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Abstract—Cooperative usage of multiple UAVs as a swarm
can deliver high-quality surveillance performance. However, the
communication capabilities within the UAV swarm must be
maintained for local data propagation to swarm members in favor
of achieving an efficient global behavior. In this paper, we address
the problem of optimizing two adversary criteria for such a UAV
swarm: (a) maximizing the area coverage, while (b) preserving
network connectivity. Our approach, called CACOC?, solves the
problem with a novel chaotic ant colony optimization approach,
which combines an Ant Colony Optimization approach (ACO)
with a chaotic dynamical system. CACOC? employs swarming
behavior to obtain UAV clustering that result in maximized
area coverage and preserved network connectivity. We show by
extensive simulations how the size of the UAV swarm influences
the coverage and connectivity. A metrics comparison chart shows
the correlation of coverage and connectivity metrics.

Index Terms—cooperative UAV, multilevel swarm, mobility
model, ant colony optimization, chaotic dynamics

I. INTRODUCTION

Advances in UAV technologies allow the development of
new applications for both civilian and military domains. High-
end UAVs are delivered with sophisticated on-board systems,
extended flight autonomy, increased computing power, ad hoc
networking capabilities, and with long-lasting batteries [1].
These improvements make UAVs capable of being deployed
as a flying ad hoc network potentially forming a cooperative
swarm of UAVs [2], [3]. Advantages of a UAV swarm are for
instance that the number of participating UAVs can be adapted
as needed and the swarm behavior ensures the resilience of the
swarm’s communication network in case of hardware failure
or harsh weather conditions.

A considerable amount of UAV swarm research focuses on
how to deliver high surveillance performance while preserving
resilient communication capabilities within the swarm [4], [5],
[6]. This coverage optimization problem with connectivity
preservation is tremendously important for UAV swarms be-
cause the coverage performance highly depends on the overall
connectivity dynamics in the swarm. For instance, coverage
area coordination and intruder detection notification can only
be effectively executed if UAV connectivity is warranted. How-
ever, there is a trade-off between coverage and connectivity.
For high coverage, the UAVs should intelligently explore the
area, while a limited transmission range requires the UAVs to

stay in each other’s proximity. Therefore, the potential for the
UAV swarm to obtain the maximum coverage performance
decreases considerably when considering the connectivity
requirements. With the UAVs capacity to move freely in
the three-dimensional space, an often applied technique on
how to obtain superior results for this coverage-connectivity
problem is the design of proper mobility models that aim to
maximize both criteria (e.g., [4]). In this work, we propose
CACOC? (Chaotic Ant Colony Optimization for Coverage
with Connectivity), which extends the single criteria Chaotic
Ant Colony Optimization for Coverage (CACOC) [3] with a
swarming behavior to maintain more stable UAV clusters to
deliver connectivity resilience within the swarm.

This work is organized as follows. In Section II, we report
on related work and in Section III, we describe the original
CACOC UAV mobility model and the novel extension for
coverage and connectivity optimization, CACOC?. Section IV,
provides the experimental setup and settings as well as a
description of the metrics used. In Section V we report on the
results obtained in the experiments, and we finally conclude
our work in Section VI.

II. RELATED WORK

Area coverage optimization with connectivity preservation
is a tremendously important problem because of its relevance
in real-world applications. A commonly used approach to
reach superior results for this problem is the design of mobility
models that are concerned with coverage and connectivity.

Yanmaz [6] proposes a connectivity- and coverage-
optimized mobility model and measures the trade-off between
connectivity and spatial coverage. The measure spatial cover-
age (areal coverage) is defined as the percentage of the sensed
target area in a given amount of time, and connectivity is
defined as the percentage time the UAVs are connected to
a sink averaged for all UAVs.

Yanmaz et al. [9] study single-hop and multi-hop scenarios.
Results show that if the network density is high enough, the
coverage optimization has less impact on the good perfor-
mance. However, if the network density is low, a combination
of connectivity optimization and coverage optimization is
advantageous.



TABLE I
MOBILITY MODELS PROPOSED FOR THE UAV COVERAGE-CONNECTIVITY PROBLEM.

Mobility model

Reference

Pheromone and clustering based connectivity
Virtual forces-based approach

First-order flight model

Belief-based mobility model

Heuristic-based mobility model

Pheromone and forces-based approach

Danoy et al, Rosalie et al. [4], [3]

Brust et al., Yanmaz, Messous et al. [6], [2], [5]
Hauert et al. [1], [7]

Yanmaz et al. [8]

Messous et al. [5]

CACOC? (our approach)

Yanmaz et al. [8] are interested in UAV movements such
that they cover the entire area within a given time period.
The introduced belief-based approach uses local information
to execute its actions.

