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Specification and tuning of errors from dynamical models are important issues in

data assimilation. In this work, we propose an iterative expectation-maximisation

(EM) algorithm to estimate the model error covariances using classical extended and

ensemble versions of the Kalman smoother. We show that, for additive model errors,

the estimate of the error covariance converges. We also investigate other forms of model

error, such as parametric or multiplicative errors. We show that additive Gaussian

model error is able to compensate for non additive sources of error in the algorithms we

propose. We also demonstrate the limitations of the extended version of the algorithm

and recommend the use of the more robust and flexible ensemble version. This article

is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an

open-source Python library to enable future users to apply the algorithm to their own

nonlinear dynamical models.
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1. Introduction

One of the major difficulties in the practice of data assimilation

is the specification of model errors (Daley 1992; Dee 1995;

Hoteit et al. 2007). Model errors can be due to different

sources, including physical modelling errors, numerical errors,

and misparameterisation (Lahoz et al. 2010). In assimilation

schemes, model errors are conveniently represented by additive

Gaussian random variables. This approach was shown to be very

effective in many situations (Houtekamer et al. 2009). Although,

inaccurate parameterisation of the covariance matrix of the model
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error can have a negative impact on the performance of data

assimilation schemes and may even lead to their failure (Mitchell

and Houtekamer 2000; Dee 1995; Hoteit et al. 2007), the

development of accurate parameterisation methodologies remains

challenging.

Most research done on model error estimation for data

assimilation have focused on innovation-based adaptive filters

(Berry and Sauer 2013; Mitchell and Houtekamer 2000; Dee

1995). In these algorithms, the model error is estimated

sequentially along with the state by maximising the likelihood

of the innovations. This approach is particularly suited for the

estimation of time-evolving model errors. These methods involve

a parametric representation of the model error covariance to

reduce the number of degrees of freedom in the optimisation

problem (Mitchell and Houtekamer 2000; Dee 1995). More

recently, Ueno et al. (2010) proposed an offline approach for

estimating model errors in data assimilation schemes using an

ensemble Kalman filter (EnKF), that relies on parameter space

binning and optimisation of the likelihood by exhaustive search.

Expectation-maximisation (EM) is an iterative procedure to

approximate the maximum likelihood estimate when hidden

variables prevent a direct optimisation of the log-likelihood

(Dempster et al. 1977). The EM algorithm has been implemented

for estimating model error covariance in linear Gaussian state-

space models by Shumway and Stoffer (1982). In the expectation

step, a Rauch-Tung-Striebel (RTS) Kalman smoother is used to

compute the smoothing distributions (conditional on all past and

future observations), that are used to derive a cost function. In

the maximisation step, this cost function is optimised to compute

an update to the approximation of the maximum likelihood

estimate. The EM algorithm is statistically meaningful, because

its iterations optimise the log-likelihood of the state space model.

Unlike the approach by Ueno et al. (2010), the EM algorithm does

not require a potentially expensive exhaustive search to optimise

the log-likelihood of the state space model.

Recently, Tandeo et al. (2015) adapted the EM procedure in

an ensemble framework to a case where the observations are

nonlinearly related to the underlying states. They approximated

the smoothing distribution using an ensemble version of the RTS

Kalman smoother (Rauch et al. 1965), the ensemble Kalman

smoother (EnKS) (Cosme et al. 2012). EnKS is a boostrapped

version of the Bayesian smoother, which, contrary to the particle

filter, uses the best linear unbiased estimation (BLUE) to

reestimate the state when new observations are available (Smith

et al. 2013). EnKS is a two-pass smoother whose forward pass is

given by the EnKF (Burgers et al. 1998; Hoteit et al. 2002, 2015).

The EM algorithm has also been used in conjunction with the

EnKS and the Extended Kalman Smoother (EKS) to estimate

physical parameters in chemical (Chitralekha et al. 2010) and

neuroscience (Kulkarni and Paninski 2007) applications relying

on nonlinear dynamical models. Ueno and Nakamura (2014)

used the EM algorithm to sequentially compute an approximation

of the maximum likelihood estimate of the observation error

covariance in a data assimilation scheme using the EnKF. More

recently, Ueno and Nakamura (2016) applied the EM algorithm

for online estimation of the observation error covariance matrix in

a Bayesian framework.

In this work, one of our goals is to evaluate the ability of the

Gaussian additive errors to compensate for non additive model

errors. We extend the EM-EnKS approach proposed by Tandeo

et al. (2015) for estimating the model and observation error

covariances, as well as the parameters of the Gaussian initial

background state in nonlinear dynamical systems. Thereinafter,

we designate these statistical parameters as the hyperparameters

of the state-space model. We also derive another approximation

of the EM procedure based on the EKS, which we refer to as EM-

EKS. EM-EKS and EM-EnKS are tested on trajectories simulated

with the Lorenz 63 (L63) model (Lorenz 1963), with additive and

non additive model error assumptions. Ultimately, we focus on

estimating the appropriate model error covariances.

