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Zero Step Capturability for
Legged Robots in Multi Contact
Andrea Del Prete, Member, IEEE, Steve Tonneau and Nicolas Mansard

Abstract—The ability to anticipate a fall is fundamental for
any robot that has to balance. Currently, fast fall-prediction
algorithms only exist for simple models, such as the Linear
Inverted Pendulum Model (LIPM), whose validity breaks down
in multi-contact scenarios (i.e. when contacts are not limited to a
flat ground). This paper presents a fast fall-prediction algorithm
based on the point-mass model, which remains valid in multi-
contact scenarios. The key assumption of our algorithm is that,
in order to come to a stop without changing its contacts, a
robot only needs to accelerate its center of mass in the direction
opposite to its velocity. This assumption allows us to predict the
fall by means of a convex optimal control problem, which we solve
with a fast custom algorithm (less than 10 ms of computation
time). We validated the approach through extensive simulations
with the humanoid robot HRP-2 in randomly-sampled scenarios.
Comparisons with standard LIPM-based methods demonstrate
the superiority of our algorithm in predicting the fall of the
robot, when controlled with a state-of-the-art balance controller.
This work lays the foundations for the solution of the challenging
problem of push recovery in multi-contact scenarios.

Index Terms—Stability, Viability, Legged Robots, Multi-
Contact.

I. INTRODUCTION

A. Overview
The main issue preventing legged robots from being de-

ployed outside research laboratories is probably their current
unsafeness. Their unstable dynamics makes balancing these
systems a real challenge. It is thus crucial to endow legged
robots with the ability to avoid falling, or at least to fall
in such a way that minimizes damage to people and objects
in the surroundings. A prerequisite to tackle this issue is of
course the ability to quickly predict the fall, known in robotics
as the problem of capturability [1], [2]. Many tools for fall
prediction (such as the capture point [3]) have been presented,
but they only apply to specific situations (e.g. level ground).
For the general case (such as the scenarios depicted in Fig. 1),
no solution exists that is fast enough to be of any practical
use. Since the whole point of equipping robots with legs is
to allow them to locomote on irregular grounds, restricting
their application to quasi-flat level ground appears as a severe
shortcoming [4].

This paper presents a fast and general fall-prediction al-
gorithm for legged robots in multi-contact situations, and
assesses its accuracy through simulations with the humanoid
robot HRP-2. Our algorithm can also estimate how close the
system is to falling, which provides useful insight and could
be used for controller design [1].

The authors are with the CNRS, LAAS, 7 avenue du colonel Roche,
Univ de Toulouse, LAAS, F-31400 Toulouse, France. e-mail: adelpret@laas.fr,
nmansard@laas.fr.
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(a) Two (non-coplanar) contacts. (b) Three contacts.

Fig. 1. Examples of the humanoid robot HRP-2 falling in multi-contact
simulation scenarios.

The problem of fall prediction is very much related to the
ones of balancing, push-recovery and fall-damage minimiza-
tion. In general, all of these problems are intractable for the
complex model of articulated robots, which motivated the use
of the Linear Inverted Pendulum Model (LIPM). This simple
linear model turns out to be a reasonable approximation of
a legged robot as long as these hypotheses are satisfied (for
more details see [5], Section 48.2.2):

1) the contact points lie on the same plane [6];
2) the center of mass (CoM) of the robot moves on a plane

parallel to the one of the contact points;
3) the angular momentum of the robot is constant (typically

zero);
4) friction is sufficiently high to avoid slippage.

This has allowed researchers to devise simple and effective
solutions to the above-mentioned problems for the case of level
ground. However, these algorithms do not scale to the more
general multi-contact case (i.e. when contact points are not
coplanar).

Another common reduced model is the point-mass model
(introduced in Section II), which only assumes constant angu-
lar momentum, so it can be used in multi-contact scenarios.
However, this model is nonconvex, which makes the associated
algorithms too slow for real applications [7], [8].

Our method is based on the simplifying assumption that, in
order to come to a stop, a robot only needs to accelerate its
CoM in the direction opposite to its current velocity. We show
in Section III that this assumption makes the capturability
problem convex, and we can thus propose a fast algorithm to
solve it. We then propose in Section IV a simple extension of
the capture point, which drastically improves its performance
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in multi-contact scenarios—even though our tests (presented
in Section V) show that it remains inferior to our algorithm.

B. State of the Art

The problem of fall prediction is closely related to the con-
cept of viability kernel [9], defined as the set of all the states
from which the legged system can avoid falling. By definition,
as soon as the system state leaves the viability kernel, the robot
is going to fall. Unfortunately, for complex nonlinear systems
such as legged robots, computing the viability kernel seems
computationally intractable. A slightly simpler condition is the
N-step capturability [1], [2], which is the ability of a legged
system to come to a stop without falling by taking at most N
steps. Capturability has been thoroughly studied for the LIPM
(or slight extensions of it), which allows for an analytical
computation of the capture point: the point on the ground
where to step to come to a stop [3].

Several extensions of the capture point have been proposed
to overcome its limitations (i.e. the above-mentioned LIPM
hypotheses). For instance, the Generalized Foot Placement
Estimator (GFPE) [10] takes into account a non-level ground
with discrete slope changes. Another extension of the capture
point to quadratic CoM paths (with varying CoM height) and
a polygonal representation of the terrain has been proposed
in [11]. The Divergent Component of Motion [12] has been
proposed as a 3D extension of the capture point to plan and
control bipedal locomotion over rough terrains. These works
extend the capture point to more general cases, but none of
them address the multi-contact scenario (e.g. by considering
contacts with a vertical surface). A pragmatic approach to use
the capture point in multi-contact scenarios is to introduce a
CoM offset in the LIPM dynamics, and estimate it with a
Kalman filter [13]. Even though this method has been used on
a real robot, no theoretical analysis justifies its soundness.