Hauert et al. [1], [7] propose a purely communication-based
approach to swarming. The authors use artificial evolution to
design the mobility and mission model. A second approach
deals with army-ant pheromone trails during foraging to be
applied to the UAV swarm for the deployment, maintenance
and, retraction of communication networks. The main objec-
tive is to cover and maintain connectivity between the base
and the user.

Brust et al. [2] propose VBCA, a virtual forces clustering
algorithm, which imitates the VSEPR model from molecular
geometry for the arrangement of UAVs in a clustered swarm.
The UAV’s position is determined by the distance and role
of its neighboring UAVs. VBCA assigns the role of a clus-
terhead to one UAV. This central UAV acts as a connector
influencing the entire topology of the network geometry while
individual UAVs are only affected by their direct neighbors.
VBCA is maximizing the volume coverage, while maintaining
advanced connectivity within the clustered UAV swarm. Most
approaches described in this section focus on areal coverage
from a plane, i.e. UAVs are flying at a similar altitude. As an
exception, VBCA [2] deals with a volume coverage approach.

Messous et al. [5] approach focus on the coverage-
connectivity problem with a base station and additional en-
ergy constraints (alpha-based mobility model). The decision
about the next movement takes into account communication
constraints and remaining energy.

The decision making is based on value table where the
number of neighbors, energy level and the hop count to the
base station determine the next action.

In previous work we address the coverage problem of
an area for a swarm of UAVs [3]. Rosalie et al. [3] pro-
pose to combine Ant Colony Optimization with chaotic dy-
namics to improve the coverage of a given area. However,
in the described approach connectivity constraints are not
considered. Table I summarizes the mobility models used
as a method to optimize solutions for the UAV coverage-
connectivity problem. We also classified CACOC? according
to Table I to illustrate the fundamental differences of our
approach to existing ones.

III. CHAOTIC MOBILITY MODELS

In this section, we first briefly summarize CACOC be-
fore describing CACOC2, which includes our extension to
include connectivity constraints into the coverage optimization
approach from CACOC. Both mobility models rely on Ant
Colony Optimization (ACO) [10] which aim at imitating
the behavior of ants communicating in their colony with
pheromones to accomplish complex tasks collaboratively. Ants
deposit these pheromones to guide and inform the other
members of the colony, this indirect communication process
is also referred to as stigmergy. Formal abstractions of this
model are used to solve a diversity of optimization problems
[10]. Since the pheromones are used to improve a solution,
random initial solutions are used to initiate the optimization
process. The main idea of CACOC [3] is to take benefit from
the structured chaotic dynamics instead of the traditionally
used random process. To do so, the CROMM (Chaotic Rossler
Mobility Model) is introduced [3] as a fully deterministic
mobility model dedicated replacing the random part of an ant
colony algorithm.

The CROMM, CACOC and CACOC? mobility models are
described in more details hereinafter. In all three models a
UAV moves with a constant speed and starts to choose its
direction at each step (left, ahead or right).

A. CROMM

The dynamical Rossler system [11] is a well-known Ordi-
nary Differential Equations (ODE) system

T=—-y—2z
y=az+ay
2=b+z(x—c)

(D

producing chaotic dynamics: the solution is a chaotic attractor
(Fig. 1 of [3]). From this attractor, we can extract a map
(Fig. 1) describing the dynamical properties of the system (for
details on the Rossler attractor, the Poincaré section used and
the first return map properties see [12]). In CROMM, the first
return map gives the direction of the each UAV:

e if p, < 1/3 then direction is right;
o if 1/3 < p,, < 2/3 then direction is left;
« clse the direction is ahead.

Such a partition provides a reasonable pattern for exploration
[3] including straight forward moves and large circular patterns
(see Fig. 1 for period 1 (AAA) and 2 (RARARA) orbits).



To initialize the system, we choose a different initial con-
dition for each UAV to solve the Rossler system. Giving
nonequal initial conditions leads to the same attractor as a
solution and to the same first return map. However, the points
constituting the return maps are not the same in terms of order
of appearance.

