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Abstract:
Expectations regarding the future growth of Internet of Things (IoT)-related technologies are
high. These expectations require the realization of a sustainable general purpose application
framework that is capable to handle these kind of environments with their complexity in
terms of heterogeneity and volatility. The paradigm of the Lambda architecture features key
characteristics (such as, robustness, fault tolerance, scalability, generalization, extensibility,
ad-hoc queries, minimal maintenance, and low-latency reads and updates) to cope with this
complexity. The paper at hand suggest a basic set of strategies to handle the arising challenges
regarding the volatility, heterogeneity, and desired low latency execution by reducing the overall
system timing (scheduling, execution, monitoring, and faults recovery) as well as possible
faults (churn, no answers to executions). The proposed strategies make use of services such as
migration, replication, MapReduce simulation, and combined processing methods (batch- and
streaming-based). Via these services, a distribution of tasks for the best balance of computational
resources is achieved, while monitoring and management can be performed asynchronously in
the background.
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1. INTRODUCTION

The concept of the Internet of Things (IoT) can be de-
scribed as the seamless fusion of virtual environments
and contained objects with their real-world counterparts
(Uckelmann et al., 2011). In return, this makes the creation
of robust, flexible, and dynamic applications imperative,
in order to handle heterogeneous and volatile environ-
ments. A major aspect in this regard is represented by
the challenge to handle vast amounts of data, including all
relevant processing steps, in particular data analytics. Due
to this fact, the area of big data analytics has attracted
high levels of attention of industry and academia alike.
This fact is represented by the total increase of data-
driven projects by 125% during the period 2014-2015. 1

So far, the majority of big data deployments were initially
using batch processing-oriented approaches (i.e. the en-
tire amount of data is gathered, stored, and afterwards
processed step-by-step) (Hu et al., 2014). However, batch
processing has no support for low-latency scenarios. Thus,
a new model called stream processing or oriented-to-events
processing has witnessed a huge increase in volume and

1 IDG - http://www.idgenterprise.com/

availability (Tudoran et al., 2014). The handled events
are usually characterized by a small unit size (in the
order of kilobytes), but have overwhelming collection rates,
due to the continuous data flow. To overcome this issue,
new stream processing frameworks have emerged, such as
Apache Storm, Spark, Flink or S4.

Over time, stream processing and its associated processing
engines have evolved up to the point of the introduc-
tion of the Lambda Architecture (LA) paradigm (Marz,
2013). Lambda Architectures are designed to handle vast
amounts of data in conjunction with both batch and stream
processing methods. While batch processing helps to re-
duce latency, to improve data transfer, to provide fault-
tolerance, as well as a comprehensive and accurate view
upon the data, stream processing provides capabilities to
deal with real-time data. Thus, the rise of LAs are directly
related to the rapid growth of Big Data real-time analytics.

According to Ewen et al. (2013), the Lambda Architec-
ture paradigm is the starting point of the so-called 4th

Generation of Data Processing Engines that comprise sev-
eral features regarding the design and implementation of
processing engines for massive data, such as robustness,



fault tolerance, low latency of reading and updating, scal-
ability, generalization, extensibility, ad-hoc queries, and
minimal maintenance. To achieve these properties, the
architecture foresees a Big Data system to be constructed
in several layers. Anjos et al. (2015) presented the SMART
platform, which is a modular framework for Big Data
analysis. SMART considers a large variety of data sources,
such as distributed datasets and social networks, where
there is a clear need for standardization. The Dispatcher
module (DM) in the SMART platform is an orchestration
system that needs several policies to the managing data
and tasks. This paper aims at the improvement of the
decision-making engine of the Dispatcher module based on
the computational capacity of the machines via scheduling
strategies and advanced execution setups regarding data
streams to achieve an optimal distribution of tasks for the
best balance of computational resources.

This paper is structured as follows: Section 2 sets out the
state-of-the-art for data-intensive computation, establishes
the framework in this landscape, compares it to others and
demonstrates how it works in relation to others considering
heterogeneous infrastructures, hybrid infrastructures, and
hybrid engines. Section 3 presents the SMART platform
and its main modules. Section 4 details the Dispatcher
Module and discusses the strategies required to overcome
the environmental limitations of this module. Section 5
concludes the paper and reports opportunities for future
work.