In [14] the authors proposed to use machine learning to
predict humanoid fall. Another machine-learning approach to
instability detection of bipedal robots was presented in [15],
with a final reaction time of about 60 ms. In [16], instability
is detected by monitoring the deviations of the attitude from
a reference model, with a computation time between 60 and
100 ms. The main limitations of this approach seem to be the
computation time (60 ms may be too slow for push recovery)
and the lack of guarantees of generalization of the algorithm
outside the training dataset.

Several researchers have also dealt with the problem of
fall-damage minimization. In [17] the authors proposed a
fall controller that changes the fall direction to avoid hitting
people or objects in the surroundings. An optimal planning
of falling motions for humanoid robots to reduce the damage
has been investigated in [18]. In [19] the authors presented
an optimization-based control strategy to generate whole-body
trajectories to minimize fall damage. Given an unstable initial
state of the robot, Ha and Liu [20] found the optimal contact
sequence to dissipate the initial momentum with minimal im-
pacts on the robot. These fall-damage minimization algorithms
could be used in combination with our algorithm, in case a
fall is predicted and balance seems impossible to recover.

The approach that is the closest to ours is the optimization-
based push recovery for multi-contact scenarios [7], [8]. This
method is based on our same reduced model (i.e. a point-mass)
and it presents a dynamic stability indicator that resembles our
capturability criterion. Its main limitation is that it needs to
solve several nonconvex discretized optimal-control problems,
which makes it too slow for real-time applications (about 0.7
s) and subject to local minima.

C. Contributions

We list here the main contributions of this work.

• We propose the first fast (<10 ms) algorithm for fall
prediction of legged robots in multi-contact scenarios.

• We empirically demonstrate the good fall-prediction ca-
pabilities of our algorithm through thousands of simula-
tions with randomly-sampled initial conditions.

• We empirically evaluate the fall-prediction capabilities
of the capture point, showing that it performs poorly in
multi-contact scenarios.

• We propose a simple extension of the capture point (by
checking its membership to the support polygon [21]),
and we empirically show that it is a reasonable fall in-
dicator in multi-contact scenarios—although not as good
as our method.

II. DEFINITIONS AND PROBLEM STATEMENT

A. Centroidal Dynamics

Considering a robot in contact with the environment at k
contact points, its Newton-Euler equations are:

m c̈ =

k∑
i=1

fi +mg (1a)

l̇ =

k∑
i=1

(pi − c)× fi (1b)

where m ∈ R is the robot mass, c ∈ R3 is the CoM position,
fi ∈ R3 is the i-th contact force, g = [0, 0,−9.81]> is
the gravity acceleration, l ∈ R3 is the angular momentum
(expressed at the CoM) and pi ∈ R3 is the i-th contact
point. All quantities are expressed in an arbitrary inertial frame
having z aligned with the gravity. By replacing c×∑k

i=1 fi
with m c×(c̈−g) in (1b) we can reformulate (1) as:

[
m(c̈−g)

m c×(c̈−g) + l̇

]
︸ ︷︷ ︸

w

=

[
I3 . . . I3
p̂1 . . . p̂k

]
︸ ︷︷ ︸

A

f1...
fk


︸ ︷︷ ︸

f

, (2)

where p̂ ∈ R3×3 is the cross-product matrix related to p. We
call w = Af ∈ R6 the centroidal wrench (also called pseudo-
wrench [22]).
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B. Centroidal Cone
According to Coulomb’s law, each contact force is con-

strained to lie inside a friction cone:

||fi − (n>i fi)ni|| ≤ µin>i fi ∀i = 1 . . . k, (3)

where µi is the friction coefficient, and ni ∈ R3 is the normal
direction at the i-th contact. A very common alternative to the
quadratic friction-cone constraints (3) is to approximate them
with polytopes [7], [21], [22]. We can express the linearized
friction-cone constraints as a set of linear inequalities:

Bf ≤ 0 (4)

Equations (2) and (4) imply that the set of admissible cen-
troidal wrenches w is also a cone. Its linearization can
be computed using polytope-projection techniques [23]. We
represent this centroidal cone with a matrix H such that:

Hw ≤ 0 ⇐⇒ ∃f : Bf ≤ 0,w = Af (5)

C. Problem Statement
We consider the 0-step capturability problem, which con-

sists in determining whether the system can come to a stop
without moving the current contact points. Solving this prob-
lem for a given state considering the full dynamics of a legged
robot is too computationally expensive to be of any practical
use. Instead, we take the common approach of considering
only the centroidal dynamics of the system (1), which greatly
reduces the size of the problem.

The main concern when using the centroidal dynamics is
given by the angular momentum l. On the one hand we know
that angular momentum is a great resource for balancing, so
we would like to exploit it in our reduced models. On the
other hand, the angular momentum is bounded by the limited
rotational capabilities of the robot bodies (i.e. joint position
and velocity limits), which we do not know how to represent
in the centroidal model. For this reason, we take the common
assumption that l̇ = 0 [7], [9], which leads us to a point-mass
model.

