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Introduction

Convection-diffusion processes appear in many areas of science, e.g. fluid dynamics or heat and mass transfer. In the study of the evolution of a mixture, the system of PDEs derives from the compressible Navier-Stokes equations. The mixture of two viscous fluids is described by the density ρ ≥ 0, the mass velocity field v (which is not solenoidal) and the pressure p. Following Kazhikhov and Smagulov [START_REF] Kazhikhov | The correctness of boundary value problems in a diffusion model in an inhomogeneous fluid[END_REF], we set

u = v + λ ∇ ln(ρ), (1) 
for some mass diffusion coefficient λ > 0. This Fick's law describes the diffusive fluxes of one fluid into the other. Clearly, the volume velocity field u satisfies div u = 0 and we obtain the non-standard constraint div v = -div λ ∇ ln(ρ) , which is relied on the definition of the pressure p. Using (1), the mass conservation equation becomes ∂ ρ ∂t + div(ρu) = λ ∆ ρ.

(

The momentum equation can also be rewritten in order to obtain the Kazhikhov-Smagulov model [START_REF] Kazhikhov | The correctness of boundary value problems in a diffusion model in an inhomogeneous fluid[END_REF]. This model was firstly studied in [START_REF] Beirão Da Veiga | Diffusion on viscous fluids. Existence and asymptotic properties of solutions[END_REF][START_REF] Bresch | Effect of density dependent viscosities on multiphasic incompressible fluid models[END_REF] (see also references therein). The mathematical analysis in a three-dimensional domain of Kazhikhov-Smagulov type models was carried out in recent works [START_REF] Calgaro | On the global existence of weak solution for a multiphasic incompressible fluid model with Korteweg stress[END_REF][START_REF] Ezzoug | Existence and asymptotic behavior of global regular solutions to a 3-D kazhikhov-smagulov model with korteweg stress[END_REF], where the authors study the Kazhikhov-Smagulov models with a specific Korteweg stress tensor. The numerical study of a Kazhikhov-Smagulov model for the two-dimensional case can be found in [START_REF] Calgaro | Stability and convergence of an hybrid finite volumefinite element method for a multiphasic incompressible fluid model[END_REF], where the authors propose an hybrid finite volume-finite element method combined with the backward Euler method in time. In order to generalize the analysis given in [START_REF] Calgaro | Stability and convergence of an hybrid finite volumefinite element method for a multiphasic incompressible fluid model[END_REF] to second-order methods in time and space, the first goal is to recover the L ∞ -stability of the finite volume method used for the convectiondiffusion equation. This is the purpose of this paper.

Description of the numerical scheme

This section is devoted to the design of a numerical scheme to approximate (2), using the vertex-based MUSCL finite volume methods introduced in [START_REF] Van Leer | Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method[END_REF] and used in [START_REF] Calgaro | L ∞ -stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios[END_REF] for a second-order accuracy in space, and an implicit-explicit (IMEX) linear multistep methods [START_REF] Hundsdorfer | IMEX extensions of linear multistep methods with general monotonicity and boundedness properties[END_REF] for a second-order in time.

Mesh definitions and notations.

Let Ω be an open bounded polygonal subset on R 2 , with sufficiently regular boundary ∂ Ω , and [0, T ] the time interval, for T > 0.

The discretization of (2) will be carried out on an unstructured triangular mesh. We denote by T h a partition of Ω composed of conforming and isotropic triangles T k , k ∈ [1, K], with K ∈ N * . The T h is called the primal mesh. We suppose the following hypotheses:

(H1) Let {T h } h>0 be a regular family of triangulations of Ω . (H2) The triangulation T h is of weakly acute type (no triangle with an angle greater than π/2).

For each element T ∈ T h , we denote B T the barycenter of the triangle, |T | the area of T , and M i , M j 1 , M j 2 the three vertices of T . We also denote respectively M i j 1 and M i j 2 the middles of 

[M i M j 1 ] and [M i M j 2 ]. Let us construct the dual mesh C h = {C i , i ∈ [1, I]},
T = Ω = i∈[1,I] C i . Moreover, if we denote |C i | the area of C i ∈ C h , then |C i | = ∑ T,M i ∈T |T | 3 . For i ∈ [1, I], let V (i) = j ∈ [1, I], C j is a neighbor of C i . For l = 1, 2, we denote Γ (T ) i j l the segment [M i j l B T ], A (T ) i j l its middle point, n (T ) i j l the unit outward normal to C i along Γ (T ) i j l and |Γ (T ) i j l | the length of Γ (T ) i j l . For T ∈ T h and M i ∈ T , we have: 2 ∑ l=1 |Γ (T ) i j l |n (T ) i j l = -|T |∇ψ i , (3) 
where ψ i is the P 1 basis function associated to the vertex M i of T . For every IMEX-BDF2 finite volume scheme. Here, we describe the finite volume scheme for solving [START_REF] Calgaro | L ∞ -stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios[END_REF]. In order to obtain the density reconstruction on the interfaces Γ (T ) i j l , we use the MUSCL technique with a multislope gradient reconstruction. Concerning the time discretization, we adapt the implicit-explicit (IMEX) linear 2-step methods using extrapolated BDF2 scheme for the convective term combined with implicit BDF2 scheme for the diffusive term. The velocity field u(t, x) ∈ R 2 is a given function verifying the divergence free condition. For the space discretization, the usual vertex-based finite volume scheme on control volume C i , for all i ∈ [1, I], reads

