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Bracketing the solutions of an ordinary differential
equation with uncertain initial conditions

Thomas Le Mézo, Luc Jaulin and Benôıt Zerr

ENSTA-Bretagne, LabSTICC, 2 rue François Verny, 29806 Brest, France.

Abstract

In this paper, we present a new method for bracketing (i.e., characterizing from
inside and from outside) all solutions of an ordinary differential equation in the
case where the initial time is inside an interval and the initial state is inside a
box. The principle of the approach is to cast the problem into bracketing the
largest positive invariant set which is included inside a given set X. Although
there exists an efficient algorithm to solve this problem when X is bounded, we
need to adapt it to deal with cases where X is unbounded.

https://doi.org/10.1016/j.amc.2017.07.036

Keywords: Abstract interpretation, ODE, Infinity, Interval computation,
Dynamical systems

1. Introduction

In this paper, we deal with a dynamical system S defined by the following
state equation:

ẋ(t) = f(x(t)) (1)

where x(t) ∈ Rn is the state vector and f : Rn 7→ Rn is the evolution function
of S. Denote by ϕf the flow map of the system. This means that if at time t0,
the initial state vector is x0, then the solution of the state equation is

x(t) = ϕf (t− t0,x0). (2)

In this paper, we consider that the initial state x0 is not known exactly.
More precisely, x0 belongs to a box [x0] of Rn. Two problems will be treated.

Problem 1. Forward reachable set. We define the forward reachable set
[2, 21, 16] as

F+
[x0]

= {xa | ∃x0 ∈ [x0],∃t ≥ 0,xa = ϕf (t,x0)}. (3)
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The problem that we will consider is to bracket the set F+
[x0]

which means that

we want to characterize this set from inside and from outside. This set can be
interpreted as an approximation of all solutions of (1), except that we loose the
dependency with respect to t.

Problem 2. Positive graph. For a fixed, t0 and x0, the positive graph of
the solution of (1) corresponds to the set [3]

G+
t0,x0

= {(t,xa) | t ≥ t0,xa = ϕf (t− t0,x0)}. (4)

We still assume that x0 ∈ [x0] but also, we consider that the initial time t0 is
uncertain and is only known to belong to the interval [t0]. In this context, we
define the positive graph as the set

G+
[t0],[x0]

= {(t,xa)|∃t0 ∈ [t0],∃x0 ∈ [x0] |

t ≥ t0,xa = ϕf (t− t0,x0)}, (5)

which can be interpreted as the solution of the state equation with uncertain
initial state and time. Similarly to Problem 1, we want to bracket the set
G+

[t0],[x0]
from inside and outside.

Our objective is to find a unique algorithm able to find a guaranteed inner
and outer approximation of the sets F+

[x0]
and G+

[t0],[x0]
[9]. Some existing ap-

proaches use guaranteed integration [6, 20, 23] to bracket those sets [7]. For
efficiency reasons we will propose in this paper, a guaranteed approach based
on interval computation [13, 9] and constraint networking [14] that do not use
guaranteed integration. The main difference with existing approaches is that bi-
sections will take place both in the time space and the state space, which makes
the method both Eulerian and Lagrangian [15]. This increases the complexity
of the method but allows us to have a better control on the accuracy of the
results.

2. Main results

This section shows that both problems proposed in Section 1 can be ex-
pressed as the computation of the largest positive invariant set [10] which is
included inside a given set X.

A set A is positive invariant for the system (1) if for any trajectory x(·), we
have

x(0) ∈ A, t ≥ 0 =⇒ x(t) ∈ A. (6)

Given a set X, we denote by Inv+(f ,X), the largest subset of X (with respect to
the inclusion) which is positive invariant. The largest set exists and is unique,
due to the fact that the set of positive invariant sets is a complete lattice with
respect to the inclusion (e.g., the union or the intersection between two positive
invariant sets is positive invariant). From [3], we know that

xa ∈ Inv+(f ,X)⇔ ϕf ([0,∞],xa) ⊂ X. (7)
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As a consequence, Inv+(f ,X) can be defined in two different manners

Inv+(f ,X) =
⋃
{A ∈ P(X)|A is positive invariant}

= {xa ∈ Rn | ϕf ([0,∞],xa) ⊂ X} (8)

where P(X) is the power set of X.
The two following theorems show that our two sets F+

[x0]
and G+

[t0],[x0]
can

be defined in terms of positive invariant sets.
Theorem 1: We have

F+
[x0]

= Rn\Inv+(−f ,Rn\ [x0]) (9)

where \ is the set theoretic difference operator (i.e., A\B = {x ∈ A |x /∈ B})
and −f is the opposite of f (i.e., ∀x,−f(x) + f(x) = 0).