The 0-step capturability problem can be formulated as a
minimum-time optimal control problem:

minimize
c(t),ċ(t),c̈(t),T

T

subject to
d

dt

[
c(t)
ċ(t)

]
=

[
ċ(t)
c̈(t)

]
∀t ≥ 0

Hw(c(t), c̈(t)) ≤ 0 ∀t ≥ 0

(c(0), ċ(0)) fixed
ċ(t) = 0 ∀t ≥ T,

(6)

where w is seen as a function of c and c̈ according to (2).
If the solution T ∈ R+ is a finite number, then the state
is capturable (in the following we omit the prefix “0-step”
when we talk about capturability). Even if minimizing the time
is not necessary to determine whether a state is capturable,
it is useful to compute the so-called capturability margin
(see Section III-D for more details). The main difficulty in
solving (6) comes from the centroidal-cone constraints. These
constraints are indeed bilinear because of the cross-product
between c and c̈, which makes (6) nonconvex.

0
a [m]

0ä
[m

/s
2 ]

Static-equilibrium
region

↵̈min(↵)

smin

smax

Fig. 2. Typical polytope of feasible CoM accelerations (parametrized as α̈)
as a function of CoM positions (parametrized as α). This polytope clearly
depicts the unstable dynamics of the system: if α > smax (α < smin) and
α̇ is positive (negative), then the system can no longer come to a stop.

III. PROBLEM SOLUTION

A. Parametrized Centroidal Dynamics

Our approach is based on a simplifying assumption that
makes problem (6) convex. We assume that the best strategy
to stop the CoM consists in accelerating it in the direction
opposite to its velocity. This implies that ċ and c̈ are always
parallel (which is also what happens when stepping on the
capture point). To take advantage of this assumption, we
rewrite c× c̈ as:

c(t)× c̈(t) = (c(0) + ∆ c(t))× c̈(t),

where ∆ c(t) = c(t) − c(0) is our new position variable.
Since ∆ c(t) and c̈(t) are always parallel, ∆ c(t)× c̈(t) = 0,
so the centroidal-cone constraints become linear:

H

([
mI

mĉ(0)

]
c̈(t) +

[
0
mĝ

]
∆ c(t) +

[
−mg

mg × c(0)

])
≤ 0

Besides making (6) convex, this assumption reduces the
size of the problem. Since c̈(t) and ċ(t) are parallel, the
CoM moves on a straight line, so we can parametrize its 3d
trajectory by means of a 1d trajectory α(t):

c(t) = c(0) + α(t)v

ċ(t) = α̇(t)v

c̈(t) = α̈(t)v,

where v , ċ(0)
|| ċ(0)|| . Thanks to this parametrization, the

centroidal-cone constraints become:

H

[
mI

m c(0)× v

]
︸ ︷︷ ︸

a

α̈(t) + H

[
0

mg × v

]
︸ ︷︷ ︸

b

α(t) ≤ H

[
mg

m c(0)× g

]
︸ ︷︷ ︸

d
(7)

This set of inequalities defines the polytope of feasible CoM
position-acceleration pairs (α, α̈) along the direction v (see
for instance Fig. 2). Starting from α(0) = 0 we can then
search for a feasible acceleration trajectory α̈(t) that allows
the system to stop (if any exists). Problem (6) then becomes:
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minimize
α(t),α̇(t),α̈(t),T

T

subject to
d

dt

[
α(t)
α̇(t)

]
=

[
α̇(t)
α̈(t)

]
∀t ≥ 0

a α̈(t) + bα(t) ≤ d ∀t ≥ 0

(α(0), α̇(0)) fixed
α̇(t) = 0 ∀t ≥ T

(8)

This new 1d optimal-control problem shares many features
with the Time Optimal Path Parametrization (TOPP) prob-
lem [24]. However, in our problem the path is not fixed: we
know that it will be on a straight line, but we do not know how
far the CoM will travel. Moreover, our inequality constraints
are linear, which allows to use closed-form solutions to inte-
grate our dynamical system. We propose thus in the following
a dedicated algorithm to solve this problem.

B. Algorithm Overview

The key idea of the algorithm is to integrate the linear
dynamical system (LDS) (α, α̇) applying the maximum de-
celeration (i.e. minimum acceleration), until either we reach
α̇ = 0 (and we can maintain it), or we can prove that we will
never reach it. Additionally to the following text, we refer the
reader to the companion video, which provides a graphical
description of the algorithm. Since the space of feasible (α, α̈)
is a polytope, the minimum feasible acceleration, denoted by
α̈min, is a piecewise-linear function of α (e.g. see Fig. 2).
The same applies to the maximum feasible acceleration, α̈max.
This means that we can express α̈min as:

α̈min(α) = βi + γiα, αi ≤ α ≤ ᾱi, i ∈ [1, N ], (9)

where N is the number of linear intervals of α̈min. With an
abuse of notation, in the following we denote with γ(α) the
value of γi corresponding to the interval [αi, ᾱi] containing α.

Starting from the initial state, we set α̈(t) = α̈min(α(t)) and
integrate the system until either of these conditions is met:

C1 α̈min(α(t)) ≥ 0 and γ(α(t)) ≥ 0;
C2 there is no feasible α̈ for α(t);
C3 α̇(t) = 0.

In C1 we know that the system will diverge because it will
no longer be able to decelerate (e.g. Fig. 2). In C2 we
reached the right extremity of the (α, α̈) polytope, meaning
that there exists no CoM acceleration that allows the robot
to maintain the current contacts. In C3 the system came to a
stop at time t = tzv . The final answer depends then on the
location of α(tzv) with respect to the static-equilibrium region
S : [smin, smax] ⊂ R.

C3.1: If α(tzv) belongs to S (i.e. smin < α(tzv) < smax)
then the system can maintain α̇ at zero because α̈ = 0 is
feasible. The initial state is then capturable.