C i ∈ C h , the boundary of C i is ∂ C i = T,M i ∈T Γ (T ) i j 1 ∪ Γ (T ) i j 2 . ( 4 
) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1
M i M j 1 M j 2 M i j 1 M i j 2 B T A (T ) i j 1 n (T ) i j 1 A (T ) i j 2 n (T ) i j 2 C i ∂ C i T M N M k 1 M k 2
d dt C i ρ(t, x) dx + ∂ C i ρ(t, x)u(t, x) • n dσ = λ ∂ C i ∇ρ(t, x) • ndσ . (5) 
We denote by ∆t the time step and t n = n∆t, n ≥ 0, but variable time steps can also be used. Then, the approximate solution ρ n i , i ∈ [1, I], at time t n , verifies

ρ n i ≈ 1 |C i | C i ρ(t n , x) dx.
In particular, the numerical approximation of the density is a piecewise constant function in space on the control volume C i . For the time discretization, we consider the implicit BDF2 scheme and an extrapolated BDF2 scheme following [START_REF] Hundsdorfer | IMEX extensions of linear multistep methods with general monotonicity and boundedness properties[END_REF]. With this choice, we obtain a second-order accuracy in time. Then, the equation ( 5) is rewritten as follows, for each i ∈ [1, I] and n ≥ 1,

ρ n+1 i - 2λ 3 ∆t |C i | ∂ C i ∇ρ(t n+1 , x) • n dσ = 4 3 ρ n i - 4 3 
∆t

|C i | ∂ C i ρ(t n , x)u(t n , x) • ndσ - 1 3 ρ n-1 i + 2 3
∆t

|C i | ∂ C i ρ(t n-1 , x)u(t n-1 , x) • n dσ . (6) 
In order to approximate ∇ρ(t n+1 , x) in ( 6), we consider a P 1 -finite element approach for the density such that

ρ n+1 | T ≈ ∑ M j ∈T ψ j ρ n+1 j ,
for all T ∈ T h , with {ψ j } j∈ [1,I] the canonical basis of the usual P 1 finite element space. Using (3) and ( 4), we find ρ n+1 i , i ∈ [1, I], n ≥ 1, verifying the following second-order IMEX-BDF2 finite volume scheme:

ρ n+1 i + 2λ 3 ∆t |C i | ∑ T,M i ∈T |T | ∑ M j ∈T ∇ψ i • ∇ψ j ρ n+1 j = 4 3 ρ n i - 4 3 
∆t

|C i | ∑ T,M i ∈T 2 ∑ l=1 |Γ (T ) i j l | G n i j l ρ n i j l , ρ n j l i - 1 3 ρ n-1 i + 2 3
∆t

|C i | ∑ T,M i ∈T 2 ∑ l=1 |Γ (T ) i j l | G n-1 i j l ρ n-1 i j l , ρ n-1 j l i . (7) 
Here we denote by G i j l ρ 1 , ρ 2 a numerical flux that satisfies the consistency, conservativity and monotonicity properties. In particular, for any constant function ρ 1 , we have

∑ k∈V (i) |Γ (T ) ik | G ik ρ 1 , ρ 1 = 0. (8) 
In [START_REF] Calgaro | L ∞ -stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios[END_REF], G i j l is the upstream flux, but many other numerical fluxes can be considered, as for instance Lax-Friedrichs or Engquist-Osher fluxes. We underline that for multi-physics coupled models, a particular attention must be paid in the approximation of the continuous velocity associated to any point of ∂ C i (see [START_REF] Calgaro | An hybrid finite volume-finite element method for variable density incompressible flows[END_REF]). In [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF], ρ i j l and ρ j l i denote the density reconstructions on the segments Γ (T ) i j l , for l = 1, 2. In order to reach a second-order accuracy in space, we use the MUSCL technique [START_REF] Van Leer | Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method[END_REF] with a multislope gradient reconstruction.