In the following section, we derive the EM-EKS and the

EM-EnKS schemes for estimating the hyperparameters of a

nonlinear state-space model. In Section 3, we present the

experiments testing the EM-EnKS/EKS algorithms with different

parameterisation of model errors, and describe the results in

Section 4. In Section 5, we conclude by discussing the implication

of our results to the estimation of model error in general.
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2. Methods

2.1. State-space models

Let {x0,x1, ...,xK} denote the discrete-time state process, which

is typically unknown to the observer. Let {y1,y2, ...,yK} repre-

sent the observation process, which describes the measurements

of the system that are available to the observer. In many appli-

cations, such as geophysical fluid dynamics (Evensen 2009), oil

reservoir modelling (Aanonsen et al. 2009; Luo et al. 2012), or

target tracking (Chui and Chen 2009), these state and observation

processes are related following a nonlinear state-space model:

xk = fk−1,k(xk−1) + ηk, (1)

yk = Hxk + εk. (2)

Equation (1) describes how the system state xk evolves through a

nonlinear dynamical model fk−1,k between successive time steps

tk−1 and tk. η = {η1,η2, ...,ηK} is the model noise process,

which accounts for the imperfections of the model; it is assumed

to be independent and identically distributed (i.i.d.). At each time

step, ηk is assumed to be Gaussian with zero mean and covariance

matrix Q. Equation (2) models how an observation yk at time tk

is obtained from the state xk through a linear operator H. ε =

{ε1, ε2, ..., εk} is an i.i.d. process representing the observation

errors; εk is assumed Gaussian with zero mean and covariance

matrix R. Finally, the processes η and ε are assumed to be jointly

independent and independent of the initial (background) state x0,

which is assumed to be Gaussian with mean xb and covariance B.

In this work, we assume that the hyperparameters xb,B,Q, and

R of the model (1)–(2) are unknown and that Q and R are fixed in

time. Our objective is to estimate these parameters using the EM

algorithm. Shumway and Stoffer (1982) derived such an algorithm

in the case where fk−1,k is linear. Tandeo et al. (2015) adapted

this algorithm to the case where the observation operator H is

nonlinear. Our approach, derived below, extends these algorithms

to the case of nonlinear dynamical models.

2.2. Expectation-maximisation algorithm

Let θ = {xb,B,R,Q}. In the system (1)–(2), the probability

density function (pdf) of all observations y1:K = {y1, ...,yK}

depends on the hyperparameters θ and will be denoted pθ(y1:K).

Similarly, pθ(u) stands for the pdf of a random variable u,

parameterised as a function of θ. The goal is to compute an

estimator of θ that maximises the likelihood function pθ(y1:K):

θ̂ML = arg max
θ

[pθ(y1:K)], (3)

= arg max
θ

[ln pθ(y1:K)]. (4)

In state-space models, the passage from the complete data pdf

pθ(x0:K ,y1:K) to the incomplete data pdf pθ(y1:K), which is

difficult to express analytically and thus to optimise, is governed

by the marginalisation:

pθ(y1:K) =

∫
...

∫
pθ(y1:K ,x0:K)dx0...dxK . (5)

Because of the integral in (5), pθ(y1:K) can be a complex function

of θ, often making the direct computation of θML impossible.

The EM algorithm is an iterative procedure to approximate

θ̂ML when the complete likelihood can be expressed analytically

and easily optimised. The algorithm involves the log-likelihood

of the complete data pdf ln pθ(x0:K ,y1:K) rather than that of the

incomplete data ln pθ(y1:K). Since in ln pθ(x0:K ,y1:K), x0:K is

not known, it is replaced by its expected value conditionally on

y1:K , and given an estimator of the parameter θ, calculated at the

previous iteration (say i) and denoted by θ(i). At iteration i+ 1,

θ(i+1) is calculated by maximising this expected value. Thus, the

EM algorithm proceeds in two steps that can be summarised as

follows:

Expectation (E) step: This step computes the auxiliary

function:

Gθ(i)(θ) = Ep
θ(i)

(x0:K |y1:K)[ln pθ(x0:K ,y1:K)], (6)

given by the expected value of ln[pθ(x0:K ,y1:K)] with respect to

the smoothing pdf of x0:K given y1:K , parameterised by θ(i).
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Maximisation (M) step: This step provides an update θ(i+1) of

the hyperparameters by maximising Gθ(i)(θ); that is:

Gθ(i)(θ
(i+1)) ≥ Gθ(i)(θ), ∀ θ. (7)

Dempster et al. (1977) have shown that the likelihood pθ(i)(y1:K)

does not decrease with the iterations (i); that is:

pθ(i+1)(y1:K) ≥ pθ(i)(y1:K), ∀i = 1, 2, ... (8)

An approximation of θ̂ML is given by the last update of θ(i)

when some stopping criterion is achieved (for example when the

difference between successive estimates of the hyperparameters

|θ(i) − θ(i−1)| is less than a predefined tolerance).

In the state-space system (1)–(2) the complete likelihood can

be factorised using the independence properties of η, ε, and x0:

pθ(x0:K ,y1:K) = pθ(x0)

K∏
k=1

pθ(xk|xk−1)

K∏
k=1

p(yk|xk), (9)

which yields the log-likelihood:

L = ln pθ(x0:K ,y1:K)

= ln pθ(x0) +

K∑
k=1

ln pθ(xk|xk−1) +

K∑
k=1

ln pθ(yk|xk). (10)

Since η, ε and x0 are Gaussian, one obtains:

L = −1

2
ln |B| − 1

2
(x0 − xb)TB−1(x0 − xb)

− K

2
ln |Q| − 1

2

K∑
k=1

(xk − fk−1,k(xk−1))TQ−1(xk − fk−1,k(xk−1))

− K

2
ln |R| − 1

2

K∑
k=1

(yk −Hxk)TR−1(yk −Hxk) + C, (11)

where C is a constant that does not depend on θ. Thus, the

auxiliary function can be written as:

Gθ(i)(θ) =− 1

2
ln |B| − 1

2
Tr[B−1Σ

(i)
0 ]

− K

2
ln |Q| − 1

2
Tr[Q−1

K∑
k=1

Σ
(i)
k ]

− K

2
ln |R| − 1

2
Tr[R−1

K∑
k=1

Ω
(i)
k ],

(12)

with

Σ
(i)
0 = Ep

θ(i)
(x0|y1:K)[(x0 − xb)(x0 − xb)T ], (13)

Σ
(i)
k = Ep

θ(i)
(xk−1,xk|y1:K)[(xk − fk−1,k(xk−1))(xk

− fk−1,k(xk−1))T ], (14)

Ω
(i)
k = Ep

θ(i)
(xk|y1:K)[(yk −Hxk)(yk −Hxk)T ]. (15)

The computation of (13)–(15) requires the knowledge of

the smoothing pdfs pθ(i)(x0|y1:K), pθ(i)(xk−1,xk|y1:K) and

pθ(i)(xk|y1:K). We propose here to compute them using the EKS

and EnKS algorithms, which will be presented in the following

sections.