C3.2: If α(tzv) is located before S (i.e. α(tzv) < smin), it
means that we decelerated too quickly to reach S. We thus go
back to the initial state and apply α̈max (which is negative)
until either of these conditions is met:

C3.2.1 α̈max(α(t)) = 0;
C3.2.2 α̇(t) = 0.

↵̈minundefined

↵̇ = 0
SCENARIO C1

↵̇

↵̇(0)

0 SCENARIO C3

SCENARIO C2

SCENARIO C3.1

SCENARIO C3.2.1

SCENARIO C3.3

↵ 2 S ↵ < smin ↵ > smax

↵̇

↵̇(0)

0

SCENARIO C3.2

SCENARIO C3.2.2

↵̈max = 0

↵̇

↵̇(0)

0

↵̇ = 0

↵̈min � 0
� > 0

↵̇

↵̇(0)

0

↵̇

↵̇(0)

0

?

Apply ↵̈ = ↵̈min(↵(t))

↵̇

↵̇(0)

0

Reset state and apply ↵̈ = ↵̈max(↵(t))

↵̇

↵̇(0)

0

Fig. 3. Decision tree of the capturability algorithm. The yellow bar on the
left side of the plot represents the residual velocity α̇.

In C3.2.1 the system reached S, so the initial state was
capturable. We do not need to prove that the system can stop
inside S because we have already shown that α̈max leads
the system to S with a positive velocity, and α̈min stops the
system before reaching S. There must exists then a convex
combination of these two trajectories that leads the system to
S with zero velocity.

In C3.2.2 we know that, despite applying the maximum
acceleration, we did not reach S. This means that S is
not reachable from the given initial state, which thus is not
capturable.

C3.3: If S is located before the current value of α(t), it
means that the CoM dynamics is naturally stable: regardless
of the choice of α̈, the system can hardly diverge. This can
happen only for very unusual contact geometries, such as
if the CoM is located below the contact points (e.g. the
robot is hanging from above). A simple way to deal with
this case would be to restart the algorithm inverting the
velocity direction (i.e. v = −v). The system would then start
accelerating towards S, and as soon as it gets inside S it could
try to stop before leaving S again. The only problem with this
approach is that, in theory, the algorithm could loop forever,
e.g. if the system behaves like a damping-less pendulum.
Properly dealing with these unusual cases would significantly
increase the complexity of our algorithm. Since we prefer to
keep the algorithm simple to make it more accessible to the
community, we decided not to deal with this unusual case in
this paper.

The decision tree of the algorithm is depicted in Fig. 3,
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Algorithm 1 capturability algorithm.
function IS STATE CAPTURABLE( c, α̇,v,A,m,g )

2: α← 0
α̇0 ← α̇

4: last iteration ← False
for i = 0 to MAX ITER do

6: if α̇ = 0 then . Check for C3
αs ← compute closest static alpha(c, α,v,A,g)

8: if α = αs then . Check for C3.1
return True

10: if α < αs then . Check for C3.2
return is static region reachable(c, α̇0,v,A,m,g)

12: return CaseNotHandled . C3.3
if last iteration then

14: return False
(feasible, β, γ, ᾱ)← compute min acc(c,v,A,m,g)

16: if not feasible then . Check for C2
return False

18: if γ > 0 and β + γᾱ > 0 then . Check for C1
ᾱ← −βγ

20: last iteration ← True
(α, α̇)← integrate LDS(α, α̇, β, γ, ᾱ)

Algorithm 2 Algorithm to check whether static region is
reachable.

function IS STATIC REGION REACHABLE( c, α̇,v,A,m,g )
2: α← 0

last iteration ← False
4: for i = 0 to MAX ITER do

if α̇ = 0 then . Check for C3.2.2
6: return False

if last iteration then
8: return True

(feasible, β, γ, ᾱ)← compute max acc(c,v,A,m,g)
10: if β + γᾱ ≥ 0 then . Check for C3.2.1

last iteration ← True
12: (α, α̇)← integrate LDS(α, α̇, β, γ, ᾱ)

while the whole algorithm is summarized by Algorithms 1
and 2. In the following we present a proof of convergence
of the algorithm (Section III-C) and we discuss a simple
extension to quantify how close the given state is to falling
(Section III-D).

The function compute closest static alpha (used in Algo-
rithm 1) is described in Appendix A. In a few words, it
solves a Quadratic Program to determine where the given CoM
position is with respect to the static-equilibrium region. The
function integrate LDS is described in Section III-E. Finally,
the function compute min acc is described in Section III-F.

C. Proof of convergence

Theorem. Algorithm 1 terminates in a finite number of iter-
ations by one of the cases of Fig. 3.

Proof. Consider an arbitrary initial state (α, α̇), correspond-
ing to a minimal acceleration (maximal deceleration) α̈min.
If no corresponding acceleration exists, then the algorithm

immediately terminates with scenario C2. Otherwise, at each
iteration the algorithm follows an edge of the convex polygon
α, α̈ (which may be open) until either another edge is found,
or one of the conditions of Fig. 3 is met. The current edge
might be bounded by another edge ᾱ, by the axis α̈ = 0, or
it might be unbounded (below). In the first case, a new edge
is reached, which corresponds either to a new iteration or to
scenario C2 (termination with negative answer). The second
case corresponds to scenario C1 (termination with negative
answer). In the last case, the system can always decelerate,
thus it can reach α̇ = 0 (scenario C3). Since the polygon has
a finite number of edges (upper bounded by the number of
faces of the linearized centroidal wrench cone (5)), the main
loop of Alg. 1 is guarantee to terminate in one of the scenarios
of Fig. 3.