2. RELATED WORK

2.1 Heterogeneous Infrastructures

JetStream is a set of strategies for efficient transfers of
events between cloud data centers (Tudoran et al., 2014).
JetStream is self-adapting regarding streaming conditions.
It aggregates the available bandwidth and enables the
routing of data through cloud sites. The study by Tudoran
et al. (2014) focuses on event transfers between inter- and
intra-nodes. The authors propose an adaptive cloud batch-
ing in form of an algorithm that aggregates the streams in
batches, resulting in latency reduction. However, it just
considers the latency and not the volatility. The work
concentrates on environments where the computational
resources can break away unexpectedly and the scheduling
policies must be adapted to it.

SMART (Anjos et al., 2015) is a platform that offers an
efficient architecture for Big Data analysis applications for
small and medium-sized organizations. Its implementation
considers heterogeneous data sources and aims at data
analysis scenarios in geo-distributed environments, consid-
ers cost, fault tolerance, network overhead, I/O through-
put, as well as the minimization of data transfers between
computational resources. Yet, these parameters are not
enough to work with volatile environments, especially re-
garding stream processing. To overcome these environment
limitations, it is necessary incorporate information from
physical components, such as memory, CPU speed, and
storage. Thus, the overall capacity impacts the overall per-
formance. In addition, regarding the volatility, replication
must be incorporated as a fault control mechanism.

Similarly, Pham et al. (2016) purpose a generic, extensi-
ble, scalable, fine-grained, and re-configurable multi-cloud
framework. It is based on a lightweight kernel and provides
a hierarchical Domain Specific Language (DSL). The DSL
allows for a fine-grained level of administration. However,
the proposed solution does not control the workload at
the nodes and possible faults, as the Deployment Manager
is just an interface to set the devices and the Virtual
Machines (VMs).

2.2 Hybrid Infrastructures

BIGhybrid summarizes the main features of a Hybrid MR
environment based on the merge of two environments,
namely a Cloud (MR-BlobSeer) environment and a Desk-
top Grid (BitDew-MapReduce) environment (Anjos et al.,
2016). The Global Dispatcher located outside the Desktop
Grid (DG) as well as of the cloud environment features
middleware functionality for handling task assignments
and input data from users. It is a distributed data stor-
age system that manages policies for data splitting and
distribution in batch applications such as MapReduce.
The working principle is similar to the publish/subscribe
service, where the system obtains data and publishes the
computed results. This approach has several drawbacks, if
applied to stream processing, due to delays regarding the
processing of responses.

HybridMR is a model for the execution of MapReduce
on hybrid computation environments (Cloud and DG)
developed by Tang et al. (2015). Two innovative solutions
are proposed to enable such large-scale data-intensive com-
putation: (i) HybridDFS, which is a hybrid distributed
file system. HybridDFS features reliable distributed stor-
age that alleviates the volatility of desktop PCs (i.e.,
fault tolerance and file replication mechanism); and (ii)
a Node priority-based fair scheduling (NPBFS) algorithm
has been developed to achieve both data storage balance
and job assignment balance by assigning each node a pri-
ority through quantifying CPU speed, memory size, as well
as input and output capacity. The NPBFS approach is very
interesting because it uses some miscellaneous environ-
ment variables to schedule the tasks. Although regarding
stream processing, its application is not possible due to
the high flow latency. HybridMR just uses the flow rate
to deploy the tasks, however, the rate does not consider
particular task information.

2.3 Hybrid Engines

Apache Spark is a framework introduced by Zaharia et al.
(2012) that uses resilient distributed datasets (RDDs) and
enables efficient data reuse in a broad range of applica-
tions. RDDs are fault-tolerant, parallel data structures
that are designed to allow users to keep intermediate re-
sults in memory, control their partitioning to optimize data
placement, and manipulate them through a valuable set
of operators. Liao et al. (2015) presented some scheduling
inefficiencies related to the time window that constructs
the RDD. The batch interval needs to be dynamically
adjusted, so that fluctuations within the data rate can be
handled in a production environment and the total delay
of every event can be controlled within a certain range for
real-time scenarios.