The maximisation step consists of analytically optimising

Gθ(i)(θ). By taking the partial derivatives with respect to the

parameters as zero, we obtain the following parameter updates:

x̂b,(i+1) = Ep
θ(i)

(x0|y1:K)[x0], (16)

B̂(i+1) = Σ
(i)
0 , (17)

Q̂(i+1) =
1

K

K∑
k=1

Σ
(i)
k , (18)

R̂(i+1) =
1

K

K∑
k=1

Ω
(i)
k . (19)

In the particular cases where Q is diagonal or of the form αQ0,

with α > 0, and Q0 is positive definite, one can show that the

updates are respectively:

Q̂(i+1) =
1

K

K∑
k=1

diag[Σ
(i)
k ], (20)

and

Q̂(i+1) = α(i+1)Q0, (21)

with α(i+1) =
Tr[Q−1

0

∑K
k=1 Σ

(i)
k ]

Kn , where n is the number of state

variables.

2.3. EM equations for EKS

Here, we compute the smoothing pdfs by adapting the RTS

smoother that was originally introduced in linear-Gaussian state-

space models (Shumway and Stoffer 1982; Ait-El-Fquih and

Desbouvries 2008; Cosme et al. 2012) to the smoothing version

of the extended Kalman filter (EKF) (Anderson and Moore 1979).
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The RTS smoother is a two-pass algorithm. First, a forward pass

with the EKF to recursively compute the mean and covariance

(xfk ,P
f
k) of the Gaussian forecast pdf, p(xk|y1:k−1), and those

(xak,P
a
k) of the analysis pdf p(xk|y1:k) for k = 0, ...,K. These

quantities are then used in the backward pass, starting from the

final time step tK , to recursively compute backward in time the

mean and covariance (xsk,P
s
k) of the Gaussian smoothing pdfs

p(xk|y1:K). Since the dynamical model is nonlinear in equation

(1), we linearise it, following the principle of the EKF, before we

use the RTS smoother (Rauch et al. 1965). The resulting EKS

algorithm is summarised as follows:

Forward Pass: Let N (xfk ,P
f
k) be the EKF approximation of

the forecast pdf pθ(xk|y1:k−1), and let N (xak|P
a
k) be the EKF

approximation of the filtering pdf pθ(xk|y1:k). Let the gradient

at xak−1 of the dynamical model be Mk−1,k =
∂f(x)
∂x |xak−1

. The

filter is initialised with (xa0 ,P
a
0) = (xb,B). The EKF recursively

computes the values xfk ,P
f
k ,x

a
k,P

a
k through the following two

steps.

• EKF Forecast Step:

xfk = fk−1,k(xak−1), (22)

Pfk = Mk−1,kP
a
k−1M

T
k−1,k + Q. (23)

• EKF Update Step:

Kf
k = PfkH

T (HPfkH
T + R)−1, (24)

xak = xfk + Kf
k(yk −Hxfk), (25)

Pak = (I−Kf
kH)Pfk . (26)

EKS Smoothing step: Let N (xsk,P
s
k) be the EKS approxima-

tion of the smoothing pdf pθ(xk|y1:K). For k = K,K − 1, ..., 0,

the forecast and analysis means and covariances xfk ,P
f
k ,x

a
k,P

a
k

are used to compute the smoothing means and covariances xsk,P
s
k

as:

Ks
k = PakM

T
k,k+1(Pfk+1)−1, (27)

xsk = xak + Ks
k(xsk+1 − xfk+1), (28)

Psk = Pak −Ks
k(Pfk+1 −Psk+1)Ks

k, (29)

with Ks
k the smoothing gain. This pass is initialised at time step

tK with (xsK ,P
s
K) = (xaK ,P

a
K).

The two passes of EKS compute the smoothing means and

covariances (xsk,P
s
k). They can be used to directly update the

quantities Σ0 and Ωk in equations (13) and (15), respectively.

However, Σk in equation (14) requires the knowledge of the

cross-covariance Psk,k−1 ≡ Ep(xk,xk−1|y0:K)[(xk − xsk)(xk−1 −

xsk−1)T ], which is not directly computed by the EKS algorithm

above. We therefore take from Shumway and Stoffer (1982) (eqs.

A11 and A12) the following (backward) recursion:

Psk,k−1 = Pak(Ks
k−1)T + Ks

k(Psk+1,k −Mk,k+1P
a
k)(Ks

k−1)T

(30)

The recursion is initialised at the final time K by: PsK,K−1 =

(I−Kf
KH)MK−1,KPak−1.

In the maximisation step, we use the results of the EKS and

equation (30) to compute the quantities (13)–(15) at each iteration

(i). For the background covariance (13):

Σ
(i)
0 = Ps0 + (Ep

θ(i)
(x0|y1:K)[x0]− xb)(Ep

θ(i)
(x0|y1:K)[x0]− xb)T ,

(31)

= Ps0. (32)

For the cross-covariance (14) between successive states, k =

1, ...,K, after expansion and linearisation, one obtains:

Σ
(i)
k = Psk + (xsk − fk−1,k(xsk+1))(xsk − fk−1,k(xsk+1))T

+ Mk−1,kP
s
k−1M

T
k−1,k −Psk−1,kM

T
k−1,k −Mk−1,kP

s
k−1,k.