To conclude the proof we have to check that the second
loop (scenario C3.2) integrating α̈max converges as well. With
similar arguments, the current edge is either bounded by a
new edge, by the axis α̈ = 0 or unbounded. This corresponds
either to a new iteration, to termination with C3.2.1 or to the
guarantee to be able to reach C3.2.2.

D. Approximate Capturability Margin

Rather than merely predicting whether the system is going
to fall, we could measure how close it is to falling. This
information can be useful for controller design or to eval-
uate the risk of fall. In case the algorithm terminates with
a negative answer, the final CoM velocity (i.e. α̇) can be
used as an approximate distance of the current state to the
capturability kernel. If instead the algorithm terminates with
a positive answer, we could measure how much additional
initial CoM velocity the system could have handled. However,
this measure would require additional computations, hence a
longer computation time. We propose instead to use another
measure, which is correlated to this one, but that comes at zero
computational cost. Once the system reaches the final state
α̇final = 0, we take the maximum deceleration α̈min(αfinal)
as an approximate distance of the current state to the borders of
the capturability kernel. In the case of coplanar contacts this
value is actually proportional to the distance of the capture
point to the support polygon borders, so it seems a reasonable
way to approximate the capturability margin.

E. Integration of Piecewise-Linear Dynamical System (PLDS)

Now that we have outlined the algorithm, we can enter into
the details of how to integrate the PLDS. Given the interval
of linearity [α, ᾱ] (defined in (9), but used here without index
i to improve readability) that contains the current value of α,
and the values β, γ defining α̈ as an affine function of α, we
have to integrate the following LDS:

d

dt

[
α(t)
α̇(t)

]
=

[
0 1
γ 0

] [
α(t)
α̇(t)

]
+

[
0
β

]
We want to integrate until one of these two conditions is

met: i) α(t) = ᾱ, or ii) α̇(t) = 0. The termination conditions
on α̈ mentioned in Section III-B can be handled by properly
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modifying ᾱ before starting the integration (see line 19 of
Algorithm 1).

The explicit solution of this LDS can take two different
forms, depending on whether γ is null. We deal with them
separately in the following two subsections.

1) Acceleration depends on position: If γ 6= 0 (which is the
typical case) then the explicit solution of this system is [25]:[
α(t)
α̇(t)

]
=

[
cosh(ωt) sinh(ωt)

ω
ω sinh(ωt) cosh(ωt)

] [
α(0)
α̇(0)

]
+

[
cosh(ωt)− 1
ω sinh(ωt)

]
β

γ
,

(10)
where ω =

√
γ. When γ is negative, ω is an imaginary number,

but α(t) and α̇(t) always remain real numbers. Since we have
to integrate until α(t) = ᾱ, or α̇(t) = 0, we need to know the
time at which these events will occur. We can compute the
time at which α̇(t) = 0 by using the second line of (10).

ω sinh(ωt)α(0) + cosh(ωt) α̇(0) + ω sinh(ωt)
β

γ
= 0

t =
1

ω
atanh

( − α̇(0)

ω(α(0) + β/γ)

)
, tzv

If the argument of atanh does not belong to the interval
[−1, 1] it means that α̇ will never be zero. Otherwise, we
have to verify that the position limit is not reached before
tzv , that is: α(tzv) ≤ ᾱ. If that is the case, the algorithm
terminates. Otherwise, this means that α will reach ᾱ with a
positive velocity.

We can compute the time at which α(t) = ᾱ by using the
first line of (10):

cosh(ωt)α(0) +
1

ω
sinh(ωt) α̇(0) + (cosh(ωt)− 1)

β

γ
= ᾱ

t =


1
ω log

(
−C+

√
B2+C2−A2

A+B

)
, if γ > 0

1
ω log

(
−C−

√
B2+C2−A2

A+B

)
, if γ < 0

where:

A = α(0) +
β

γ
, B =

α̇(0)

ω
, C = −ᾱ− β

γ

The logarithm in the expression of t is (in general) a complex
logarithm. However, t is always a real number.

2) Acceleration does not depend on position: When γ = 0,
the solution of our LDS is:[

α(t)
α̇(t)

]
=

[
1 t
0 1

] [
α(0)
α̇(0)

]
+

[
1
2 t

2

t

]
β

In this case we can easily compute the time at which α̇(t) = 0
as:

tzv = − α̇(0)

β
→ α(tzv) = α− α̇(0)2

2β

As before, we need then to check whether α(tzv) ≤ ᾱ. If this
condition is satisfied the algorithm terminates. If that is not the
case, we have to compute the time at which α(t) = ᾱ. Since
the position trajectory is a parabola, there exist two values of
t such that α(t) = ᾱ. We take the smallest of the two because
we are interested in the first time where α(t) reaches ᾱ:

t =
− α̇(0) +

√
α̇(0)2 − 2β(α(0)− ᾱ)

β

The whole integration of the LDS is summarized in Ap-
pendix B.

F. Computing Acceleration Bounds

We already saw in Section III-A that we can compute
the (α, α̈) polytope by means of the centroidal cone matrix
H. However, computing H can be computationally expensive
(about 5-10 ms), and being fast is critical in the context of
predicting a fall. We thus propose an alternative method to
compute α̈min, which resulted to be computationally faster in
our tests. From (2), (4) and (7) we can easily see that, for
a given value of α, we can compute α̈min by solving the
following Linear Program (LP):

minimize
x=(α̈,f)

α̈

subject to

[
mI

m c×v

]
α̈+

[
−mg

mg × c0

]
+

[
0

mg × v

]
α = Af

Bf ≤ 0
(11)

Exploiting simple properties of LPs [26], the solution α̈min
can be written as a linear function of the problem parameter
α:

α̈min(α) = β + γα, α ≤ α ≤ ᾱ,

where β, γ, α and ᾱ can be deduced from the problem
solution. More details about this computation can be found
in Appendix C.