Figure 1: Illustration of the set F+
[x0]

. The orange backward trajectory is outside F+
[x0]

since

it never reaches [x0]. The black trajectory is included in F+
[x0]

.

Proof. Take an element xa of Inv+(−f ,Rn\ [x0]), as illustrated by Figure
1, we have

xa ∈ Inv+(−f ,Rn\ [x0])
⇔ ϕ−f ([0,∞],xa) ⊂ Rn\ [x0]
⇔ ∀t ≥ 0,ϕ−f (t,xa) ∈ Rn\ [x0]
⇔ ∀t ≥ 0,ϕ−f (t,xa) /∈ [x0]
⇔ ¬(∃t ≥ 0,ϕ−f (t,xa) ∈ [x0])
⇔ ¬(∃x0 ∈ [x0],∃t ≥ 0,ϕ−f (t,xa) = x0)
⇔ ¬(∃x0 ∈ [x0],∃t ≥ 0,ϕf (t,x0) = xa)
⇔ ¬(xa ∈ F+

[x0]
).
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Figure 2: Illustration of the set G+
[t0],[x0]

. The orange trajectory is outside G+
[t0],[x0]

since it

never reaches [t0]× [x0]. The black trajectory is included in G+
[t0],[x0]

.

As a consequence, the two sets F+
[x0]

and Inv+(−f ,Rn\ [x0]) are complementary.�
Theorem 2: We have

G+
[t0],[x0]

= Rn\Inv+(g,Z) (10)

where

g(t,x) =

(
−1

−f(t,x)

)
, Z = Rn+1\ [t0]× [x0] .

Proof. Take an element (ta,xa) of Inv+(g,Z), as illustrated by Figure 2,
we have:

(ta,xa) ∈ Inv+(g,Z)
⇔ ϕg([0,∞], (ta,xa)) ⊂ Z
⇔ ∀t1 ≥ 0,ϕg(t1, (ta,xa)) ∈ Z
⇔ ∀t1 ≥ 0,ϕg(t1, (ta,xa)) /∈ [t0]× [x0]

⇔ ∀t1 ≥ 0,

(
−t1 + ta

ϕ−f (t1,xa)

)
/∈ [t0]× [x0]

⇔ ∀t1 ≥ 0,−t1 + ta /∈ [t0] ∨ϕ−f (t1,xa) /∈ [x0] .

Taking the contraposite, we get

(ta,xa) /∈ Inv+(g,Z)

⇔
{
∃t1 ≥ 0,−t1 + ta ∈ [t0]
∧ϕ−f (t1,xa) ∈ [x0]

⇔
{

∃t1, t1 ≥ 0,−t1 + ta ∈ [t0]
∧∃x0 ∈ [x0],ϕ−f (t1,xa) = x0.
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If define t0 = ta − t1, we get

(ta,xa) /∈ Inv+(g,Z)

⇔
{

∃t0, ta − t0 ≥ 0, t0 ∈ [t0]
∧∃x0 ∈ [x0],ϕ−f (ta − t0,xa) = x0

⇔
{
∃t0 ∈ [t0] , ta − t0 ≥ 0,∃x0 ∈ [x0]

ϕ−f (ta − t0,xa) = x0

⇔
{
∃t0 ∈ [t0] , ta − t0 ≥ 0,∃x0 ∈ [x0],

ϕf (ta − t0,x0) = xa

⇔ (ta,xa) ∈ G+
[t0],[x0]

.

We have thus proved that Inv+(g,Z) and G+
[t0],[x0]

are two complementary sets.
�

3. Bracketing the largest invariant set

Given a set X ⊂ Rn, the search set, which is bounded, we will show in this
part that the set Inv+(f ,X) can be bracketed from inside and outside using the
algebra of mazes. By combining the inner [19] and the outer [18] approach, which
were used separately before and used mazes algebra, we provide an efficient
method to bracket the set Inv+(f ,X). Indeed, less bisections of the state space
will be required because of the simultaneous characterization from inside and
outside.