Apache Flink, initially developed by Alexandrov et al.
(2014), enables massively parallel in-situ data analytics,
using a programming model based on second order func-
tions. Today, Apache Flink is the state-of-the-art process-
ing engine according to Ewen et al. (2013). The scheduling
policies are designed to work at commodities environments
(i.e., clusters and cloud). Commodities strategies do not
work well with dynamic environments, as argued by Peng
et al. (2015) and Eskandari et al. (2016). It is essential
for heterogeneous computing resources to acknowledge the
surrounding environment.

Summingbird by Boykin et al. (2014) integrates batch and
online analysis with the aid of a hybrid processing model,
where access can be provided efficiently and seamlessly for
aggregations across of long time spans while maintaining
up-to-date values with a minimal latency. However, Sum-
mingbird does not provide access to the Message Queue
writing in Hadoop, it only has knowledge of that has been
recorded. The scheduling policies are abstracted and the
Hadoop and Storm systems handle the management.

This section has presented actual research opportunities
in relation to the combination of volatile and heteroge-
neous environments, as well as scheduling improvements.
Currently, stream processing only has been performed in
heterogeneous environments, while batch processing was
reserved for volatile environments. Overall, processing en-
gines do not deal well with heterogeneity and volatility.
In fact, most engines were designed to run in clusters
and cloud computing environment. This fact makes a
Round Robin solution attractive for the scheduling policy.
Nonetheless, in complex environments such as Desktop
Grid it is not possible to efficiently employ it. The re-
strictions are related to the task and node heterogeneity,
as well as to network bandwidth.

3. SMART ARCHITECTURE OVERVIEW

The following section provides a brief overview of the
layered architecture that is required to deploy a SMART-
based environment. Figure 1 presents the required four
main modules: Global Collector, Global Dispatcher, Core
Engine, and Global Aggregator.

The Global Collector layer handles the management and
coordination of the sensing modules. It is responsible for
obtaining data from several sources and maintaining the
data integrity mechanisms. The data integrity mechanisms
filter possible noises in the hardware devices. The data is
collected and serialized under a standard TCP/IP, which
forms the communication stack for the Global Dispatcher.

In the Global Dispatcher, the data is decoupled from the
lower layers in the message queue mechanism. It is put in
a FIFO queue so that it can be distributed to severs in
accordance to the availability of their resources in both
Cloud/Multi-Cloud and Grid/Multi-Grid environments.
The optimization layer analyses the volume of input data
and employs the Decision Engine to make decisions about
scheduling tasks and data through distinct environments.
A simulation process implements an execution time predic-
tion that will be used by the Decision Engine to improve
the accuracy of the scheduling mechanism.

Fig. 1. SMART Platform Overview

The Core Engine must support hybrid systems, i.e., pro-
vision of streaming and batch computations at the same
time. Thus, the Flink framework is an potential sys-
tem that is worth considering. The MR-BitDew is an-
other framework, which can improve computational per-
formance, with the use of Volunteer Computing (VC)
in a hybrid infrastructure. SMART allows computational
resources to be taken from Cloud/Multi-Cloud, and Multi-
Grid environments. A Client User API provides an easy
method for users to submit their applications and indicate
the data sources. The Client UI is a security interface that
provides a single-user identification through an encrypted
key. A key which is keep by the users is employed in the
Encryption-Decryption Engine to ensure the data is safe.
The intermediate results, processed in the Core Engine,
are serialized for the Global Aggregator that must carry
out the data consolidation. The Data Integration module
supports the data integrity and data integration. The last
phase of the data processing is designed to generate an
iterative execution and provide the results of the consol-
idation. A Communication API is necessary to integrate
the workers into a virtual network of data computation.

The Global Aggregator is a module that orchestrates the
results of the aggregation and maintains the safety data
mechanism for the end-users. The End-User Interface
shows the information in a user-friendly way through a
Central Monitoring system.