IV. CAPTURE POINT EXTENSION

In order to evaluate our capturability algorithm we would
like to compare it against other capturability algorithms for
multi-contact scenarios. However, classic capturability tools
(such as the capture point) are not designed to work in multi-
contact. In this section we present a simple extension of the
capture point, which drastically improves its performance in
multi-contact.

The (instantaneous) capture point is the 2d point on the
ground where the robot has to step to come to a stop [1],
[2]. Using the dynamics of the LIPM we can easily derive the
analytical expression of the capture point:

cxy +
ċxy

ω
,

where ω =
√
g/cz , g is the gravity acceleration, and cz is

the height of the CoM. The capture point has been originally
introduced for push recovery [3]. However, later it has been
also used as a criterion for zero-step capturability [27]. This
is based on the simple observation that, as long as the capture
point remains inside the convex hull of the contact point, the
robot state is capturable.

Our tests will empirically demonstrate that this approach
no longer works in multi-contact scenarios. However, we can
modify this criterion to account for the additional contacts.
We suggest to use the support polygon [21] rather than the
convex hull of the contact points. It is well-known that, in
case of coplanar contacts, the two polygons are equivalent.
This is no longer the case in multi-contact scenarios.

Even though this approach is heuristic, and mainly based on
our intuition, our tests show that it gives rather good results
in practice—although not as good as our algorithm.
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V. RESULTS

This section presents simulation results with the 36-degree-
of-freedom humanoid robot HRP-2 [28] in a push-recovery
scenario. The goals of our tests were:

1) to measure how accurately our algorithm can predict the
fall of a complex legged robot;

2) to compare our algorithm with other capturability mar-
gins;

3) to assess whether our algorithm was suitable for online
applications in terms of computation time.

We initialized all simulations with random joint positions
and velocities (Section V-B), and used our algorithm to predict
whether a fall was inevitable. We then verified whether the
prediction was correct by simulating the system using a
balance controller (Section V-A). We repeated this process
thousands of times, with different numbers of contacts: two
(the feet), three (feet and one hand) and four (both feet and
hands). Finally, we compared the accuracy of fall prediction
of three different capturability margins:

• the one presented in this paper (Section III);
• the capture point distance to the support polygon, positive

if the capture point is inside, negative otherwise (Sec-
tion IV);

• the capture point distance to the convex hull of the contact
points projected on a plane orthogonal to gravity (positive
if the capture point is inside, negative otherwise).

A. Balance Controller

Ideally the balance controller used for comparison should
always be capable of avoiding a fall whenever this is pos-
sible (ground thruth). However, we are not aware of any
such controller. The closest approach to an ideal controller
would probably be a whole-body trajectory optimization [29].
However, its large computation time prevents both extensive
testing for validation in simulation and application on real
systems for balance recovery. A common alternative is to
optimize only a subpart of the robot dynamics, such as the
centroidal dynamics [30]. Both whole-body and centroidal
trajectory optimization boil down to nonconvex optimization
problems, which thus extensively rely on either a good initial
guess or a convex approximation. We are not aware of any
of these that has been proven efficient in the difficult case of
balance recovery.

Nowadays, standard balance controllers used on real sys-
tems are local controllers that try to stop the robot while
satisfying all its dynamic constraints [31]. From a pragmatic
point of view, it is interesting to evaluate how well our
algorithm can predict the failure of these controllers—rather
than of an ideal controller. For these reasons, we used a
Task-Space Inverse Dynamics controller [27], formulated as

a Quadratic Program:

minimize
x=(v̇,f ,τ )

||Dx− d||2

subject to

[
J(q) 0 0
M(q) −J(q)> −S>

]v̇f
τ

 =

[
−J̇(q,v)v
−h(q,v)

]
Bf ≤ 0

− τmax ≤ τ ≤ τmax

v̇min ≤ v̇ ≤ v̇max,
(12)

where n is the number of joints, q = (xb,qj) ∈ SE(3)×Rn
are the robot base and joint configurations, v = (vb, q̇j) ∈
Rn+6 are the base and joint velocities, τ ∈ Rn are
the joint torques, J ∈ Rk×(n+6) is the constraint Jacobian,
M ∈ R(n+6)×(n+6) is the mass matrix, h ∈ Rn+6 contains
the bias forces and S ∈ Rn×(n+6) is the selection matrix. The
joint-acceleration bounds are computed so as to avoid violating
the bounds of the joint positions and velocities [32]. The cost
function (defined by D and d) represents the error of the tasks,
that is the 2-norm of the difference between desired and actual
task-space accelerations. We formulated the task of balancing
by using two sub-tasks:
• stop the CoM: c̈des = −kcomd ċ
• maintain the initial joint posture q0

j : q̈desj = kjp(q
0
j −

qj)− kjdq̇j
We set kcomd = dt−1, so as to ask for zero CoM velocity in
a single time step dt (which was set to 1 ms in our tests).
The gains of the postural task instead were kjp = 30, and

kjd = 2

√
kjp. As typically done, we gave higher priority to

the CoM task by weighting its error 103 times more than the
postural task error. We also tried adding a task to regulate
the angular momentum to zero (as suggested in [31]), but
we found that it was overall detrimental to the balancing
performance, so we did not use it in the end.