(33)

For the covariance between states and observations (15):

Ω
(i)
k = (yk −Hxsk)(yk −Hxsk)T + HPskH

T . (34)

Finally, for the mean of the initial state, we get: x̂b,(i) = xs0.
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2.4. EM equations for EnKS

EM-EnKS structure is similar to that of EM-EKS, with a forward

filtering pass, a backward smoothing pass, and the computation of

the covariances in (13)–(15).

Forward pass: We use the stochastic EnKF as proposed in

Burgers et al. (1998), which approximates the forecast and

analysis distributions from discrete samples xfk,j and xak,j

respectively, for k = 1, ...,K, j = 1, ..., Ne, where Ne is the

number of ensemble members. The samples are initialised with

xa0,j ∼ N (xb,B). We then alternate forecast and analysis steps

for k = 1, ...,K.

• EnKF Forecast step: The forecast step propagates the

analysis ensemble from time step tk−1 to time step tk using

the state equation (1) and computes samples of forecasted

observation using the observation equation (2):

xfk,j = fk−1,k(xak−1,j) + ηk,j j = 1, ..., Ne (35)

yfk,j = Hxfk,j + εk,j j = 1, ..., Ne (36)

with ηk,j ∼ N (0,Q), εk,j ∼ N (0,R), and yfk,j the

forecasted observation for sample j.

• EnKF Analysis step: The forecasted ensemble xfk,j is

corrected with the new observation yk to obtain the analysis

ensemble xak,j :

Kf
k = P̄fkH

T [HP̄fkH
T + R]−1, (37)

xak,j = xfk,j + Kf
k(yk − yfk,j), j = 1, ..., Ne, (38)

with P̄fk the sample covariance of the sample xfk,j , j =

1, ..., Ne.

Backward pass: We follow the RTS algorithm adapted by

Cosme et al. (2012) to the EnKF. It is initialised with xsK,j =

xaK,j , j = 1, ..., Ne. For k = K − 1, ..., 0:

Ks
k = P̄a,f

k|k+1
(P̄fk+1)−1, (39)

xsk,j = xak,j + Ks
k(xsk+1,j − xfk+1,j), (40)

where P̄a,f
k|k+1

is the sample covariance matrix of xak,j and

xfk+1,j , j = 1, ..., Ne, and P̄fk+1 is the sample covariance matrix

of xfk+1,j , j = 1, ..., Ne. The backward smoothing pass does not

require dynamical model integrations, but uses only analyses and

forecasts from the forward pass.

The inversion in (39) is implemented with the singular value

decomposition (SVD) as describes in Cosme et al. (2012) (eq. 30).

However, in the case where the state dimension is larger that the

ensemble size, Pfk is not invertible. In that case, one can compute

the smoothing gain using the formula proposed in Cosme et al.

(2012) (eq. 31):

Ks
k = Sak[(Sfk+1)TSfk+1]−1(Sfk+1)T , (41)

where the columns of Sak and Sfk+1 are the centered ensembles

members xak,j and xfk+1,j j = 1, ..., Ne, respectively. This

formula is based on the fact that Ks
kP̄

f
k+1 = P̄a,f

k|k+1
for both (39)

and (41).

Using the samples xsk,j , k = 0, ...,K, j = 1, ..., Ne, one can

compute the sample estimates of equations (13)–(15) using:

x̂b,(i) =
1

Ne

Ne∑
j=1

xs0,j , (42)

Σ
(i)
0 =

1

Ne

Ne∑
j=1

(xs0,j − x̂b,(i))(xs0,j − x̂b,(i))T , (43)

Σ
(i)
k =

1

Ne

Ne∑
j=1

(xsk,j − f(xsk−1,j))(x
s
k,j − f(xsk−1,j))

T , (44)

Ω
(i)
k =

1

Ne

Ne∑
j=1

(yk −Hxsk,j)(yk −Hxsk,j)
T . (45)

In the case where the state dimension is larger than the number of

ensemble members, these sample covariance matrices are singular

and therefore Q̂ and R̂ estimated in equations (18)–(19) can

become singular as well (if the state dimension is larger than

KNe). In this case, Q̂ and R̂ can be parameterised as in (20)–(21)

to ensure that they remain invertible.
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2.5. Algorithms summary

Both EM-EKS and EM-EnKS are initialised with an arbitrary

value of the parameter θ̂(0) = {x̂b,(0), B̂(0), R̂(0), Q̂(0)}. For

iterations i = 1, ..., I, the parameter is updated with the following

steps:

1) Filter the state with the observations using equations

(22)–(26) for EM-EKS and (35)–(38) for EM-EnKS, assuming the

value of the state-space parameter θ is its current estimate θ̂(i−1).

That is, the model and observation covariances are Q̂(i−1) and

R̂(i−1), respectively, and the initial a priori state is specified by

x̂b,(i−1) and B̂(i−1).

2) Smooth the filtered states using the backward recursions

(27)–(29) for EM-EKS and (39)–(40) for EM-EnKS. Additionally,

EM-EKS requires running the backward recursion (30) to

compute the crosscovariance matrix of smoothed states Psk,k−1.

3) Compute the quantities Σ
(i)
k and Ω

(i)
k using the smoothed

states and covariances xsk,P
s
k,P

s
k,k−1 and equations (31)–(34)

for EM-EKS, and use the smoothed ensemble states xsk,j and

equations (43)–(45) for EM-EnKS.

4) Update the estimate of the hyperparameters

Q̂(i), R̂(i), B̂(i), x̂b,(i) using equations (17)–(21) for parameters

Q,R and B, respectively. The estimate of the mean initial value

parameters xb is updated as xs0 for EM-EKS and using equation

(42) for EM-EnKS.