Maze. We will now recall briefly the main ideas behind mazes. The diffi-
culty to work with trajectories is that the dimension of the trajectory space is
infinite. Therefore we need a mathematical object to grasp and work with tra-
jectories: the mazes. Mazes was introduced using the framework of Constraint
Network theory to address this problem. A constraint network [14] is composed
of a set of variables, constraints and domains. Here, the variables are the paths
of Rn that are consistent with (1) and the unique constraint is “the path should
start from the initial condition [x0]”. Mazes are a type of domains that allow
to enclose paths, they are composed of:

• A paving P which covers X,

• A polygon in each box [p] of P that encloses all the possible trajectories
inside the box,

• Doors on the boundary of each box [p] that allow trajectories to leave or
enter inside polygons. In our implementation, doors are union polygons
(one per face of [p]). We have two types of doors: output doors from which
the trajectories are allowed to leave the box [p], and the input doors from
which they are allowed to enter inside [p].

Figure 3 shows a representation of a part of a maze where leaving doors are
painted blue and entering doors are painted red for box [x4].

From the unique constraint, we can deduce two contractors that will be
applied on doors and polygons [4, 1, 5]:
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Figure 3: Illustration of a part of a maze where a possible trajectory is shown in orange. The
{[xi]}i∈{1,...,6} form a paving of X.

• A flow contractor that contracts the polygons and doors consistently with
f ,

• A continuity contractor that contracts the polygons and doors of a box p
according to its neighbors.

Figure 3 illustrates the principle of the continuity and the flow contractors.
The blue output door of [a] is contracted according to the red input door of
[b] using the continuity contractors. The polygons associated to [a] and [b] are
then contracted using the flow contractor. This last contraction could have then
contract the doors of each boxes but this is not the case in the example of Figure
3.

Algorithm. To combine the outer and the inner approach we will use two
mazes, one for the inner and one for the outer approximation. The inner ap-
proximation is very similar to the outer method as it works on a complementary
approach as described in [17]. We propose the following algorithm to bracket
the largest invariant set:

1. Initialize the two mazes, one for the inner and one for the outer approxima-
tion, with the initial condition which means that the doors and polygons
which correspond to the initial condition are set consistently with it;

2. Apply the contractors on each maze until a fix point is reached for the
inner and the outer maze;

6



Figure 4: Illustration of the flow and the continuity contractors for a maze. The maze at the
top is before the contraction and the bottom maze is after applying the contractors. The gray
cones represent the union of all possible trajectories consistent with f in the box. This cone
can be computed using interval computation. The orange curve is a possible path enclosed
by the maze.
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3. Show the result OR bisect all boxes where the inner and the outer polygons
are not empty, and go to Step 1.

Test-cases
We will now test our algorithm on two test-cases. All computations were

conducted on a single processor i5- 3230M@2.60GHz for all test-cases.
Test-case 1. Van der Pol system. Consider the system described by the

state equation: {
ẋ1 = x2

ẋ2 =
(
1− x2

1

)
· x2 − x1

(11)

The initial vector satisfies x0 ∈ [x0] = [−4,−3] × [3, 4]. Our algorithm is able
to characterize the inner and outer approximation of the forward reachable set
F+
[x0]

as shown in Figure 3. The algorithm was stopped after 17 steps which

takes 8 s. The search set, which also corresponds to the frame box of the figure,
corresponds to X = [−6, 6]× [−6, 6].

We have tested this example on the solver CAPD [23] which is the state of the
art of interval integration. It works with a guaranteed Lagrangian approach. We
start the simulation at t = 0, the solver rapidly diverges and stops computing at
t = 0.57 with the answer x ∈ [−722.795, 716.825]× [−3.24089e+8, 3.24089e+8].
This is due to the fact that the initial box is large.