/\ period 1 O
\period 2. m

Pn41
-

L pr+p. A 1

p"l

Fig. 1. First return map of the Rossler attractor. This map indicates the UAV
directions: L (left), A (ahead) and R (right).

0 R pr

B. CACOC

When there is no pheromone to guide the UAV, CACOC
uses CROMM to obtain the direction of the UAVs. This per-
mits to explore non-visited area. Otherwise, if there are some
pheromones, the UAV chooses its next direction according to
the total amount of pheromones sensed around him.

We proposed to use again the chaotic dynamic with the next
value in the return map to make this choice. Thus, pr, p4 and
pr values are a percentage partition inversely proportional to
the total amount of pheromones respectively sensed on the
left, ahead or right:

e if p, < pg then direction is right;

e if pr < pn < pr + pr then direction is left;

« clse the direction is ahead.

Thus, the return map values are used to choose the next
direction for each step of the CACOC model (Fig. 1 describes
the choice when there are some pheromones around the UAV).
The use of pheromones permits to have a system resilient to
UAVs failure or loss. If a UAV is out of the system, it will no
more deposit pheromones.

C. CACOC?

The principle of the “boid” movements has been introduced
by Reynolds [13]. Three rules reproduce the behavior of a
bird in a swarm: collision avoidance, velocity matching, and
flock centering. For CACOC2, we combine this model with
the “boids” model [14]. As the UAVs have a constant speed,
we will not use the velocity matching rule. The purpose of
CACOC is to cover a wide area where the UAVs use repulsive
pheromones to explore non-visited areas. We then decide to
consider that CACOC is another way to implement the first
rule of collision avoidance because the pheromones deposit

prevents UAVs to move towards the same direction. Thus,
we add the third rule of flock centering to force the UAVs
to maintain connectivity. As the “boid” model operates with
forces, our model only has two forces:
. fCACOC is a vector for the CACOC force giving a direc-
tion (L, R or A) that is translated as a vector;
. ﬂoek is a vector for the flock centering force computed
with the average value of the last vector used for the other
UAVs close to the UAV considered.

We then add these two forces and normalize the obtained
vector to have the vector d with the constant speed s:

T s J:CACOC +fx fﬁock ' @)
|| feacoc + f X faock|[?
In this equation f is a parameter to evaluate the influence of
the flocking force on the CACOC? model. We plan to variate
this force f from 0.1 to 0.6 by a 0.1 step to calibrate our force
model. The purpose is also to evaluate how this connectivity
force influences the performance of CACOC?.

IV. EXPERIMENTS

In this section, we describe the experimental setup and
explain the selection of the comprehensive set of metrics.
For the experiments, we have analyzed the parameters of the
simulations described in Section II and crystallized the most
common settings used to be chosen for our experiments. For
instance, Yanmaz [6] uses between 1 and 20 UAVs, while the
chosen transmission ranges are 68 m, 126 m, 279 m, 500 m,
1000 m, 1500 m, and 2000 m with an area length of 4000 m. In
comparison Yanmaz et al. [8] use between 1 to 40 UAVs, with
a fixed transmission range of 500 m and squared simulation
area with length 4000 m. Messous et al. [5] vary the UAVs
from 5, 10, 15, 20, 30, while the transmission range is 400 m
and the environment is a 4000 m x 4000 m square area.

A. Experimental setup

The simulation area is a 4000 m x 4000 m square, divided
into square cells of 10 m x 10 m. The UAVs have a constant
speed of 10 m/s and all depart from the base station located in
the middle of the bottom edge of the map, i.e., position (200,
0). At each simulation step, each UAV can conduct one of the
following three actions: (1) ahead: the UAV keeps the same

TABLE II
MAIN EXPERIMENTAL PARAMETERS.

Parameter Name Parameter Value
Simulation area

Geographical Area

4000 m x 4000 m

Number of cells 400 x 400
UAV Autopilot
UAVs speed 10 m/s

Possible UAV actions
Initial UAVs position
Experiments
Number of UAVs
Force value (f)

ahead, 45° left, 45° right
middle of the bottom of the map

[10, 20]
[0.1,0.2,0.3,0.4,0.5,0.6]
Mobility Models [Number of UAVs - Force value]
Simulation steps 4000

Independent runs 30
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Fig. 2. Connectivity metrics for 10 UAVs.

direction, (2) left: the UAV turns left with a 45° angle, and
(3) right: the UAV turns right with —45° angle. To prevent
collisions between the UAVs, we assume that each of them
has a different flight altitudes [15].