B. Methodology

We decided to test our algorithm in a push-recovery sce-
nario: the robot starts in an equilibrium configuration, and then
an impulsive force applied at its CoM instantaneously changes
its joint velocities. At that point the balance controller tries to
stop the CoM while maintaining the initial joint posture.

In order to get reasonable initial conditions we had to
bias the random sampling in different ways. We first sampled
the robot configuration q, which had to satisfy the following
constraints:
• The robot CoM must be above the support polygon [21]

(this is a necessary condition for static equilibrium)
• No self collision
• The feet are in contact with the ground (only for the test

with two coplanar contacts)
We then sampled the initial robot velocity vector v, which had
to satisfy the following linear constraints:
• Zero velocity at the contact points
• Zero angular momentum
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(a) Two coplanar contacts.
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(b) Two (non coplanar) contacts.
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(c) Three contacts.
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(d) Four contacts.

Fig. 4. Receiver operating characteristic (ROC) curves.

• Each joint should be able to stop before hitting its position
bounds by using a limited user-defined acceleration q̈maxj

To enforce the last constraint, each joint velocity must sat-
isfy [32]:

−
√

2q̈max(q − qmin) ≤ q̇ ≤
√

2q̈max(qmax − q)
We carried out 104 tests for each number of contacts and we
made sure to have 50% of the tests in which the robot fell. For
the comparison we used the receiver operating characteristic
(ROC) curve, a standard way to show the ability of a binary
classifier as its discrimination threshold varies. The ROC
curve shows the probability of detection (also known as “true
positive rate” or “sensitivity”) against the probability of false
alarm (also known as “false positive rate” or “fall-out”) at
various threshold settings. In our context the probability of
detection is computed as the number of times a fall has been
correctly predicted over the number of times the robot fell.
Similarly, the probability of false alarm is the number of times
a fall has been erroneously predicted over the number of times
the robot did not fall.

We considered the robot to be fallen if:
• the Quadratic Program (12) became unfeasible, or
• the position of the end-effectors in contact moved more

than 10 cm from its initial position, or
• the velocity of the CoM became larger than 5 m/s.

Otherwise, we considered the robot to have successfully
avoided the fall as soon as ||v|| < 0.01.

C. Discussion

The results for 2 coplanar, 2 non coplanar, 3 and 4 contacts
are summarized by the ROC curve in Fig. 4a, 4b, 4c and 4d,
respectively. Some snapshots from the simulations can be seen
in Fig. 5, 6 and 7.

As expected, for two coplanar contacts the three captura-
bility margins performed well and they are approximately
equivalent—although the two capture-point margins (which
are equivalent in this setting) were slightly better. For two
non coplanar contacts our capturability margin performed
significantly better than the other two. Moreover, the capture
point margin performed better when using the support polygon
than when using the convex hull of the contact points. This
is reasonable because the convex hull of the contact points is
only a rough approximation of the support polygon when the
contact points are not coplanar. Finally, for both 3 and 4 con-
tacts the capture point margin w.r.t the convex hull performed
very poorly, while our capturability margin still outperformed
the capture point margin w.r.t. the support polygon.

However, it is somehow surprising that the capture point
margin w.r.t. the support polygon worked quite well even for
3 and 4 contacts. The capture point is based on the linear
inverted pendulum model, which is known to break down
in multi-contact situations. The reason why it worked in this
context is that we used it in combination with the real support
polygon, computed using techniques valid for multi-contact
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(a) (b) (c) (d)

Fig. 5. Example of simulation result with two (non coplanar) contacts.

(a) (b) (c) (d)

Fig. 6. Example of simulation result with three contacts.

(a) (b) (c) (d)

Fig. 7. Example of simulation result with four contacts.

scenarios. This provides then an interesting alternative to our
capturability margin, which is easier to code and faster to
compute—even though it does not perform as good.

Finally, our capturability margin performed significantly
better for 2 and 3 contacts than for 4 contacts. This is
reasonable because the robot motion was heavily constrained
by the contacts, in a way that is not accounted for by our
algorithm. However, we could account for these kinematic
constraints in future work using existing methods [30], [33].

D. Computation Time
We implemented our algorithm in python, but we used

a C++ solver for the LPs (to compute the minimum CoM
accelerations). Since the LPs are the most computationally
expensive part of our algorithm, we report here only the time
taken to solve the LPs. With a complete C++ implementation
the total time would be only marginally higher.

Fig. 8 shows the computation times of our algorithm for
different numbers of contacts. As expected, the computation
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Fig. 8. Computation time of our algorithm.

time increased as the number of contacts increased. This is
due to the increased size of the LPs. Remarkably, it never
exceeded 10 ms, and most of the times it was below 5 ms.
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This efficiency is crucial for a fall prediction scenario because
it allows for fast reactions.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a fast algorithm to compute an approx-
imate capturability margin for legged robots in multi-contact
scenarios. The algorithm relies on the point-mass model and
the simplifying assumption that, in order to come to a stop,
the robot only needs to accelerate its CoM in the direction
opposite to its initial velocity. This assumption is somewhat
conservative, but it makes our problem convex, allowing us to
solve it efficiently (i.e. in less than 10 ms).