Test-case 2. Car on the hill system [12] . Consider the system described
by the state equation:{

ẋ1 = x2

ẋ2 = −9.81 sin(
1.1
1.2 sin(x1)−1.2 sin(1.1x1)

2 )− 0.7x2 + 2.0.
(12)

and the initial box [x0] = [−1, 1]× [−1, 1] and a search set X = [−2, 13]× [−6, 6].
As in [18] we are able to characterize the outer approximation of the set. The
main improvement is to be able to characterize an inside and outside approxi-
mation in the same time: the need to bisect boxes is then reduced. Indeed, the
bisection effort of the algorithm is now focused on the boundary between the
inner and the outer approximation whereas on large outer approximation zones
that were bisected in previous works [18]. The result is shown on Figure 3. The
algorithm was stopped after 18 steps which takes 30 s.

One of the drawback of our algorithm is that when trajectories leave the
search setX, we are not able to conclude if that they will not come back later.
This is the case on Figure 3 where trajectories can leave the search set X on its
right top part.

The next section shows how this problem can be addressed, at least for some
specific cases, by considering unbounded search boxes.
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Figure 5: Bracketing F+
[x0]

for the Van der Pol system. The magenta set corresponds to

the inner approximation of F+
[x0]

and the union of the yellow and magenta set to the outer

approximation of F+
[x0]

. The initial box [x0] is painted in red and the blue area corresponds

to the set where there is no solution. Gray cones correspond to the union of all directions of
the vector field in each boxes.
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Figure 6: Bracketing F+
[x0]

for the Car on the hill system. The color code is the same as

Figure 3. Now, since the boundary of the approximations intersets the boundary of the initial
box [x0], we cannot guarantee anymore that the blue area is outside F+

[x0]
.

4. Dealing with infinity

The previous section explained how to compute inner and outer approxima-
tions of Inv+(f ,X) where X is a bounded box. Now, to characterize a positive
graph, the set X is not bounded anymore and the abstract interpretation ap-
proach will need to handle unbounded intervals. Solving equations on an infi-
nite intervals can still be performed combining interval constraint propagation
with the generalized interval arithmetic [8]. In this arithmetic an interval is
a connected subset of the extended real numbers, the set of all real numbers
augmented with −∞ and +∞. For instance, with this arithmetic,

[−∞,∞]2 ∩ ([−∞, 2]3 − [−∞,∞]2)
= [0,∞] ∩ ([−∞, 8]− [0,∞])
= [0,∞] ∩ [−∞, 8] = [0, 8].

Similar results could have been obtained and probably made more accurate,
using the arithmetic of infinity [22].

Example. To illustrate the propagation process, consider the three following
equations  (C1) : y = x2

(C2) : xy = 1
(C3) : y = −2x + 1.

Using interval propagation, we want to prove that this system has no solution.
To each of the variables, we assign the domain [−∞,∞]. Then, we contract the
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Figure 7: Illustration of the propagation procedure

domains with respect to the constraints in the following order: C1, C2, C3, C1, C2

and we get empty intervals for x and y. A geometric interpretation of the
propagation is given on Fig. 7.

The resulting interval computation is as follows:

(C1)⇒ y ∈ [−∞,∞]2 = [0,∞]
(C2)⇒ x ∈ 1/[0,∞] = [0,∞]
(C3)⇒ y ∈ [0,∞] ∩ ((−2) .[0,∞] + 1)

= [0,∞] ∩ ([−∞, 1]) = [0, 1]
x ∈ [0,∞] ∩ (−[0, 1]/2 + 1/2) = [0, 1

2 ]
(C1)⇒ y ∈ [0, 1] ∩ [0, 1/2]2 = [0, 1/4]
(C2)⇒ x ∈ [0, 1/2] ∩ 1/[0, 1/4] = ∅

y ∈ [0, 1/4] ∩ 1/∅ = ∅.

until a steady box (also called the fixed point) is reached.
Bisection. To apply the maze method, we need to bisect intervals that can

be unbounded. Now, in the interval literature, only bounded intervals of R are
bisected and the cut point is the center. For instance, the interval [−1, 3] is
bisected into [−1, 1] and [1, 3]. Here, to bisect unbounded intervals we propose
to fix a support interval [a, b] and to never allow any bisections outside this
support interval. For instance the interval [−∞,∞] is bisected into [−∞, a] and
[a,∞]; the interval [a,∞] is bisected into [a, b] and [b,∞]. But the intervals
[−∞, a] and [b,∞] are never bisected. They are considered as ’too small’.