These steps are repeated until a given stopping condition is

achieved (e.g., on the log-likelihood or the estimated parameter

values). The estimate of the parameter θ̂EM is given by the estimate

at the last iteration I: θ̂(I) = {Q̂(I), R̂(I), B̂(I), x̂b,(I)}.

3. Numerical Experiments

The numerical experiments use the EM-EKS and the EM-EnKS

algorithms to estimate the model error covariance matrix Q (R

is assumed known and fixed). Different model error assumptions

are used to simulate the true trajectories, xtk, k = 0, ...,K. The

observations are computed from xt according to equation (2).

These experiments will assess the ability of EM-EKS and EM-

EnKS to perform in realistic settings where the type of model error

is unknown a priori. These experiments will also reveal to what

extent the additive Gaussian model error assumption is reasonable

in real systems. We will consider the following assumptions for

model error: additive, parametric and multiplicative.

3.1. Lorenz-63 (L63) model and experimental design

We apply the EM algorithms described in the previous section

to the L63 model (Lorenz 1963). This model is low-dimensional

and has a chaotic behaviour, which makes it an ideal reference

model for testing data assimilation schemes. The L63 differential

equations are:

dx1(t)

dt
= σ(x2(t)− x1(t)), (46)

dx2(t)

dt
= x1(t)(ρ− x3(t))− x2(t), (47)

dx3(t)

dt
= x1(t)x2(t)− βx3(t), (48)

where, σ = 10, ρ = 28, β = 8/3. The model was integrated over

a total duration of T=100 (assimilation window), and the states

were recorded every model step dt = 0.01 (10000 time steps). The

ordinary differential equation (ODE) system is integrated using an

explicit Runge-Kutta method of order 5 (Hairer et al. 2009).

The background state of the EM-EKS and EM-EnKS

algorithms is initialised with climatological estimates calculated

based on the free integration of the model over 5000 model

steps (dt = 0.01). The initial state xb is taken as the average

of the states over that period and the initial covariance B as

the empirical covariance matrix of the simulated states. Unless

mentioned otherwise, EM-EKS and EM-EnKS were iterated 200

times (EM iterations). To understand the impact of the ensemble

size on EM-EnKS, we conducted experiments with 20, 100, and

500 ensemble members. For each experimental setup, EM-EnKS

was repeated 20 times to compute prediction intervals of the errors

and log-likelihoods of the estimated state, and the model error

covariances.

For each of the model error assumptions mentioned above, we

run the EM algorithms with the following types of observations:

(a) The full state is observed every model step (∆t = 0.01).

(b) The full state is observed every 10 model steps (∆t = 0.1).
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(c) The first state variable is observed every model step (∆t =

0.01).

(d) The first state variable is observed every 10 model steps

(∆t = 0.1). steps.

The true trajectories are generated in different ways described

below, depending on the type of simulated model errors. Then, we

generate the observations using the true covariance error matrix

(assumed known and not estimated) Rt = σ2
obsI, with σ2

obs = 2. In

experiments (a) and (b), we set H = I in equation (2), while for (c)

and (d), H = [1, 0, 0]. In EM-EKS and EM-EnKS, Q is initialised

to I, a value larger than the true model errors simulated below.

3.2. Experiments with additive model error

In the first experiments, the trajectories are simulated with

Gaussian additive model errors. That is, a random Gaussian

distributed error of covariance matrix Qt (true model covariance

matrix) is added to the state at every model step k = 1, ...,K of

length dt = 0.01.

xtk = f(xtk−1) + ηk, ηk ∼ N (0,Qt). (49)

This model error assumption is the same as the one used to derive

the EM algorithms in section 3. Thus, this experiment evaluates

the ability of these algorithms to estimate Q in an ideal setting.

We compare the convergence of Q for the EM-EKS and the

EM-EnKS algorithms as well as the log-likelihood and root mean

squared error (RMSE, calculated over all states, sampled every

dt = 0.01). In the first part of this experiment, the true model

error covariance matrix is set to Qt = 0.05I. This value of Qt

is small in comparison to R (40 times smaller). However, in a

chaotic system like L63, small errors are quickly amplified.

To evaluate the sensitivity of the L63 system to this model

error, 100 independent trajectories following equation (49) are

simulated over 100 model steps (dt = 0.01). The evolution of the

first variable of L63 for each of these trajectories is shown in

Figure 1 as well as the first variable of the reference trajectory

(without error). A 99% prediction interval for an observation

(with R = 2I) of the reference trajectory is shown. Initially, the

trajectories are well bounded by the prediction intervals. However,

0.0 0.2 0.4 0.6 0.8 1.0
Lorenz-63 time

−20

−15

−10

−5

0

5

10

15

20

x
1

Trajectories with model error
Trajectory without model error
99% CI of observation

Figure 1. First variable of the L63 model for trajectories simulated with and without
additive Gaussian model error, added every ∆t = 0.01, with covariance 0.05I;
99% prediction interval of an observation of the first state variable of the error-free
trajectory with observation error of covariance 2I.

they quickly diverge after t = 0.8 (80 model steps) and split

between the two attractors.

To evaluate the convergence of the estimated Q with respect

to the true value Qt, we conducted another simulation where

Qt is of the form σ2I, with σ2 ∈ {0, 0.02, 0.04, ..., 0.2}. Q is

estimated with assimilation cycles of different lengths (1, 4, 7, and

10 model steps), and the results are compared to the true value of

Qt = 0.05I.

