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Abstract

We give an account of the gravitational memory effect in the presence of the exact plane wave

solution of Einstein’s vacuum equations. This allows an elementary but exact description of the

soft gravitons and how their presence may be detected by observing the motion of freely falling

particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies

that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent

displacement claimed by Zel’dovich and Polnarev. A non-vanishing asymptotic relative velocity

might be used to detect gravitational waves through the “velocity memory effect”, considered by

Braginsky, Thorne, Grishchuk, and Polnarev.
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I. INTRODUCTION

By “gravitational memory effect” is meant that a system of freely falling particles (viewed

as detectors) initially at relative rest are displaced after the passing of a burst of gravitational

radiation [1, 2]. The memory effect has risen to prominence recently because of the possibility

of its observation using LISA [3, 4] and/or aLIGO [5], and is also relevant to recent work by

Hawking, Perry, and Strominger [6] on soft gravitons and black holes.

The original proposal of Zel’dovich and Polnarev [1] claimed that detectors originally at

rest will be simply displaced and will have vanishingly small relative velocity, in contrast

with later findings of Bondi and Pirani [7]. A “velocity memory effect” highlighted by non-

vanishing asymptotic relative velocity was considered by Braginsky, Grishchuk, Thorne, and

Polnarev [2, 8, 9] and more recently, by Lasenby [4].

The analysis of Braginsky and Grishchuk [2], who also coined the expression “memory

effect”, is concerned with the motion of test masses moving in a weak gravitational wave at

the linear level. Non-linear generalizations were considered in [10–13]. In the neighborhood

of a detector, far from the source, we may approximate the wave by an exact plane wave.

Carroll symmetry [14, 15] provides us with a description of the trajectories, leading to a new

proof of the Bondi-Pirani theorem [7]. Our results might have some relevance for detecting

gravitational waves through the “velocity memory effect” [2, 4, 8, 9, 16].

II. PLANE GRAVITATIONAL WAVES

Plane gravitational waves are often described in Brinkmann Coordinates (B) [17, 18] by

the metric

g = δij dX
idXj + 2dUdV +Kij(U)X iXj dU2, (II.1)

where the symmetric and traceless 2× 2 matrix K(U) = (Kij(U)) characterizes the profile

of the wave. In this Letter we only consider linearly polarized waves with

Kij(U)X iXj =
1

2
A(U)

(
(X1)2 − (X2)2

)
, (II.2)

where A(U) is an arbitrary function. Our particular interest lies in “sandwich waves” i.e.

such that K(U) 6= 0 only for Ui ≤ U ≤ Uf
1.

1 Our conventions are the opposite of that of Bondi and Pirani [7].
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The metric (II.1) is an example of a “Bargmann” space which provides a general frame-

work for describing non-relativistic dynamical systems : any natural non-relativistic sys-

tem with an n dimensional configuration space may be “Eisenhart-lifted” to a system of

null geodesics in an (n + 2)-dimensional Lorentzian spacetime endowed with a covariantly

constant null Killing vector field ∂V [19, 20]. From the Bargmann point of view, (II.1)-

(II.2) describe a non-relativistic particle subjected to an (attractive or repulsive) harmonic

anisotropic oscillator potential, (II.2).

Returning to gravitational radiation and following the suggestion of [21], the wave pro-

duced by gravitational collapse might be modelled by the (approximate) sandwich wave,

A(U) =
1

2

d3(e−U
2
)

dU3
(II.3)

shown in fig.1.

In a (naive) model the “detector” could consist of freely falling particles initially at

relative rest. This applies to the mirrors of the LIGO interferometers of those attached to

the three satellites making up the proposed LISA detector [4].

The profile function in the geodesic equations2,

d2X

dU2
− 1

2
diag(A,−A) X = 0 (II.4)

acts as an effective potential which is attractive or repulsive depending on the sign of A.

Eqn. (II.4) can be solved numerically, yielding Fig.1.

FIG. 1: Geodesics in Brinkmann coordinates for particles initially at rest for profile A(U) in

(II.3), modelling gravitational collapse. The trajectories are focused where the effective potential

is attractive, and are pushed apart where it is repulsive. In the flat afterzone, the acceleration

vanishes.

2 V satisfies a more complicated equation, (IV.2.c) in [16].
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Gravitational waves can also be discussed in Baldwin-Jeffery-Rosen Coordinates (BJR)

[22, 23], for which

g = aij(u) dxidxj + 2du dv (II.5)

with a(u) = (aij(u)) a positive matrix. The BJR coordinates are not harmonic and typically

not global, exhibiting coordinate singularities [14, 18, 23]. Let us recall the proof [14, 16].