4. DISPATCHER MODULE DEPLOYMENT
STRATEGIES

It is the main goal of this paper to overcome existing issues
of the Global Dispatcher (GD) regarding data distribution
in real time applications, via solutions presented by Righi
et al. (2015). This means that the Global Dispatcher will
carry out the tasks of load balancing, and latency control



(data stream processing and network bandwidth), provi-
sion of scalability, while reducing the costs for improve-
ment of availability of resources. Additionally, it will mon-
itor environmental behavior (network bandwidth, avail-
ability of processing capacity, time spent on completing
tasks, churn and so on) for the Decision Engine. The role
of the Decision Engine is to select the computing resources
needed for carrying out a task. The task definition will
be achieved by simulation, which will use BIGhybrid, and
at the same time, to evaluate the environment for the
re-scheduling processes (data placement and data move-
ment). According to Delamare et al. (2012), it is possi-
ble to achieve QoS in the GD by monitoring the task
execution and dynamically provisioning external, stable,
and powerful Cloud resources to support the GD. They
employed different strategies (i.e, Completion Threshold,
Assignment Threshold, and Execution Variance) to control
the Cloud usage.

Similarly, the model will employ strategies to control the
use of the environment. To this end, it will have control
over the execution of the system jobs. First of all, it
will asynchronously create batch views asynchronously
in the background of the tasks and storage of the data
nodes (logs). Then, it will create the stream views, in
which the latest logs (nodes and tasks) will be collected
for the control. The combination of views will achieve
a performance gain due to the fact that most of the
information required will already have been generated
when it is needed.

The clustering data method and processing in small
batches will be used to obtain low latency for the stream-
based processing (Das et al. (2014)). However, this method
will be validated by conducting comparative studies to
define the size of the batches and to determine if it will
be the best technique for stream processing. This will in-
volve validating the particular way of batching the streams
(i.e., time-based, event-based, or hybrid form). Through
the batch-sizing of stream processing, it will reduce the
latency, make it easier for the processing flow (i.e., by
processing simulations) and facilitate the scheduling and
rescheduling of tasks and data. This feature will overcome
the BIGhybrid simulator problem (it cannot work with
streams because of the SimGrid restrictions).

4.1 Decision Strategies

The Decision Engine (DE) will make the decision about
scheduling and re-scheduling and thus will be the main
component in the Global Dispatcher. It will combine envi-
ronmental data (task simulation, availability of resources,
network availability, costs, aggregation time and so on)
with the strategies (i.e. batch and stream) to decide where
to allocate the task to (node or Cloud).

Figure 2 depicts the target scenarios, based on the type of
strategies intended to obtain a Good or Best result in the
load balancing. Differentials such as migration, elasticity,
scheduling strategies, data aggregation and replication are
highlighted in the model. Scenario i (part a, only the
execution time) is the application (performing a set of
tasks) without migration time, scheduling time, aggrega-
tion time or replication time. Scenario ii (part b) is the
execution of the application and the scheduling (only to

obtain the scheduling overhead). Scenario iii (parts c, d, e
and f) involves the execution of all the services (migration,
aggregation, scheduling and replication). In the part c, the
migrations services are restricted, but still continue with
the replication. In d, all the services will be operating, but
with a strong impact on the time. e, the model will show
the performance that is embodied in the strategies. If the
time is lower than b this yields a Good Result. The f is
the best scenario. The strategies at the scheduler reveal the
best computing resources for execution. In this scenario,
the performance will be greater than the a part, which is
just the application of the execution (The Best Result).

Fig. 2. Target Scenarios

Some factors must be included in the strategies to over-
come the problem of time constraints in the system and
achieve the Best Result or a Good Result. These include
the time to movement data and the task migrations, time
to data aggregate when the data is shared between a) the
computing resources, b) time estimated to execute a task,
c) data placement and e) computing resource rating. In
this way the overall execution time can be reduced and
allow a simple fail control (volatile).