5. Bracketing the largest invariant set with unbounded search set

Method. We are now able to build mazes with infinite boxes. We will use
2 · n extra unbounded boxes around a search set Y to pave Rn. Figure 5 shows
an example of an unbounded set X composed of the bounded search set Y and
extra unbounded boxes {[b1] , . . . , [bk]} such as X ∈ {Y ∪ [b1] ∪ . . . ∪ [bk]}. We
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Figure 8: Illustration of the maze with unbounded boxes. The orange path corresponds to
a trajectory that reaches the bottom infinity box but stays inside it according to the green
doors.

can use the same algorithm from section 3 as we are able to apply contractors
on unbounded domains. Indeed, we are able to compute the cone of all direction
vectors inside unbounded boxes to apply the flow contractor and able to apply
the continuity contractor.

In this part, we will illustrate the method of infinite extension to compute
F+
[x0]

or G+
[t0],[x0]

when the search box X is unbounded.

Test-case 3. Sinusoidal system. Consider the system described by the
state equation:

ẋ = − sinx + e (13)

with the initial condition t0 ∈ [0.3, 0.5] and x0 ∈ [−0.5, 0.5] and where
e ∈ [−0.1, 0.1]. We choose X = [0, 5] × [−2, 2]. As illustrated by Figure 5
trajectories leaves the search set on the right part of the figure only and that
they cannot come back on the left part of the figure. This result is consistent
with the state equation where time always increases and forces trajectories to
not come back on the right of the figure. If we want to study more globally this
system, we now know that it is only necessary to extend the search set on the
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Figure 9: Bracketing the positive graph of the sinusoidal system with an unbounded search
set. The color code is the same as Figure 3. The surrounding boxes of the blue frame are the
infinite boxes where their polygon is colored in orange.

right part of the figure. The algorithm was stopped after 10 steps which takes
0.7 s.

Test-case 4. Car on the hill system. We now take back test-case 2 with
the example of the Car on the hill system where the bounded search set was
X = [−2, 13] × [−6, 6]. Figure 5 shows the result of the algorithm with infinite
boxes. Unlike the result of test-case 2, it was not possible here to contract
the outer approximation (no blue zones). In fact, we have seen that trajectories
were able to leave the bounded search set on the right part of Figure 3 in section
3. According to the cones of all possible trajectories of the unbounded boxes,
theses trajectories can re-enter inside the search-set (see the right cone). This is
why we cannot have a better result of the outer approximation. A larger zone
should be studied: an extend of the search space on the right part of the figure
is required to improve the result. The algorithm was stopped after 18 steps
which takes 190 s.

Test-case 4-bis. Figure 5 shows the result of our algorithm on the Car
on the hill system with a larger bounded search set X ∈ [−2, 17] × [−6, 6]. We
can see that no trajectories leave the bounded search set: this is why there is
an empty polygon in all of the infinite boxes and why we were able to contract
the outer approximation. All the trajectories stay inside X. The algorithm was
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Figure 10: Bracketing the forward reachable set of the Car on the hill system with an initial
condition and an infinite search space. Infinite boxes are orange colored and gray circles mean
that all directions might be possible inside the box.
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Figure 11: Bracketing the forward reachable set of the Car on the hill system with an initial
condition and an infinite search space. The search space was set larger than Figure 5.

stopped after 16 steps which takes 14 s.

6. Conclusion

In this paper, we have proposed a new approach to bracket the solutions
of an ordinary differential equation with uncertain initial conditions. We have
shown that this problem can be seen as an enclosure of the positive invariant set
of the system. By using mazes to work with trajectories and by using tools from
constraint programming and abstract interpretation theory, we have been able
to propose an algorithm to compute some inner and the outer approximations
of the solution of our problem. Finally we have extended the use of mazes to
unbounded set which increases the number of problems that our method can
deal with. The method was also tested on several test-cases.

Our method needs to bisect the state space, contrary to most interval inte-
gration methods making our approach Eulerian. On the one hand, this implies
an exponential increases of the computational complexity with respect to the
dimension of the state space. This makes our method impracticable with high
dimensional systems.

In a near future, we plan to extend our approach to dealing with hybrid
systems [11] when jumps could occur with respect to some guard conditions.
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