The mobility model with varying parameters has been
evaluated with a swarm of 10 and 20 autonomous UAVs
equipped with wireless communication capabilities (Tab. II).
We ran 30 independent simulations of 4000 steps to obtain
significant results.

To evaluate the performance of the different models in
terms of area coverage and network connectivity, the following
metrics have been used: coverage and recent coverage ratio,
fairness, the number of connected components, the size of the
giant component, 2-connectivity of the giant component and
edge-connectivity. All seven metrics are described in detail in
the next section.

B. Metrics

a) Coverage: The coverage is the portion of the total area
visited during the whole simulation. To have a representative
value of the coverage, we choose the coverage value at the
end of the simulation. It indicates how efficient the models
are to visit the total area. We also want to evaluate their initial
behavior while there is no guidelines for UAVs. We extract
the slope of a linear regression (a x t) considering the 500
first steps.

b) Fairness of coverage: The fairness of the coverage
measures if all cells are regularly and equally scanned. This
is computed by the standard deviation of their respective
number of scans [16]. To evaluate the fairness during the whole
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Fig. 3. Connectivity metrics for 20 UAVs.

simulation, we perform a linear regression (a X t + b) using
the last 3500 steps.

¢) Recent coverage: This metric introduced in [4] repre-
sents the percentage of coverage during the last 100 iterations.
These 100 steps correspond to the pheromones’ evaporation
time. We exclude the 100 first iterations of our simulation to
compute the mean value of the recent coverage.

d) Giant component: The giant component of a network
is the connected subgraph (component) with the largest num-
ber of nodes in a network. We measure the giant component
size of a swarm to gain insight about the size and variation of
the largest connected component of the moving UAV swarm.
In a realistic scenario, UAVs will disconnect from the swarm
core due to obstacles avoidance or other spontaneous ma-
neuvers. This means that disconnections resulting in isolated
UAVs can occur.

e) Number of components: A component is defined as
an isolated (or disconnected) subgraph of the considered
network. Our approach can result in disconnections of not only
isolated UAVs but groups of UAV. Measuring the number of
groups (also components) during the lifetime of the network
does complement the understanding of the networks’ dynamic
behavior already given by the giant component.

f) k-edge-connectivity for the giant component: A net-
work has connectivity k (or k-connectivity) if k is the size of
the smallest subset of nodes such that the network becomes
disconnected if the subset is deleted. We only calculate the
2-connectivity of the giant component because the frequent
isolated nodes or components of the UAV swarm would have
a negative and unreasonable influence of the k-connectivity
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Fig. 4. Coverage metrics for 10 UAVs.

measure. Thus, if the giant component is 2-connected we note
1, else we note 0. At the end of the simulation, we compute
the average value of this metric to obtain the percentage of
the simulation time when the giant component is 2-connected.

g) Edge-connectivity: The purpose of this metrics is to
evaluate how many edges can be removed to prevent this
component to be disconnected. This is useful to evaluate how
the swarm is resilient to communication issues. It comes as a
complementary measure of the 2-connectivity to highlight the
communication quality of the swarm.

V. RESULTS

The results obtained show the influence of the number of
UAVs on the coverage and connectivity quality of the swarm.
Summarizing the results, we produced a metrics-comparison
chart which shows the correlation between specific metrics to
each other. We discuss the connectivity metrics and afterward
the coverage metrics. Figures 2, 3, 4 and 5 show the box plot
of the data for all the measured metrics and a smooth density
estimation.

A. Connectivity metrics

We first describe the results contained in Fig. 2 and Fig.
3. Concerning the connected components, the experiments un-
derline that for force equal to 0.4, 0.5, and 0.6, the number of
connected components is very low: lower than two connected
components for 10 and 20 UAVs. For these forces and 20
UAVs, the average value is close to one which means that the
UAVs mainly remain connected. This is confirmed by the giant
component metrics because the size of the giant component
is in average equal to the number of UAVs for forces equal
to 0.4, 0.5 and 0.6 for 20 UAVs. However, it is only the case
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Fig. 5. Coverage metrics for 20 UAVs.
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for forces equal to 0.5 and 0.6 for 10 UAVs. On the other
hand, when the force is equal to 0.1, the number of UAVs in
the giant component corresponds to about 50% of the total
number of UAVs deployed.