Putting χ =
(

det a
) 1

4 > 0 and ω2(u) = 1
8
Tr ((γ−1γ̇)2) where γ = χ−2a, the vacuum Einstein

equations reduce to the Sturm-Liouville equation

χ̈(u) + ω2(u)χ(u) = 0, (II.6)

see eqn (II.22) of [16]. Then (II.6) implies that χ̈ < 0, which in turn implies the vanishing

of χ for some u1 > ui,

χ(u1) = 0, (II.7)

signalling a singularity of the metric (II.5) and illustrated by fig.2.

FIG. 2: The numerical solution of eqn. (II.6) for the “collapse profile” (II.3) indicates that the

coordinates become singular when u1 = 0.593342 and when u2 = 1.97472.

Plane gravitational waves have a 5-parameter isometry group [7, 14, 18] identified as

the Carroll group in 2 + 1 dimensions with broken rotations [15] and implemented in BJR

coordinates as follows : u is fixed, and

x→ x +H(u) b + c, (II.8a)

v → v − b · x− 1
2
b ·H(u) b + f, (II.8b)

where H is the symmetric 2× 2 matrix calculated using the transverse-space matrix,

H(u) =

∫ u

u0

a(t)−1dt. (II.9)
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Then Noether’s theorem provides us with 5 conserved quantities associated with these isome-

tries [14, 15],

p=a(u) ẋ, k=x(u)−H(u)p, (II.10)

interpreted as conserved linear and boost-momentum, supplemented by m = u̇ = 1. An

extra constant of the motion is e = 1
2
gµν ẋ

µẋν . Geodesics are timelike, lightlike, or spacelike

if e is negative, zero, or positive, respectively. The geodesics are thus given by [14, 15]

x(u) = H(u)p + k, (II.11a)

v(u) = −1

2
p ·H(u)p + e u+ d, (II.11b)

with d a constant. The trajectories can be determined once the matrix-valued function

H(u) in (II.9) had been calculated.

The relation between the two coordinates systems is given by [15, 24]

X = P (u) x, V = v − 1

4
x · ȧ(u)x , (II.12)

where U = u 3, a(u) = P (u)TP (u) and

P̈ = K P , P T Ṗ − Ṗ TP = 0 . (II.13)

Now we consider a sandwich wave. In the “beforezone” U < Ui K = 0 and therefore eqn.

(II.13) can be solved by P (u) = 1 so that the Brinkmann and BJR coordinates coincide.

The crucial fact for us is that, by (II.10), the momentum of a particle at rest vanishes,

p = 0 for u = U ≤ Ui — and thus for all u = U including the “inside zone” Ui ≤ U ≤ Uf

and the “afterzone” Uf ≤ U , because p is conserved. By (II.11a) such geodesics are, for any

H i.e. for any transverse metric a and therefore for any profile A, simply

x(u) = x0, v(u) = e u+ v0. (II.14)

Thus the particles initially at rest are, when described in BJR coordinates, undisturbed by

the passage of the wave 4 .

In Brinkmann coordinates both the waves and the geodesics are global with no singularity

whatsoever. Solving the equations (II.13) numerically for P yields,

X(U) = P (u)x0, x0 = const. (II.15)

3 The notation u or U is used only to distinguish which coordinates we are working with.
4 If the initial momentum does not vanish, though, p 6= 0, then the trajectories are obviously not simple

straight lines; they can be determined by calculating H(u) in (II.9), cf. [16].
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cf. (II.12). Those complicated-looking trajectories in B coordinates in Fig.1 are recovered:

the plots overlap perfectly up to the point where the BJR coordinate system becomes singular ;

all the curling comes from P (u).

Our plots show that, consistently with the theorem of Bondi and Pirani [7], after the wave

has passed the worldlines will first be focused in a finite and initial-position-independent time,

and then diverge with constant but non-zero asymptotic velocity – contradicting the claim

of Zel’dovich and Polnarev [1].

We can actually prove the Bondi-Pirani theorem independently using our framework.

First we note that A ≈ 0 for large values of U ; then it follows from the geodesic equations

(II.4) that the acceleration vanishes, implying constant asymptotic velocity 5.