The reasons for applying this feature to the architecture
are set out below:

• Migration: This generates considerable gains in dy-
namic, heterogeneous and large- scale environments.
Since there is a dynamic, the nodes might be in or
out of the network (i.e., churn). This means that a
certain task may be at an overload or a slow node,
and there might be a machine that runs in less time
(when the movements are counted). In this case, it is
worth migrating the task;

• Aggregation: Distributing the tasks belongs to the
network and forms a part of a set; thus it will be
necessary to group the results. The distribution will
be able to obtain time and make use of the idle
resources;

• Replication: Replicating the task belongs to the
network and means that it will be necessary to ensure



the correct execution and reduce the time when a
fault occurs. A fault generally occurs because of the
volatile environment (Desktop Grid);
• Computing Resource Rating: The rate will eval-

uate the resource data, network data and past execu-
tion data. This method assists in recognizing a good
worker;
• Time Estimation: Knowing the time before exe-

cuting a task will make it easier to ensure a correct
scheduling;

As discussed earlier in this paper, this work includes con-
trols for monitoring and to provide decisions that will run
asynchronously in the background. These controls com-
bined to recent information (stream views) and historical
information (batch views), will allow a hybrid control
system. The result will enable settlements to be made
safer and faster. In light of this, the following methods
are combined:

• Batch-Based: The raw data stored in a distributed
file system will be processed in a batch processing way;

• Stream-Based: The recent data will be performed
in near real-time fashion;

The combination of batch and stream strategies will be
able to reduce the Dispatcher time. The work of De Fran-
cisci Morales and Bifet (2015) provides some evidence
that there is a significant reduction with the result of this
merge. The batch-based method can reduce the decision-
making time and the management time and, in addition,
can be used to the stream processing monitoring. However,
all this must be in accordance with the Lambda Architec-
ture paradigm.

At the same time, the BIGhybrid simulator could be em-
ployed to estimate an execution time. The BIGhybrid will
use the computational resources found in the environment,
such as hardware performance, network performance, and
tasks costs. A weight rating of computing will be defined
through the simulation to define some thresholds. The
restriction will aid to control overhead levels of run time.
A batch method for the stream processing enables to over-
come the limitations of BIGhybrid and adapting it to low
latency processing.

Estimating an approximate execution time, will make the
scheduling and re-scheduling easier, because this makes
it possible to know when a task will probably end at a
particular computing resource before it starts. Knowing
the execution time and using its heuristics will help to
make a more accurate task allocation. The heuristics
should include an analysis of the entire environment.
However, methods such as Complex Event Processing
(CEP), Event Stream Processing (ESP), Directed Acyclic
Graph (DAG), as well as Machine Learning are possible
features that can assist in structuring the algorithm.

Thus, if the methods mentioned above (heuristics of
scheduling/rescheduling, migration, aggregation, simula-
tion, and replication) are employed as part of the strategies
for reducing the application time (that are shown in Figure
3), the result is also the execution time reduction. The time
reducing of methods and application might achieve either
a Good or the Best Result as shown in Figure 2.

Fig. 3. Strategies for Reduction of Application Time

5. CONCLUSION AND FUTURE WORK

Stream processing applied to volatile and heterogeneous
environments is currently a significant subject for research.
This paper describes its degree of complexity as well as
current trends committed towards this subject. In response
to the challenges posed by this complexity, a solution has
been proposed to improve this type of data processing.
The proposed solution will be applied at a complex in-
frastructure (i.e., geographical distributed) to study its
issues and validate the model. The migration, scheduling
(MapReduce simulation and heuristics), and replication
features will treat the problems of its volatility, hetero-
geneity and dynamic. Furthermore, through the strategies
to combine the desirable features, the proposed model will
provide a Good or The Best Result on the scheduling
settlements. Therefore, this work contributes towards a
solution to volatile and heterogeneous environments for
stream processing. It will extend the SMART project and
address open challenges and issues such as data stream la-
tency, network latency, management of the computational
resource, and fault control. The decisions (heuristics) and
the views about the execution method (batch- or stream-
based) will be a means of reducing the limitations of the
system. The asynchronous and background executions will
assist the required latency for performing stream process-
ing.
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