In real systems, we expect the model errors of different

state variables to be correlated. Therefore, assuming Qt to be

non diagonal could be more realistic. However the inversion of

full model error covariance matrices when filtering in systems

with high-dimensional state is prohibitive. In this case, low-

dimensional parameterisation of Q is needed. Therefore, we

conducted an experiment where the true trajectory is generated

with a non diagonal Qt of the form:

Qt = 0.05.


1 .7 0

.7 1 .7

0 .7 1

 . (50)

We then estimate Q with the EM-EKS and the EM-EnKS

algorithms, assuming the estimate is either full, diagonal or of the

forms αI or αB (in which case the scalar α is estimated). We

then compare the results of EM-EKS and EM-EnKS with these

parameterisations of Q with runs of EKS and EnKS, assuming

the true values Qt.
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3.3. Parametric and multiplicative model error

Parametric error In this experiment, we consider a common

source of model error: parameter error, that is, the error introduced

in the model by misparameterisation and/or parameter evolution.

Here, we examine the effects of an inaccurate parameterisation

of parameter β from equation (48) of the L63 ODE system.

The true trajectory is generated with β changing at every model

step dt = 0.01 and sampled from a uniform distribution β ∼

U([βmax, βmin]). If f(x;β) is the result of the state integration

x over a dt time step with parameter β, then the true trajectory xtk

is generated in the following way:

xtk = f(xtk−1;βk), βk ∼ U([βmin, βmax]). (51)

We set βmin = 8/3− 2 and βmax = 8/3 + 2.

EM-EKS and EM-EnKS are used to estimate the covariance

matrix Q of an additive Gaussian model error, that compensates

for the parametric error. The algorithms are evaluated in the

experiments setup (a)–(d) presented at the beginning of this

section.

Multiplicative error In this last experiment, we consider a

multiplicative model error. At every model step, the current state is

obtained by multiplying each state variable by the corresponding

component of a multivariate lognormal error. That is, for k =

1, ...,K:

[xtk]l = [νk]l.[f(xtk−1)]l, l = 1, 2, 3,νk ∼ LogN (0,Qmult),

(52)

with Qmult = 0.001I, and [x]l denotes the i-th component of

vector x.

Multiplicative noise is useful to model uncertainties that depend

on the state (Sura et al. 2005), and have been used for modelling

errors in precipitation data (Tian et al. 2013). As with the

parametric model error, we evaluate the ability of EM-EnKS

and EM-EKS to estimate an appropriate covariance matrix of an

additive Gaussian error.
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Figure 2. Evolution of the RMSE (solid line) and log-likelihood (dashed line) with
the iterations of EM-EKS and EM-EnKS when the full state is observed every
∆t = 0.01 with observation error covariance R = 2I and additive Gaussian model
error of covariance Qt = 0.05. EM-EnKS was repeated 20 times, and the solid and
dashed lines represent the mean RMSE and log-likelihood respectively, while the
light ribbon represents the 95% prediction interval.

4. Results

4.1. Additive model error

Figure 2 shows the RMSE and log-likelihood of the smoothed

state after 100 iterations of the EM-EKS and EM-EnKS using 20,

100, and 500 ensemble members with the full state observed at

every model step (experiment (a)). After around 80 EM iterations,

both EM-EKS and EM-EnKS converge to a solution close to

those of EnKS (RMSE: 0.39, with 100 ensemble members) and

EKS (RMSE: 0.38) with the true values of Q. EM-EKS and EM-

EnKS with 500 ensemble members provide the best performance

in terms of log-likelihood and RMSE (RMSE: 0.38). As the

ensemble size decreases, the EM-EnKS RMSE and log-likelihood

degrade and their variability increases.

The estimated Q converges towards a value close to Qt =

0.05I. Figure 3 displays the convergence of the average of on-

diagonal terms of the estimated Q with EM-EKS and EM-EnKS

with the number of iterations. In all cases, the diagonal terms

converge towards the true value of 0.05. The off-diagonal terms

stay very close to zeros (< 10−2). We note the faster convergence

of EM-EnKS for smaller ensemble size and the small variability

in the value of Q in each algorithm.

When the full state is observed every 10 model steps

(experiment (b)), we find that EM-EnKS log-likelihood and

RMSE converge faster for smaller ensembles sizes. Overall, the

RMSE of EM-EnKS (with 100 ensemble members) converges to

0.63 after 400 EM iterations, a value close to that of EKS and
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Figure 3. Evolution of the estimated model error covariance Q with the iterations
of EM-EKS and EM-EnKS when the full state is observed every ∆t = 0.01
with observation error covariance R = 2I and additive Gaussian model error
of covariance Qt = 0.05. EM-EnKS was repeated 20 times, and the solid line
represents the averaged Q, while the light ribbon represents the 95% prediction
interval (not visible if the prediction interval is too thin).

EnKS with the true values of Q (0.62 and 0.63 respectively).

We also observe that EM-EKS either converges very slowly or

converges towards a suboptimal local minimum solution (Figure

4) corresponding to a larger value of the estimated Q (Figure

5). We conducted further experiments (results not shown) in

which we changed the size of the assimilation window and

found that the performance of EM-EKS degrades with shorter

assimilation windows. This seems to indicate that with less

frequent observations, the smoothing error increases because of

the non-linearity of the dynamical model. This may lead to an

over-estimation of Q and ultimately to slower convergence with

the EM iterations, and increased log-likelihood and RMSE. On

the other hand, larger assimilation windows smooth these errors

in the estimation of Q (eq. 18) and lead to better performance for

EM-EKS.

Experiments (c) and (d), with assimilation of observations

of only the first state component, yield similar results, with a

faster convergence of EM-EnKS (in terms of log-likelihood and

estimated Q) as the ensemble size gets smaller. In addition,

EM-EKS provides better performance than EM-EnKS for short

assimilation time steps, but diverges when the time between

successive observations increases.