Introducing M = [M j 1 M j 2 ] ∩ (M i A (T ) i j l ) and N ∈ [M k 1 M k 2 ] ∩ (M i A (T ) i j l ), we define p up i j l = ρ i -ρ N M i N and p down i j l = ρ M -ρ i M i M .
Then, ρ i j l is the density evaluated at node A (T ) i j l , defined as:

ρ i j l = ρ i + p i j l M i A (T ) i j l , with p i j l = p up i j l Lim p down i j l p up i j l ,
where Lim is a so-called "τ-limiter" (for details see [START_REF] Calgaro | L ∞ -stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios[END_REF]). In particular, they have the following result:

Lemma 1. There exists some coefficients ω i j l k ≥ 0, k ∈ V (i), such that

ρ i j l -ρ i = ∑ k∈V (i) ω i j l k ρ i -ρ k
holds, and furthermore, they verify ∑ k∈V (i) ω i j l k ≤ 7τ 12 C T h , where the constant C T h characterizes the mesh regularity (but it is more general than the classical Ciarlet ratio) and τ > 0 is used in the definition of the τ-limiter.

L ∞ -stability of the numerical scheme

The IMEX-BDF2 finite volume scheme [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF] is rewritten as linear system:

A ρ n+1 = F n , (9) 
where the matrix A and the right hand side F n are defined as follows:

A i,i = 1 + 2λ ∆t ∑ T,M i ∈T ∇ψ i 2 , A i, j = 2λ ∆t ∑ T,M i =M j ∈T ∇ψ i • ∇ψ j , ∀i, j ∈ [1, I], F n i = 4 3 ρ n i - 4 3 ∆t |C i | ∑ T,M i ∈T 2 ∑ l=1 |Γ (T ) i j l | G n i j l ρ n i j l , ρ n j l i - 1 3 ρ n-1 i + 2 3
∆t

|C i | ∑ T,M i ∈T 2 ∑ l=1 |Γ (T ) i j l | G n-1 i j l ρ n-1 i j l , ρ n-1 j l i , ∀i ∈ [1, I].
Under the hypotheses (H1) and (H2) on the mesh T h , the matrix A is an M-matrix.

Remark 1. The hypothesis (H2), necessary to establish error estimates, is classical for the vertex-centered finite volume scheme [START_REF] Ohlberger | A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations[END_REF] or the combined finite volumefinite element scheme [START_REF] Feistauer | On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems[END_REF]. Obviously, the M-matrix property still holds for Delaunay triangulations (see [START_REF] Eymard | Finite volume methods[END_REF], Sect. 3.4). Now, we prove the following result:

Proposition 1. If for any n ≥ 1, we have ρ n-1 ≥ 0 and ρ n ≥ 0, then the right hand side of linear system (9) satisfy F n ≥ 0 under the CFL condition:

∆t ≤ min 1≤i≤I |C i | 2 3 7τ 12 C T h + 2 u i,∞ ∑ T,M i ∈T |Γ (T ) i j 1 | + |Γ (T ) i j 2 | , ( 10 
)
with u i,∞ = max T,M i ∈T u T l 2 (R 2 )
where u T is the cell average velocity.

Proof. Let i ∈ [1, I] and n 1. Thanks to [START_REF] Ezzoug | Existence and asymptotic behavior of global regular solutions to a 3-D kazhikhov-smagulov model with korteweg stress[END_REF], the i-th row of ( 9) is given by:

A ρ n+1 i = 4 3 ρ n i - 4 3 
∆t

|C i | ∑ T,M i ∈T 2 ∑ l=1 |Γ (T ) i j l | G n i j l ρ n i j l , ρ n j l i -G n i j l ρ n i , ρ n i - 1 3 ρ n-1 i + 2 3
∆t

|C i | ∑ T,M i ∈T 2 ∑ l=1 |Γ (T ) i j l | G n-1 i j l ρ n-1 i j l , ρ n-1 j l i -G n-1 i j l ρ n-1 i , ρ n-1 i . (11) 
Let us introduce some definitions and notations dropping the time indices, such that

∆ ρ i j l = ρ i j l -ρ i , ∆ ρ i j l = ρ j l i -ρ i , for l = 1, 2.
Thanks to Lemma 1, there exists for l = 1, 2, some coefficients

ω i j l k ≥ 0, k ∈ V (i), such that ∆ ρ i j l = ∑ k∈V (i) ω i j l k ρ i -ρ k , with ∑ k∈V (i) ω i j l k ≤ 7τ 12 C T h .
Also, there exists for l = 1, 2, some coefficients ω i j l k ≥ 0, k ∈ V (i), such that

∆ ρ i j l = ∑ k∈V (i) ω i j l k ρ k -ρ i , with ∑ k∈V (i) ω i j l k ≤ 2.
Next, for 0 < δ i j l < 1, l = 1, 2, we consider the following quantities:

E i j l = |Γ (T ) i j l | |C i | ∂ G i j l ∂ ρ 1 ρ i + δ i j l ∆ ρ i j l , ρ i + δ i j l ∆ ρ i j l , l = 1, 2, F i j l = - |Γ (T ) i j l | |C i | ∂ G i j l ∂ ρ 2 ρ i + δ i j l ∆ ρ i j l , ρ i + δ i j l ∆ ρ i j l , l = 1, 2.
Of course, by monotonicity of the numerical flux, we have E i j l ≥ 0 and F i j l ≥ 0. Hence, using the mean value theorem, the numerical scheme ( 11) is rewritten as follows:

Aρ n+1 i = 4 3 ρ n i - 4 3 ∆t ∑ T,M i ∈T ∑ k∈V (i) 2 ∑ l=1 ω i j l k E n i j l ρ n i -ρ n k -ω i j l k F n i j l ρ n k -ρ n i - 1 3 ρ n-1 i + 2 3 ∆t ∑ T,M i ∈T ∑ k∈V (i) 2 ∑ l=1 ω i j l k E n-1 i j l ρ n-1 i -ρ n-1 k -ω i j l k F n-1 i j l ρ n-1 k -ρ n-1 i .
(12) Finally, we obtain the following equations for each i ∈ [1, I] and for all n ≥ 1:

Aρ n+1 i = a ii ρ n i + b ii ρ n-1 i + ∑ k∈V (i) a ik ρ n k + b ik ρ n-1 k , (13) 
where a ii , b ii , a ik and b ik are easily determined from [START_REF] Ohlberger | A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations[END_REF]. Clearly, we have

a ii + b ii + ∑ k∈V (i) a ik + b ik = 1. (14) 
Moreover, by choosing the time step ∆t such that for all i ∈ [1, I],

∆t ≤ ∑ T,M i ∈T ∑ k∈V (i) 2 ∑ l=1 4 3 (ω i j l k E n i j l + ω i j l k F n i j l ) - 2 3 (ω i j l k E n-1 i j l + ω i j l k F n-1 i j l ) -1 , ( 15 
) we have 0 ≤ a ii + b ii ≤ 1 and 0 ≤ a ik + b ik ≤ 1. (16) 
Hence, ( 13), ( 14) and ( 16) allow us to conclude that for each i ∈

[1, I], Aρ n+1 i is written as convex combination of ρ n i , ρ n-1 i , ρ n k and ρ n-1 k , k ∈ V (i). ⊓ ⊔
Finally, as a consequence of Proposition 1, and recalling that an M-matrix is invertible with positive inverse, we obtain: Theorem 1. Let the velocity field u divergence free and the initial density ρ 0 such that ρ 0 (x) ≥ 0. Then, under the CFL condition [START_REF] Hundsdorfer | IMEX extensions of linear multistep methods with general monotonicity and boundedness properties[END_REF] and the hypotheses (H1) and (H2) on the mesh, the linear system ( 9) is invertible, and

ρ n+1 ≥ 0, ∀ n ≥ 1. ( 17 
)
Numerical results. Here we consider structured meshes on Ω =] -1, 1[ 2 , a stationary rotating velocity field u = (x 2 , -x 1 ) and a small diffusion coefficient λ = 10 -6 .

Setting r = (x 1 + 0.5) 2 + x 2 2 , the discontinuous initial condition is ρ 0 = 1000 if r ≤ 0.25 and ρ 0 = 1 if r > 0.25. The computations are performed for different values of h ≥ 0.004, until T = 0.3. In Fig. 2 we show the evolution of the density contours (left) and the solution profiles for some horizontal sections (right). We can remark that the maximum principle is well verified using the IMEX-BDF2 scheme, unlike other classical order two schemes, such as Crank-Nicolson Adams-Bashforth or Crank-Nicolson Runge-Kutta. Some other numerical results can be found in [START_REF] Ezzoug | Analyse mathématique et simulation numérique d'écoulements de fluides miscibles[END_REF]. 

Fig. 1

 1 Fig. 1 Dual mesh-Vertex based control volume C i around the node M i .

Fig. 2

 2 Fig.2The evolution of the density contours (left) and the solution profiles (right) for λ = 10 -6 .

  which defines a second partition of Ω , (I ∈ N * is the number of vertices of T h ). The dual finite volume C i associated with each vertex M i , i ∈ [1, I], is a closed polygon obtained in the following way: we join the barycenter B T of every triangle T ∈ T h which share the vertex M i with the middle point of every side of T containing M i (see Fig.1). If M i ∈ ∂ Ω , then we complete the boundary of C i by the segments joining M i with the middle point of boundary sides that contain M i . C i is often called the vertex-based control volume around the node M i . Accordingly, we have T ∈T h