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Experimental Evaluation of Simple Estimators for Humanoid Robots

T. Flayols', A. Del Prete!, P. Wensing®, A. Mifsud!, M. Benallegue? and O. Stasse!

Abstract— This paper introduces and evaluates a family of
new simple estimators to reconstruct the pose and velocity of
the floating base. The estimation of the floating-base state is
a critical challenge to whole-body control methods that rely
on full-state information in high-rate feedback. Although the
kinematics of grounded limbs may be used to estimate the
pose and velocity of the body, modelling errors from ground
irregularity, foot slip, and structural flexibilities limit the utility
of estimation from kinematics alone. These difficulties have
motivated the development of sensor fusion methods to augment
body-mounted IMUs with kinematic measurements. Existing
methods often rely on extended Kalman filtering, which lack
convergence guarantees and may present difficulties in tuning.
This paper proposes two new simplifications to the floating-base
state estimation problem that make use of robust off-the-shelf
orientation estimators to bootstrap development. Experiments
for in-place balance and walking with the HRP-2 show that the
simplifications yield results on par with the accuracy reported
in the literature for other methods. As further benefits, the
structure of the proposed estimators prevents divergence of the
estimates, simplifies tuning, and admits efficient computation.
These benefits are envisioned to help accelerate the development
of baseline estimators in future humanoids.

I. INTRODUCTION

Legged robots, including humanoids, have actuated joints,
but are not rigidly attached to the environment. As a result,
the positions of the actuated joints do not define the pose
(i.e. position and orientation) of the robot with respect to
the environment. The configuration requires six additional
degrees of freedom to be specifed, usually the position and
the orientation of a specific link with respect to an inertial
coordinate system. This link is known as the floating base
or the free-flyer. The position of every link of the robot can
then be reconstructed using the pose of the floating base and
the joint positions, which are measured by encoders.

Since no direct measurement of the floating base state
is typically available, a fast and reliable state estimator is
necessary for the implementation of state-feedback control
on legged robots. With exact knowledge of the contact
locations, the joint configuration is enough to reconstruct the
floating base pose. However, contacts are subject to slipping
or tipping on an edge, the environment may be irregular, or
the robot may have uncertainty in its geometric model (e.g.
because of flexible parts). Therefore the joint configuration
is not enough to achieve a reliable state estimation.

Force/Torque (F/T) sensors and inertial measurement units
(IMUs) can help to solve this issue. Force measurements
can be used to detect contact and detect slip or tipping of
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Fig. 1. This paper aims to estimate the pose 9 M, and velocity of the
floating base with simple estimators to fuse kinematics with IMU data.

the foot. These measurements can also be used to estimate
the configuration of flexible elements, such as the ankle
flexibility in HRP-2. IMUs typically provide the angular
velocity and linear acceleration (biased by gravity) at a
particular point of the robot. These IMU measurements are
only sufficient to observe the orientation modulo yaw.

Recent approaches have aimed at fusing IMU information,
force data, and kinematics measurements for high-fidelity
state estimation. This IMU/kinematic fusion was first used
to address the problem of odometry [1], [2]. Later, higher-
frequency estimators have been developed to estimate ve-
locities and feed closed-loop controllers: they can operate at
kinematic level [3], [4], [5], or can be extended to exploit
dynamic models [6], [7]. Additional sensors can also be
included, such as LIDAR [8]. As a common characteristic of
these approaches, the methods solve a fully coupled inference
problem to deduce position and orientation pose estimates
from available measurements. However, this fully-coupled
inference can be computationally costly, may be difficult to
tune, and is generally complex to set up and debug.

Simpler estimators have been proposed in combination
with balancing controllers, often leading to impressive ex-
perimental results [9], [10], [11], [12], [13]. These estimators
often achieve their simplicity by decoupling the estimation
of orientation and position. This begs the question: To what
extent do we need to employ fully-coupled inference over
position and orientation in order to enable high-performance
control? It is hard to answer this question today because of
the limited rigorous validation of these approaches, which
have never been properly benchmarked.

