ; Oy -0y, Vi,je (L1,
TMeT T,Mi#M;eT
4 4 At
R = 3 e 3|(5|TV;ETIZL| o | G (P6-#)
1 2 At [
B 3 +§@TI;QTIZ| i IGIJ| pIJ| ’lel )’ vieLl].

Under the hypotheses (H1) and (H2) on the méghthe matrixA is an M-matrix.
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Remark 1The hypothesis (H2), necessary to establish error estanatelassical
for the vertex-centered finite volume scheme [12] or the daetbfinite volume-
finite element scheme [9]. Obviously, the M-matrix propsaitlf holds for Delaunay
triangulations (see [6], Sect. 3.4).

Now, we prove the following result:

Proposition 1. If for any n> 1, we haveo" ! > 0 andp" > 0, then the right hand
side of linear system (9) satis®? > 0 under the CFL condition:

T.MeT

; (10)

with || U |[j = mer':g% || ut [lj2r2) whereur is the cell average velocity.
Proof. Leti € [1,1] andn > 1. Thanks to (8), the i-th row of (9) is given by:

(APMl)i :gpin glAZ}lT’;ﬂIZJ ij) ( ] p'J|’pJ|l) IJ|(p' Py ))

1 2 At 1 -
-3 S SIS ek e ) -G e e )

Let us introduce some definitions and notations droppingithe indices, such that

(11)

Apij, = pij, —pi,  Apij, = pji—pi, forl=1,2.

Thanks to Lemma 1, there exists for 1,2, some coefficientay; xk > 0,k € 7 (i),
such that
T

Apij = Y ajk(pi—p),  with 5 m“k_lz
ke 7 (i) ke7 (i)

Also, there exists for = 1,2, some coefficienta); x > 0,k € 7 (i), such that

Bpij = Y @ik (k—p),  with Y @k<2
ke (i) ke7 (i)

Next, for 0< §j, < 1,1 = 1,2, we consider the following quantities:

il oG, ~
Eij, = |”'| IJ'( i+ &j, Apij > P+ 8 Api,), =12,
ry |
0G;
Fij, = |I%| l?PIJI (PH‘&MAPU“ pl+aJ|Ap|J|) =12

Of course, by monotonicity of the numerical flux, we havg B 0 and kj, > 0.
Hence, using the mean value theorem, the numerical scheh)és(tewritten as
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follows:
4 4 2 _
n+1 — _nph_ _ . n _n_ n _ ) n n_ n
(o), = 54150 33 5 el 1), )
Lty Zar > S (oajkEﬂfl(pnfl——pﬁfl)——aijkFﬂ*l(pQ*l—-pnfl)).
3" 3 T ieTkeV(i)I; 1K=y i LS i

(12)
Finally, we obtain the following equations for eaich [1,1] and for alln > 1:

(Apn+l)i =aip +bip "+ Y (akpl + bkpg ), (13)
kT ()

wherea;, bii, ax andbj are easily determined from (12). Clearly, we have

ai +bi + Y (ak +bk) =1 (14)
kT (i)

Moreover, by choosing the time sté such that for all € [1,1],

2 4 _ 2 B -1
s <T,V;6Tke;(i)|zl(§(mjlka}l k) = 5 Rt 1))> 7
(15)
we have
0<a+hi <1 and 0< agx+byx <1 (16)

Hence, (13), (14) and (16) allow us to conclude that for éaef, 1], (Ap“*l)_ is
|
written as convex combination gf', o™ %, o andp&‘*l, ke v(i). O

Finally, as a consequence of Proposition 1, and recalliagah M-matrix is invert-
ible with positive inverse, we obtain:

Theorem 1.Let the velocity fieldi divergence free and the initial densijpg such
that pp(x) > 0. Then, under the CFL condition (10) and the hypotheses (i) a
(H2) on the mesh, the linear system (9) is invertible, and

p"t >0, Vn> 1. (17)

Numerical results. Here we consider structured meshese:| — 1,1[?, a station-
ary rotating velocity fieldi = (xo, —x1) and a small diffusion coefficiert = 10-°.
Settingr = /(x1 4+ 0.5)2+x3, the discontinuous initial condition jgo = 1000 if

r <0.25andpg = 1if r > 0.25. The computations are performed for different val-
ues ofh > 0.004, until T = 0.3. In Fig. 2 we show the evolution of the density
contours (left) and the solution profiles for some horizbs¢ations (right). We can
remark that the maximum principle is well verified using tMEX-BDF2 scheme,
unlike other classical order two schemes, such as Crankéldédin Adams-Bashforth
or Crank-Nicolson Runge-Kutta. Some other numerical tssan be found in [7].
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Fig. 2 The evolution of the density contours (left) and the solufioofiles (right) forA = 1075,
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