After discussing the size of the giant component, we will
use the two last metrics to analyze its properties. First, the
2-connected components are inversely proportional to the
number of connected components with a smaller standard
deviation for the low forces (0.1 and 0.2). For forces equal to
0.5 and 0.6, we observe that the values are close to 1. It means
that almost 100% of the time, the swarm is two-connected.
Apparently, the value is similar for 10 or 20 UAVs. The
edge connectivity of the giant component indicates how many
communication links can be removed to maintain connectivity
between the nodes of the components. This value remains very
low for low force values: 0.1 and 0.2 and then it increases
smoothly up to the 75% of the total number of UAVs for both
(20 UAVs and 10 UAVs). For forces equal to 0.5 and 0.6
the edge connectivity of the giant component is higher than
half of the number of UAVs. This means that our mobility
model ensures a very resilient communication network when
the force is above 0.4.

B. Coverage metrics

In this subsection, we analyze the coverage metrics depicted
by Fig. 4 and Fig. 5. We first consider the percentage of total
area covered after 4000 steps for an optimal model. In this
theoretical case, we consider that for each step the UAV covers
a not already visited cell of the area. Thus, for 10 UAVs, the
optimal value for this metric is 25% of the total area (10 x
4000/(400 x 400) = 0.25). Thus, the average values of the
results obtained here for 10 UAVs are in between 20% and



21% to the total coverage. On top of that, the force value has
no impact on this metric. However, if we double the number of
UAVs to 20, the optimal value is 50%. The average percentage
result is around 37% for forces lower than 0.5 but it decreases
to 35% when the force is stronger. The increase of UAVs does
not seem to be efficient considering only this metric. From
the value collected on the coverage ratio, we also compute
the slope of coverage. Thus, there is a strong relation between
the slope of coverage and coverage after 4000 steps. For this
metric we can underline that for 20 UAVs, the best results are
for forces equals to 0.2 and 0.3.

The recent coverage indicates how the area are recently
visited (during 100 steps) by the UAVs. If we consider 10
UAVs, the optimal value is the following one: 10 UAVs for
100 steps are divided by the total number of covered area:
10 x 100/ (400 x 400) = 0.00625. For a force equal to 0.1 the
value is close to this optimal value, and it decreases slowly
for the force 0.2 and 0.3. Then it decreases faster for the
other forces. For 20 UAVs, the results are very similar to the
previous one. The expected optimal value for recent coverage
is 20 x 100/(400 x 400) = 0.0125 and the results are below
0.006. This means that the increase in the number of UAVs
is not sufficient to reach better recent coverage regarding the
optimal value of the corresponding number of UAVs. This
result is confirmed by the fairness metrics for 20 UAVs where
the fairness slope is higher for forces equal to 0.5 and 0.6.
However, for 10 UAVs this fairness slope is almost the same.

C. Synthesis between coverage and connectivity metrics

Based on the previously presented results, our approach
exhibits superior performance for 10 UAVs regarding recent
coverage but does not produce similar results for 20 UAVs.
Also, the best performing models on this from a coverage point
of view are the models with forces equal to 0.1 and 0.2. We
explain this phenomenon by the low force that might generate
numerous components where UAVs come back on already
visited areas before the evaporation time of the pheromones
exceeds. As the pheromones are repulsive, they prevent UAVs
to reach an already visited area. Conversely, as the force is
strong, the UAVs remain connected and overlap their covered
area. This behavior is confirmed by the connectivity metrics
where the size of the giant component is almost equal to half of
the number of UAVs while the average number of components
is two. This splitting into two swarms is something that
frequently happens when “boids” avoid obstacles.

The results also showed that the values for 20 UAVs do not
reproduce the results for 10 UAVs (regarding their respective
optimal values). This implies that although we can expect to
have significant benefits in using a UAV swarm with a higher
number of UAVs, beyond a certain threshold it does not further
improve the overall performance.

VI. CONCLUSIONS

In this paper, we introduced the CACOC? mobility model
for UAV swarms. CACOC? combines CACOC and a flocking
model based on Reynolds “boids” where a flocking force

is added to each CACOC direction choice. Our experimen-
tal results have permitted to calibrate the flocking force to
have a mobility model combining coverage and connectivity
constraints. Thus we have empirically defined the parameter-
ization to obtain a mobility model efficient with 10 or 20
UAVs to cover a wide area with connectivity constraints. This
parameter f permits to equilibrate the swarm behavior with
acceptable coverage performances. In future works we plan to
introduce CACOC? in a realistic UAV simulator to introduce
the collision avoidance necessary for UAVs.
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