The main contribution of this work is to benchmark two
simple estimators on in-place balance and walking exper-
iments with the humanoid robot HRP-2. This benchmark
also investigates the contribution of the different components



of the estimators, such as the inclusion of IMU data, and
the use of force sensors to detect contact disturbances. We
present two variants of simple estimators in Section |lI| and
Section [[I] Section [[V]shows and discusses the experimental
results. Concluding remarks are provided in Section [V]

II. METHOD 1: TWO-STAGE WEIGHTED AVG. (WA)

This section describes a simple estimator that averages
different estimates of the floating base pose. In Section II-
B, we express two estimates of the floating base pose
using leg kinematics and prior knowledge of the contact
locations. Section quickly reviews how an IMU can
provide an estimate of the robot orientation with respect to
the gravity field. In Section [[I-C| we present the design of
weighting functions, which are used to average the different
estimates in Section Finally, Section [[I-E] discusses how
to compensate for potential foot drifts.

A. Kinematics-based 6D Estimation

When the robot is standing on two grounded feet, knowing
the pose of the feet in the world:

Ry, OPL} O0fp = FRR OPR] 1
0 1|’

0 —
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and limb kinematics can provide two estimates of the floating
base pose OMbL and OMbR (see Fig. .

In the case of HRP-2, the kinematic chains for each leg
contain flexibilities below the ankles, designed to absorb
impacts. We model these flexibilities as 6D linear springs,
and use the force-torque sensors for each foot to estimate
the associated 6D deformations:

Lp Bp
w; = K . ) wT = K’F o )
P pr(LRal)] pr(RRa,«)}

where w;/w, are the measured 6D wrenches, K,./K; are
diagonal positive-definite stiffness matrices, Lpa, /Fpa, are
the translational deformations, 'R, /R, are the angular
deformations, and rpy(.) is a function converting a rotation
matrix to roll-pitch-yaw (rpy) angles. The use of rpy angles
introduces coupling between the axes, but is not an issue in
practice since the maximum deflection is small ( < 10°).

This flexibility model allows us to reconstruct two estima-
tions of 0Mb:

A L
M, = "My, "My, (w;) ““My(q)
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where “Mp(q) and “"Mp(q) are transformations between
the ankles and the floating base, computed through standard
forward kinematics.

B. IMU-based Orientation Estimation

Legged robots (such as HRP-2) are usually equipped with
an IMU sensor, composed of a 3D gyroscope and a 3D
accelerometer. Work in [14] presented a light-weight com-
plementary filter to estimate orientation with respect to the
gravity field from IMU measurements. Remarkably, efficient

open-source implementations of this filter are available [14],
greatly simplifying deployment on real systems.

Its principle is that orientation can be obtained through
angular velocity integration. Then, under the hypothesis that
the accelerometer measurement is aligned with gravity on
average, orientation can be unbiased through low-bandwidth
accelerometer feedback. Only the orientation about the verti-
cal axis cannot be unbiased because the gravity vector mea-
surement does not depend on it. This complementary filter

then provides a partial orientation estimation, containing only
. ;S IMU
roll and pitch angles °R;, .

C. Weighting Functions

To fuse different estimates, the first proposed simple esti-
mator uses a set of adaptive weighting-factors, denoted with
A. At each instant, these weights are designed to quantify
the validity of each estimate. Clear parallels can be drawn
between these weights and associated variances in standard
Kalman (least-squares) filtering. The role of the weights here
is to capture the fact that a foot may be tilting or slipping,
which would invalidate the associated estimate. A simple
analysis can identify two main causes of invalid data from a
leg kinematic estimate.

1) The foot is in contact with only one edge/corner.
2) The foot is not in contact with the ground.

We use F/T sensor measurements to detect these situations
and modify the weights accordingly for sensor fusion.

1) Situation 1: This situation can be detected through the
distance between the foot (local) Zero Moment Point (ZMP),
(denoted (z,, z,) in foot frame), and the edges of the sole.
Under an assumption of an additive zero-mean Gaussian
noise on ZMP measurements, distributed as N (0,02,), the
probability that the ZMP lies inside the sole is:

szp - P(:szn <z < -Tmax)P<ymzn < Zy < ymaw) -

_ / (@) da /y e f-, () dy,

Tmin min

where f. /f., are the marginal probability density func-
tions of the random variable z, and Z.in, Tmazs Ymins Ymaz
denote the boundaries of the rectangular foot sole. Ex-
tension to non-rectangular contact surfaces would be pos-
sible using the approximation presented in [15]. Under
the assumption of reasonable measurement errors (i.e.
3oe. < min(ymaw — Ymin, Tmaz — l‘m?ﬁn)) the probability
P..np varies between 0.25 and 1 as long as the ZMP
measurement is inside the sole. To get a valid weighting,
we scale it between O and 1:

Az =min | 0,
m1n< 3

%(szp — 0.25))
An example of how A, could vary as a function of the ZMP
measurement is depicted in Fig.