We validated our approach performing thousands of sim-
ulations with the HRP-2 humanoid robot, in different ran-
dom multi-contact scenarios (using 2, 3, or 4 contacts).
We implemented a state-of-the-art inverse-dynamics balancing
controller, and we evaluated the ability of our algorithm to
predict the outcome of the simulations. The performance
varied depending on the number of contacts (the lower, the
better). For instance, with 3 contacts our algorithm was able
to predict a fall with a probability of 90%, while having
a probability of false alarm of about 10%. Regardless the
number of contacts, our algorithm outperformed the capture
point margin w.r.t. the convex hull of the contact points, which
performed very poorly in the multi-contact case. Our results
also show that the capture point margin w.r.t. the support
polygon is a reasonable fall prediction indicator, even in multi-
contact scenarios, although less accurate than our criterion.

An interesting direction for future work would be the
inclusion of the presented capturability criterion inside an
inverse dynamics controller—similarly to [27], but for multi-
contact scenarios. This would allow for the generation of
arbitrary movements, while guaranteeing the balance of the
robot. However, this extension does not seem trivial. The
presented algorithm determines the membership of a given
state to the capturability kernel, but without explicitly com-
puting the kernel. This begs the question of how to include
the capturability constraint inside the controller. While the
capturability kernel could be approximated offline through a
sampling-based approach, we expect it not to be a convex set.
It is then unclear how this nonconvex constraint should be
included in the convex QP solved by state-of-the-art inverse
dynamics controllers.

This paper discussed the problem of zero-step capturability.
An obvious extension would be to deal with the more general
problem of N-step capturability. However, the assumption that
the CoM moves on a straight line would be too conservative for
N>0. When the CoM projection leaves the support polygon
we can no longer accelerate it in all directions, which may
prevent us from maintaining it on a straight line. A possible
alternative could be to assume that the CoM remains on a
plane, which would confine the nonlinearity of the centroidal
wrench to its last element only. This nonlinearity could then
be treated using robust optimization techniques, in the same
spirit as [34], or by simply neglecting it [35].

Another interesting extension could be the inclusion of a
flywheel in the model, which would allow for a bounded

Algorithm 3 Algorithm to integrate the Linear Dynamical
System.

function INTEGRATE LDS( α, α̇, β, γ, ᾱ )
2: if γ = 0 then

αt ← α− 0.5 α̇2 /β
4: if αt ≤ ᾱ then

return (αt, 0)

6: t← − α̇+
√
α̇2 −2β(α−ᾱ)

β
return (ᾱ, α̇+tβ)

8: ω ← √γ
arg ← − α̇

ω(α+β/γ)
10: if |arg| ≤ 1 then

t← 1
ω

atanh(arg)
12: αt ← cosh(ωt)α+ sinh(ωt) α̇ /ω + (cosh(ωt)− 1)(β/γ)

if αt ≤ ᾱ then
14: return (αt, 0)

(A,B,C)← (α0 + β
γ
, α̇0
ω
,−ᾱ− β

γ
)

16: if γ > 0 then
t = 1

ω
log((

√
B2 + C2 −A2 − C)/(A+B))

18: else
t = 1

ω
log((−

√
B2 + C2 −A2 − C)/(A+B))

20: α̇t ← ω sinh(ωt)α+ cosh(ωt) α̇+ω sinh(ωt)(β/γ)

return (ᾱ, α̇t)

generation of angular momentum. However, it is not clear how
to connect the orientation of this flywheel with the orientation
of the different bodies of the robot, given the nonintegrability
of the average angular velocity [36].

APPENDIX A
COMPUTE CLOSEST STATIC ALPHA

This section describes the function com-
pute closest static alpha (used in Algorithm 1). We
need to compute a value αs as close as possible to a given
reference α, such that the CoM position c+αsv allows
for static equilibrium. This can be achieved by solving the
following Quadratic Program:

minimize
αs,f

||αs − α||2

subject to

[
−mg

mg × c0

]
+

[
0

mg × v

]
αs = Af

Bf ≤ 0

If the resulting value of αs is equal to α, then the CoM
position c+αv belongs to the support polygon. If instead
αs < α, then the CoM is located after the support polygon
(according to the direction v). Otherwise αs > α, which
means that the CoM is located before the support polygon.
This QP is unfeasible only if the line c+αsv does not intersect
the support polygon. In this case, the initial state (c, ċ) is
labeled as not capturable.

APPENDIX B
INTEGRATION OF LINEAR DYNAMICAL SYSTEM

Algorithm 3 summarizes the integration of the (α, α̇) linear
dynamical system with input acceleration α̈ = β + γα, until
either α̇(t) = 0 or α(t) = ᾱ.
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APPENDIX C
COMPUTING ACCELERATION BOUNDS

Given a CoM position parametrized by a scalar value α as
c = c0 +αv, we can compute the minimum CoM acceleration
in direction v by solving the Linear Program (LP) (11).
Exploiting ideas from the field of multi-parametric optimiza-
tion [26] we can analyze how the solution of this LP varies
as a function of the parameter α. Once the LP optimum x∗

has been computed, we know which constraints are active at
the optimum by looking at the Lagrange multipliers. We then
can collect all the active constraints in the matrix K and the
vectors k1,k2 (which will include all the equalities and some
of the inequalities) such that:

Kx∗ = k1α+ k2 (13)

Since K is always a square invertible matrix, we can compute
x∗ as a function of α:

x∗(α) = K−1(k1α+ k2)

This expression remains valid as long as the active constraints
do not change. We can verify this by using this expression:

BSfK
−1(k1α+ k2) ≤ 0, (14)

where Sf is a selection matrix such that f = Sfx. By
normalizing the rows of (14) we can easily find the upper
and lower bounds of α, namely α and ᾱ. Moreover, the
first element of the vector K−1k1 is the derivative of α̈min
with respect to α (which we previously called γ). The same
procedure can be applied for computing α̈max.
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