The geodesics we are interested in are of the form (II.15); in the beforezone U ≤ Ui we

have P = 1 and the geodesics are at rest, X(U) = x0. Let us now consider two such special

geodesics, Xa(U) and Xb(U); we show that there exist x0
a 6= x0

b such that the two geodesics

meet, Xa(U1) = Xb(U1) for some finite and universal value u1 > ui. Xa,b(U) = P (u)x0
a,b, so

we need x0 = x0
a − x0

b 6= 0 such that P (u1)x
0 = 0, which happens when P (u1) is a singular

matrix,

det(P (u1)) = 0. (II.16)

But a = P TP so that det a = (detP )2 = χ4 and therefore detP = 0 iff χ = 0. However,

as recalled above, (II.6) implies that χ necessarily vanishes at some u1 > ui – at the same

value where the BJR coordinates become singular. This is not an accident: the singular

BJR coordinate system can only be regularized by a singular transformation. Thus P (u1)

has a kernel and all geodesics for which x0
a− x0

b belongs to the kernel will meet at the same

u1. If x0
a − x0

b does not belong to the kernel, then we get a caustic. For a linearly polarized

wave as in (II.1)-(II.2), P = diag(P11, P22) and the x1 resp x2 coordinates meet at critical

(caustic) point when either P11 or P22 vanishes, which is where BJR coordinates become

singular, cf. fig. 1.

In the flat afterzone u ≥ uf , in particular, we have the exact analytic solution [14, 16]

P (u) =
(
1 + (u− u0)c0

)
a
1/2
0 ⇒ a(u) = a

1
2
0 [1 + (u− u0)c0]2 a

1
2
0 , (II.17)

where we have chosen u0 = uf , a0 = a(u0), c0 = 1
2
a
−1/2
0 ȧ(u0)a

−1/2
0 6= 0 [14, 16]. Setting

5 Another proof using BJR coordinates is presented in [16].
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χ0 = χ(u0),

χ(u) = χ0

[
1 + (u− u0)Tr(c0) + (u− u0)2 det(c0)

] 1
2 . (II.18)

Then the requirement of continuity implies Tr(c0) = 2 χ̇0/χ0, valid as long as χ 6= 0. Thus

Tr(c0) 6= 0 unless χ̇0 = 0. Combining (II.15) and (II.17) yields the trajectory in the afterzone,

plotted in fig.3. The asymptotic velocity is inferred from (II.17),

FIG. 3: The analytic (heavy line) and numerical (dashed line) solutions overlap perfectly in the

afterzone u ≥ u0 = 4.

Ẋ(u) = c0a
1/2
0 x0 =

1

2
a
−1/2
0 ȧ(u0)x

0 = const. (II.19)

Thus Ẋa 6= Ẋb for x0
a 6= x0

b in general, as confirmed by numerical calculations. At last, the

linear form of P in (II.17) implies that each component of P can have at most one caustic

in the afterzone.

III. ILLUSTRATION BY TISSOT DIAGRAM

The action of gravitational waves on a ring of freely falling particles can be illustrated by

a series of time-frames showing how the ring is squashed and stretched as the wave passes

over it [25]. An initially (i.e. before the pulse) circular disc of geodesics, X · X ≤ 1 for

U < Ui, projects to a time-independent circle, x · x ≤ 1, which extends to all u, i.e., during

and after the sandwich, u ≥ ui. However their inverse images in Brinkmann coordinates are

time dependent ellipses,

1 = x · x = X · (PP T )−1X (III.1)
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as shown in Fig. 4.

FIG. 4: Tissot diagram for the “collapse profile” (II.3). The initial circle is deformed to an ellipse

which at u = u1 degenerates to a line segment, and so on.

IV. SOFT GRAVITONS

We end with a description of the flat spacetime after the burst as being dressed by soft

gravitons, a concept which plays a central role in the considerations of [6]. Before the burst

aij = δij, and the BJR coordinates coincide with standard inertial coordinates in Minkowski

spacetime. After the burst aij will be u-dependent but nevertheless will have vanishing

curvature. Thus there exist coordinates û, v̂, x̂ such that the 2-metric is âij = δij. The

transformation relating u, v,x to the û, v̂, x̂ coordinates is given by (II.12) with P̈ = 0, as

follows from the vanishing of K. In the quantum field theory language adopted by Hawking

et al. in [6], the coordinate transformation is a “gauge transformation which does not tend

to the identity at infinity”. In quantum field theory it is customary to distinguish states

which so differ and regard them as containing “soft” [i.e. zero-energy] quanta. In the present

case the quanta are gravitons given by pp-waves, whose metric is given by (II.5).

V. CONCLUSION

We found that test particles initially at rest move, after the wave has passed, with constant

but non-zero relative velocity, contradicting Zel’dovich and Polnarev [1] but consistently

with Bondi and Pirani [7], whose theorem we proved independently. The non-vanishing

asymptotic relative velocity might allow to observe the velocity memory effect by improved
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Doppler tracking [2, 8, 9] 6.

The intuitive explanation is that (II.1)-(II.2) is (as said above), the Bargmann metric of

an anisotropic oscillator with time-dependent frequencies, one of which is attractive and the

other repulsive. The components in the repulsive sector are pushed apart whereas in the

attractive sector they are focused and then meet where the matrix P is singular.
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