2) Situation 2: The loss of contact can be detected
through the normal contact force f,. The same method
presented for Situation 1 can be adapted, leading to a weight
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Fig. 2. Weight X, as a function of the ZMP measurement with o, = lem.
The white rectangle depicts the foot limits of HRP-2.

depending on the standard deviation of the normal force
measurements oep . :

)\f = min(O, 2(P(fz > fmzn) - 05))7

where f,,;, is the minimum normal force to be in contact.
Finally, for each foot, we obtain a weighting function that
depends only on the corresponding wrench:

)‘R(wr) = )‘f(wr) )‘?(wr)a )‘L(wl) = )‘g(wl) A%(wl)

D. Fusing Estimates

This section describes a fusion process to obtain estimates
for the 6D pose given by z, y, z, roll, pitch, yaw. We choose
to fuse in rpy space because of the sparsity of the IMU-
based estimate (roll and pitch only). Fusion is performed in
two stages. First, we fuse the orientations computed from the
IMU and the kinematics. Then, assuming a fixed orientation,
we compute the base position that minimizes the distance to
the known foot positions.

We prefer this two-step approach to a straightforward
one-step 6D fusion because the latter may result in large
deviations of the foot positions. Intuitively, this is due to
the fact that small variations in the base orientation result in
large variations of the foot positions, due to the long lever
arm. Taking into account the base orientation (estimated in
the first stage) allows us to find (in the second stage) the
base position that makes the foot positions match (in the
least-squares sense) the known foot positions “py, “pg.

1) Orientation average: The orientations from the leg

kmematlcs are extracted from (), and are denoted Rb

and ORb . The weighted average estimation of the base
orientation is computed as through weighting matrices:

AIIMU rpy (OEbIMU) —|—AL I‘py (0/R;bL) +AR rpy <O/R;bR> 9 (3)
where:
e N
A]MU /\IMUdlag( [/\norm \norm 0] )

AL :)\Ldlag([/\nmm \norm ()\L+/\R)—1])
AR — )\Rdiag([)\norm \norm ()\L + )\R)fl])

2) Position average: Knowing the foot positions %pr, °pr
and the base orientation "Ry, its position is computed as:

o M(Op, — "Rybpr) + A7 (°pr — "Ry’pr)
b AL AR ’

where ’pr and ®py, are 3D translations extracted from (2).
3) Velocity average: Two estimates of the base Velocr[y

“4)

can be computed via numerical differentiation of Opb and
—~R

Opp , extracted from (2). Since this operation amplifies noise,
a delayed differentiation is provided by a Savitzky-Golay
filter [?], whose parameters need to be adapted to the sensor
noises. Finally, these two velocities are averaged with the
same weights used in (@).

E. Foot Drift Compensation

If the different estimates are affected by different biases,
the bias of their weighted average clearly depends on the
weights. Since we use time-varying weights, weight varia-
tions can introduce a fake motion of the base.

To overcome this issue, we propose a low-gain feedback
method to remove relative biases by slowly adapting the
assumed pose of each foot. We estimate the kinematics bias
by computing the difference between the current foot pose
and the one according to the current base estimation:

OM 10M oMy, OM 10Mb M

Mdmft Mdmft

At each cycle, a part of this drift is compensated for:
OML = OMLSE?)inteI’p(OéL, I7 M(f;‘zft)
OMR = OMRSE3interp(OlRy I7 M({L’;‘th)’

where SE3interp is a function that interpolates between two
SE3 elements, I is the 4x4 identity matrix, and ar/ag are
the convergence rates. These variables depend on the validity
of the opposite foot contact because drifts are most likely to
occur on the least trusted foot:

ar, = Mo aR:)\La

where the constant value « is the maximum convergence
rate, which needs to be adapted to the application. This foot
pose update can generate drift in unobservable components
(yaw and the 3D position). If absolute positions are needed,
other sensors have to be used. [

III. SECOND METHOD: A LINEAR KALMAN FILTER FOR
POSITION AND VELOCITY

The second method considered here uses an adaptive
weighting through the application of Kalman Filtering to
estimate the position and velocity of the floating base.
Previous state estimation approaches have used Extended
Kalman Filters (EKFs) to good effect in the estimation of
the floating base state for humanoids and quadrupeds [3],
[4], [5]. While EKFs may perform well in many cases, they
lack guarantees on the stability of their error dynamics, and

! Absolute position are not needed in many applications because balancing
criteria are typically defined relative to contact positions and gravity field.



can be difficult to tune in practice. As a key observation,
this section describes how floating-base state estimation can
be decomposed into a cascade of orientation and position
filters under a mild assumption. With this observation, the
estimation of the base position and velocity turns into a linear
problem, which we tackle with a Kalman filter.