Figure 6 shows the diagonal average and spread of the

estimated Q for EM-EnKS with 100 ensemble members for

increasing values of Qt and duration between observations.

There is a clear linear relationship between Qt and Q estimated
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Figure 4. Evolution of the RMSE (solid line) and log-likelihood (dashed line) with
the iterations of EM-EKS and EM-EnKS when the full state is observed every
∆t = 0.1 with observation error covariance R = 2I and additive Gaussian model
error of covariance Qt = 0.05. EM-EnKS was repeated 20 times, and the solid and
dashed lines represent the mean RMSE and log-likelihood respectively, while the
light ribbon represents the 95% prediction interval.
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Figure 5. Evolution of the estimated model error covariance Q with the iterations
of EM-EKS and EM-EnKS when the full state is observed every ∆t = 0.1
with observation error covariance R = 2I and additive Gaussian model error
of covariance Qt = 0.05. EM-EnKS was repeated 20 times, and the solid line
represents the averaged Q, while the light ribbon represents the 95% prediction
interval (not visible if the prediction interval is too thin).

with a slope close to 1. There is a tendency of EM-EnKS

to slightly overestimate Q, which is more pronounced as the

interval between observations increases. This suggests that the

EM algorithm compensates for non-linearities in the dynamical

model by increasing the model error covariance.

Tables 1 and 2 show the results of EM-EKS and EM-EnKS

(100 ensemble members) on trajectories with a full Qt and the

form of Q to be estimated is assumed to be either full, diagonal,

or of the form αI or αB, where the scalar α is estimated. Table 1

shows the RMSE and log-likelihood obtained with these different

parameterisations as well as those obtained with the true value of

Q, with the full state observed every model step (experiment (a)).

EM-EKS performs better than EM-EnKS, and their performances

are very close to those with the true Q value. The parameterisation
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Figure 6. Average diagonal of Q estimated after 500 iterations of EM-EnKS
(100 ensemble members) for different Qt and assimilation time ∆t between
observations. The dots show the RMSE obtained with single runs of EM-EnKS,
and the diamonds show the RMSE averaged over 20 runs of RM-EnKS.

Table 1. Performance of EKS, EnKS, EM-EKS and EM-EnKS with the full
state observed every ∆t = 0.01 (10000 observations) with R = 2I.

EKSi EnKSi,ii,iii

RMSE 0.36 0.37 (±0.02)
Log-likelihood -27270 -27321 (±16)

Q type EM-EKSiv EM-EnKSii,iii,iv

Full RMSE 0.36 0.37 (±0.0)
Log-likelihood -27290 -27328 (±16)

Diagonal RMSE 0.38 0.39 (±0.0)
Log-likelihood -27428 -27491 (±11)

αI RMSE 0.38 0.39 (±0.0)
Log-likelihood -27429 -27498 (±18)

αB RMSE 0.37 0.38 (±0.0)
Log-likelihood -27362 -27411 (±24)

iAssuming the model error covariance is Qt.
iiWith 100 ensemble members.
iiiMean and 95% prediction interval based on 20 runs.
ivWith 500 EM iterations.

of Q only slightly degrades the performances of the EM-EKS and

EM-EnKS algorithms.

Table 2 outlines the results of the same experiment with the

full state observed every 10 model steps (experiment (b)). As

in the previous experiment, no significant degradation is found

when Q is parameterised. EM-EnKS is slightly better than EM-

EKS and its RMSE is very close to that of the EKS and EnKS

with the true values of Q. However, when increasing the length

of the assimilation window to T = 200, the difference between

EM-EnKS and EM-EKS becomes very small, indicating again

that EM-EKS converges faster when more data is available for

estimating Q (results not shown).

When only the first state component is observed (experiment

(c) and (d)), the convergence of the EM algorithm is

degraded. In particular, EM-EKS diverges when the duration

Table 2. Performance of EKS, EnKS, EM-EKS and EM-EnKS with the full
state observed every ∆t = 0.1 (1000 observations) with R = 2I.

EKSi EnKSi,ii,iii

RMSE 0.62 0.70 (±0.14)
Log-likelihood -3258 -3271 (±8)

Q type EM-EKSiv EM-EnKSii,iii,iv

Full RMSE 0.67 0.64 (±0.01)
Log-likelihood -3359 -3282 (±11)

Diagonal RMSE 0.68 0.65 (±0.01)
Log-likelihood -3360 -3289 (±11)

αI RMSE 0.68 0.65 (±0.0)
Log-likelihood -3358 -3290 (±9)

αB RMSE 0.68 0.65 (±0.01)
Log-likelihood -3405 -3308 (±9)

iAssuming the model error covariance is Qt.
iiWith 100 ensemble members.
iiiMean and 95% prediction interval based on 20 runs.
ivWith 500 EM iterations.

between successive observations increases. We also notice that

parameterising Q improves the results, particularly when less

observations are available.

4.2. Parametric and multiplicative model error

The same experiments as those described in Figures 2 and 4

were performed, assimilating observations generated from true

trajectories with parameteric and multiplicative error assumptions.

