Robust Recovery of Missing Data in Electricity Distribution Systems - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2017

Robust Recovery of Missing Data in Electricity Distribution Systems

Abstract

The advanced operation of future electricity distribution systems is likely to require significant observability of the different parameters of interest (e.g., demand, voltages, currents, etc.). Ensuring completeness of data is, therefore, paramount. In this context, an algorithm for recovering missing state variable observations in electricity distribution systems is presented. The proposed method exploits the low rank structure of the state variables via a matrix completion approach while incorporating prior knowledge in the form of second order statistics. Specifically , the recovery method combines nuclear norm minimization with Bayesian estimation. The performance of the new algorithm is compared to the information-theoretic limits and tested trough simulations using real data of an urban low voltage distribution system. The impact of the prior knowledge is analyzed when a mismatched covariance is used and for a Markovian sampling that introduces structure in the observation pattern. Numerical results demonstrate that the proposed algorithm is robust and outperforms existing state of the art algorithms.
Fichier principal
Vignette du fichier
GEPOC_TSG_17_submission.pdf (568.12 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01574531 , version 1 (15-08-2017)

Identifiers

  • HAL Id : hal-01574531 , version 1

Cite

Cristian Genes, Iñaki Esnaola, Samir Perlaza, Luis F Ochoa, Daniel Coca. Robust Recovery of Missing Data in Electricity Distribution Systems. 2017. ⟨hal-01574531⟩
202 View
256 Download

Share

Gmail Mastodon Facebook X LinkedIn More