A. Process Model

As in [3], the state of the position and velocity estimate,
denoted z, is chosen to include the positions of the feet.
o7 0,7 017 0,717
‘r:[pb7 Uy s PL> pR] (5)

Given a reading of the accelerometer a,, at timestep n, the
base position and velocity evolve as:

Oppn + Qvpn At + 3 PRy an + g](At)?
0 + [PRpm an + g|At
0
PL,n
OpR,n

» (6)

Tnt+1 =

where we assumed that the feet stay stationary.

In general, if estimation of °R; is pursued alongside ,
state estimation must take place over a nonlinear discrete
time process. However, as an approximation, if the estimation
of °Ry is decoupled from x, then the process model (@)
becomes linear time invariant through viewing ORb}n an +g
as a time-varying control input u,, := Ry, , a,, + g.

For estimating “R;, we rely on an IMU-based orientation
estimation (similar to the one described in Section [II-B).
In particular, we use the second version of the estimator
presented in [14]. The original filter was designed to be used
with a magnetometer. Here, we replaced the magnetometer
information with an average of the base orientation estimates
obtained through kinematics.

B. Measurement Model

To estimate x, kinematic measurements of the IMU posi-
tion are provided relative to the feet. In addition, the heights
of the feet (27 and zg, assumed O here), are provided as
pseduo-measurements:

Ry *pr.(qr)

Ry, *pr(qr) )
ZL
2R

y:

Through the decoupled estimation of ORb, its estimate can be
incorporated into the measurement y. This approach results
in a linear relationship between the estimated measurement
1 and estimated state Z:

Opy, — %Py,
Op, — PR
Zr

2R

= 0% (8)

<>
Il

C. Weighted Noise Model

Under the previous decoupling assumptions, the estimation
of z can be written as a standard linear Kalman filter over
a stochastic process:

LTn+1 = Az, + Bu, + N(Oa Qn) 9
Yn4+1 = an-‘rl +N(O, Rn—i—l) (10)

for matrices A and B that satisfy @ with @, and R,
the covariance of the process noise and measurement noise
respectively. To provide rough agreement with the operation
of the WA filter, the measurement noise is designed as:

R,, = blockDiag (0, Is, 0,13, 02, , 027)° (11)
with 0, and oz, scheduled as:
O'gL =02, /\F O’EL =07 /\F (12)

from some fixed nominal standard deviations o;,, and oy,.
The value of \” is saturated below to a small positive value
€ to avoid division by zero. Analogous scaling is adopted for
the right foot noise model. The process noise is modeled as:

Q. = blockDiag (03, 0, IsAL, 0, I3AL, 04, [sAL)?
(13)

where o, is the fixed RMS error of the accelerometer,
and o0, , is again an adaptively-scaled standard deviation
for the evolution of the foot position. This noise model
allows the filter to automatically capture the evolution of the
foot position during leg swing in walking. To provide more
flexibility to this process, the noise model was exaggerated
through an inverse logistic sigmoid:
afiL = 0}25(1 + 67(0'5_&)),

with ag a nominal variance for the foot evolution velocity.
Standard Kalman filter update equations were then used to
construct position and velocity estimates.

IV. RESULTS

The main goal of this section is to compare the WA esti-
mator (Section[[I) and the KF estimator (Section[[II) in terms
of estimation accuracy and computation time. Moreover, we
want to assess the contribution of the weighting functions
(Section and the IMU to the final estimation quality.
We carried out three experiments with the humanoid HRP-2
robot, which are described in Section [[V-B] [[V-C] and [V-D}

A. Ground Truth

As ground truth we used a motion capture system (by
Motion Analysis) to get 100 Hz measurements of the position
and orientation of the robot base. We computed numerical
derivatives of the position measurements to get a ground-
truth velocity. The lower accuracy of the orientation measure-
ments prevented us from computing the angular velocity.