In these cases, there is no Qt to which the estimated Q should

converge, as the true model errors are non additive. However,

we estimate an appropriate Q that compensates for them. In

general, the results are very similar to the additive model error

assumptions for the convergence of log-likelihood, RMSE, and

estimated Q. In the case of parametric noise, we can see in Figure

7 that when the first state variable is observed at every ∆t = 0.01,

the log-likelihood of EM-EnKS and EM-EKS converge. The

convergence of EM-EnKS is better with a large ensemble, whereas

with small ensemble sizes, the algorithm converges towards

suboptimal values of log-likelihood and RMSE. Figure 8 shows

the convergence of the estimated Q when the first state variable

is observed at every ∆t = 0.01, assuming a multiplicative model

error. The estimated Q rapidly converges towards a value close

to that of the empirically estimated Q. The empirically estimated

Q is computed by taking the sample covariance of the difference

between the true trajectory and the trajectory estimated by the

smoothing algorithm.
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Figure 7. Evolution of the RMSE (solid line) and log-likelihood (dashed line) with
the iterations of EM-EKS and EM-EnKS when the first state variable is observed
every ∆t = 0.01 with observation error covariance R = 2I and parametric model.
EM-EnKS was repeated 20 times, and the solid and dashed lines represent the mean
RMSE and log-likelihood respectively, while the light ribbon represents the 95%
prediction interval.
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Figure 8. Evolution of the estimated model error covariance Q with the iterations
of EM-EKS and EM-EnKS when the state variable is observed every ∆t = 0.01
with observation error covariance R = 2I and multiplicative model with Qmult =
0.001I. EM-EnKS was repeated 20 times, and the solid line represents the averaged
Q, while the light ribbon represents the 95% prediction interval.

5. Conclusion

In this work, we focus on estimating the model error covariance

matrix Q for a state equation with an additive Gaussian model

error (as stated in the classical Kalman framework). A proper

tuning of this parameter is expected to improve the estimation

of the hidden state and avoid filter divergence. We explore the

possibility of this term to take into account classical model error

structures including additive, parametric and multiplicative error

terms. To do this, we extended the EM algorithm to the case of

nonlinear dynamics, using the EnKS as proposed by (Tandeo et al.

2015). The main objective of this procedure is to approximate the

maximum likelihood estimators of the parameters of the state-

space model, that is the error covariance matrices Q and R

along with the state initial background conditions xb and B.

The expectation step is implemented using classical Kalman-like

recursion approximations (both for filtering and smoothing): the

extended (EKF/EKS) and the ensemble (EnKF/EnKS) versions.

For the maximisation step, under the Gaussian assumption,

analytical expressions for the optimal parameters are obtained.

These expressions are directly evaluated in the EM-EKS, whereas

sample estimates are computed in the EM-EnKS.

The case of simulated additive and Gaussian model errors

corresponds to a twin experiment that allows us to evaluate

the performance of the EM algorithms. We demonstrate that

even when very few data are available (only one model

variable observed at scattered times) and for different forms

of Q (diagonal or full, parametric or not), the solutions of

the proposed algorithms converge to the true covariances.

Moreover, experiments examining the estimated model error

covariance matrix for increasing amplitudes of Q and for different

frequencies of observations indicated that the estimate is unbiased.

When comparing EM-EKS to EM-EnKS, we find that the former

achieves the best performances when the frequency of the

observations is high. This suggests that when the linearisation

assumption holds, EKS is a better approximation than EnKS.

However, when the time interval between observations increases

or when the length of the assimilation window decreases, EM-

EKS either converges to a local minimum or diverges. EM-

EnKS on the other hand is more robust and its log-likelihood

converged in all the experiments we performed, given a large

enough ensemble. EM-EnKS also tends to overestimate Q (and

consistently so for Q = 0 and very small values), and this likely

prevents the ensemble from collapsing.

Concerning the experiments with non additive model error

(i.e. parametric and multiplicative), results are similar to those of

the additive error model. This shows the ability of the additive

model error assumption to efficiently deal with diverse sources

of model uncertainties — confirming the findings of Houtekamer

et al. (2009)— and that the EM algorithm is an efficient strategy

to estimate an accurate error covariance matrix. This property

may be of paramount importance for the application of EM to

real systems, where the sources of model error are difficult to

characterise.

In our experiments, we addressed different concerns for the use

of the EM algorithm for estimating Q in large-scale systems. One
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of these concerns is the computational burden of estimating and

using the full covariance matrix. In practice, Q is often chosen

low-rank, and we tested the use of simple parameterisations

to reduce the number of coefficients to estimate. We found

that the parameterisation only incurred a small degradation

of performance. The number of iterations required for the

convergence of the EM algorithm is also a concern in high-

dimensional applications. Twin experiments with large models

are however needed to explore this issue in detail. One of the

issues with our current implementation, which is based on the

stochastic EnKF, is the need of a large ensemble (100-500) for

best performances. For real large-scale data assimilation systems,

alternative filtering schemes could be considered to reduce the

ensemble size, such as the deterministic ensemble Kalman filter.

Additionnaly, the RTS smoother is memory-inefficient in large

scale systems as it requires saving the ensemble forecast and

analysis states over the smoothing window (Raanes 2016). More

efficient smoothing algorithms could be considered, such as the

Ensemble Smoothing (Cosme et al. 2012), which has been shown

to be equivalent to the ensemble formulation of the RTS smoother

(Raanes 2016) and consists of smoothing the whole state sequence

by defining an augmented (full) state vector and performing a

BLUE analysis using the complete sequence of observations.

In this work, we make an important assumption on the form

of the model error covariances matrices: we assume that they are

constant in time. In practice, this is a very convenient hypothesis

allowing us to retrieve robust maximum likelihood estimators.

However, this assumption is not completely realistic because

model errors generally evolve in space and time. A possible

adaptive solution to tackle this problem could be to apply the

EM procedure on different assimilation windows to track possible

changes in covariance coefficients.

This work proposes general algorithms (EM-EnKS and EM-

EKS) to estimate the model error covariance using a state-space

model with a nonlinear dynamical model. Although the focus

of this work is on the model error, these algorithms can also

estimate the observation error covariance and the initial state

parameters. An advantage of the ensemble-based version of the

EM algorithm is its independence from the dynamical model.

The open-source Python library is available (http://github.

com/ptandeo/CEDA) so that interested users can easily test the

algorithm on their own dynamical models.
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