TABLE I
ROOT MEAN SQUARE ERROR (RMSE) AND MAXIMUM ERROR FOR THE BASE 3D POSITION (P), ORIENTATION (R) AND VELOCITY (V). THE WA
COLUMNS SHOW THE 2-STAGE WEIGHTED AVERAGE WITH OPTIONAL FIXED WEIGHTS. THE KF COLUMN SHOWS THE RESULTS OF THE KALMAN

FILTER WITH WEIGHTED COVARIANCES.

AU — g o A _ | i KF
ANMU _ NMU — 1
Me=2R =1 M= 2E =1

RMSE Max RMSE Max RMSE Max RMSE Max RMSE Max

P [mm)] 4.2 19.2 3.7 19.4 33 12.5 3.0 11.1 3.0 8.5

Pushes R [°] 0.5 1.4 0.5 1.4 0.5 1.4 0.5 1.4 0.5 1.5
V [mm/s] 24.4 87.9 24.2 83.4 24.4 87.9 24.2 83.4 14.2 49.5

P [mm)] 6.8 19.7 4.4 8.7 5.0 12.5 4.1 7.3 5.7 11.1

CoM Sinusoid R [°] 0.3 0.8 0.3 0.8 0.3 0.8 0.4 0.8 0.5 0.9
V [mm/s] 36.7 191.0 28.1 85.2 36.7 191.0 28.1 85.2 18.5 103.6

P [mm] 39.7 68.6 374 68.2 36.9 65.0 349 63.9 26.0 50.4

Walking R [°] 0.8 1.9 0.8 2.0 0.8 2.0 0.8 2.0 0.9 2.0
V [mm/s] 208.8 467.1 107.8 3134 208.8 467.1 107.8 313.4 82.2 298.0
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Fig. 3. Base orientation during experiment 1. The bottom plot shows the

normalized weighting function A = A /(Ap + AR).
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Fig. 4. Base velocity during experiment 1. The bottom plot shows the

normalized weighting function A = A /(Ap + AR).
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Fig. 5. Base position during experiment 2. This figure highlights the
importance of the weighting function A = Ap, /(Ar + Ag), which make the
WA estimate tend more towards the right-foot estimate when A decreases.
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Fig. 6. Base position during experiment 3. The bottom plot shows the
normalized weighting function A = A, /(Ap, + AR). Both estimators (KF
and WA) exhibit a drift of about 10% of the traveled distance along the x
axis.



B. Experiment 1: Pushes

In the first test the HRP-2 robot was controlled with high-
gain position control while standing with its feet on flat
ground. The reference joint angles were constant, so the
motion of the robot was only due to the motion of the ankle
flexibilities, caused by external pushes in different directions.

C. Experiment 2: CoM Sinusoid

In the second test the robot joints were torque controlled,
and its feet were on flat ground (as for Experiment 1).
We used a state-of-the-art task-space inverse dynamics con-
troller [15] to track a sinusoidal trajectory along the y axis
(i.e. lateral motion) with the robot Center of Mass (CoM).
The peak-to-peak amplitude of the sinusoid was 14 cm, and
the peak-to-peak time was 1.5 s.

D. Experiment 3: Walking

In the third test we made HRP-2 walk on a flat terrain
using high-gain position control. The robot walked three
steps before coming to rest. The small number of steps was
necessary for full coverage with our motion-capture system.

E. Ankle flexibilities identification

Using the data collected in experiment 1, the 6D stiffness
of HRP-2 ankles has been identified using motion capture
and F/T measurements. The identified stiffness values are:

K; = K, = diag(4034, 23770, 239018, 707, 502, 936)
We used these values for all the experiments

FE. Feet update policy

The ground truth provided by the motion capture system
gives an absolute pose of the robot, whereas the estimators
have inherent bias in unobservable components as discussed
in Section[[I-E] To limit the effect of this drift in error metric,
we have set the update rate o = 0 for the WA estimator in
experiment 1 and 2, during which the feet were not expected
to move—although small movements may have occurred.
However, the foot placements are updated at initialization
to ensure that they lead to consistent estimates.

On the contrary, for the walking experiment, foot positions
are updated with a high rate o = 0.8 to track the swing foot
motion before landing. No update is performed along the z
axis to ensure consistency with the results of the KF. Note
that no information from the controller is used to determine
which foot is in contact.

G. Metrics

When assessing the accuracy of an estimator, we think
it is important to capture both the nominal behavior and
the worst-case behavior. For this reason, we present both
the Root Mean Square Error (RMSE) and the maximum
error. Moreover, we present separately the errors for position,
orientation (based on rpy) and linear velocity.

2Units are N/m for first 3 linear stiffnesses and Nm/rad for the last 3
angular stiffnesses.

H. Computation Times

As expected, both estimators proved to be extremely
computationally efficient. For the WA, most of the time is
spent in the computation of the robot kinematics, leading
to an average time of 8 us. For the KF, besides computing
the robot kinematics, the most expensive operations are the
matrix decompositions and multiplications performed in the
innovation step. The overall average computation time of the
KF approach was about 16 us. In conclusion, both estimators
are suitable for implementation on a fast control loop, which
is a key requisite for application on a real robot.

1. Discussion

Table I summarizes the results of the three experiments.
Overall, both estimators achieved small estimation errors for
the position (below 1 cm) and orientation (below 1°) of the
robot base in the first two tests. The larger position errors
shown in the last test are due to the unobservability of the
position, which leads to a drift, mainly along the z-axis (see
Fig. [6). This drift is approximately equal to 10% of the
traveled distance and is comparable to the drift exhibited
by state-of-the-art EKF-based estimators [3].

The position drift is also the likely cause of the larger
position errors of the KF approach for the second test. The
WA approach was not subject to drift in the first two tests
because the foot update rate had been set to zero (as already
discussed in Section |[V-F)).

Despite the unobservability of the yaw angle, the orien-
tation errors for the last test are comparable to the ones of
the first two tests. We expect this to be no longer the case
during longer walking experiments.

Regarding the velocity estimation, the KF largely outper-
formed the WA approach. This is likely due to the reduced
delay of the KF velocity estimation, achieved thanks to the
use of the accelerometer measurements.

Overall, introducing the weighting functions has lead to
better results. This is especially true for the second experi-
ment (see Fig. [5), in which the left foot was often in contact
only with one edge. This made the corresponding weight
decrease, thus the estimator relied more on the information
coming from the right leg kinematics.

The same can be said for the introduction of the IMU data.
The improvements due to the IMU data are negligible for the
orientation, but they are significant for the position. This is
due to the fact that small changes in the base orientation can
lead to large changes in the positions of the feet. Thanks to
the 2-stage approach, the slight improvements in orientation
estimation lead to improvements up to 30% for the position
estimation.

In conclusion, the estimation accuracy achieved by the
presented simple estimators is comparable to the accuracies
reported in the literature by EKF-based estimators. This
suggests that these simple estimators could be sufficient
to perform feedback control of humanoid robots. The KF
estimator provided a much better velocity estimation than the
WA estimator (at the expense of a slightly larger computation



time), so we think it should be preferred if a velocity
feedback is necessary.

V. CONCLUSION

This paper presented two simple state estimators for
the floating-base pose and velocity, and benchmarked them
through in-place balancing and walking experiments with
the humanoid robot HRP-2. Both estimators are based on
off-the-shelf IMU-based orientation estimators, which are
used to estimate the orientation of the robot base. Once
the base orientation is fixed, two approaches are presented
to estimate its position and velocity. Both methods use
weighting functions based on the F/T measurements of the
contact forces, which help detect violations of the contact
assumptions.

The presented results show the importance of the IMU
and F/T sensor measurements in improving the kinematics-
based estimation. Despite their simplicity compared to EKF-
based methods, both estimators performed well in the tested
scenarios. For in-place balancing, average position errors
are well below 1 cm, while orientation errors are below
1°. For velocity estimation, the second approach greatly
outperformed the first one, showing average errors about
40% smaller. During walking, both estimators exhibited a
drift in the unobservable components (i.e. position and yaw
angle), which is comparable to the one reported for EKF-
based methods [3]. Thanks to their simplicity, both estimators
reported extremely fast computation times (below 20us),
which makes them suitable for high-frequency feedback
control.

While accuracy has been our main criterion to evaluate
the quality of state reconstructions, it is not the only cri-
terion allowing to predict the performance of an estimator
in closed-loop control. Other parameters such as stability,
global convergence rate and robustness to sensor noise and
modeling errors can deeply affect the global stability of
the control, especially for highly-dynamic motions or for
high-gain control. We plan to investigate these criteria in
our future work. Moreover, we would like to expand our
benchmarks including one of the EKF-based methods, to
quantify the performance loss potentially induced by the
orientation-position decoupling.
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