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Abstract6

The occurrence of a negative dynamic mass density is a striking property of meta-7

materials. It appears when an inner local resonance is present. Results coming from an8

asymptotic theory are recalled briefly, showing the scaling of physical properties leading to9

inner resonance in elastic composites containing homogeneous soft inclusions, with negligi-10

ble scattering of waves travelling through the matrix. This appears for a large contrast of11

elastic properties between matrix and inclusion. The frequency-dependent dynamic mass12

density depends on the resonance frequencies of the inner inclusions and on their related13

participation factors. Having solved the dynamic elasticity problem, these physical quan-14

tities are provided in the case of homogeneous cylindrical and spherical inclusions. It is15

shown that numerous resonance frequencies do not contribute to the dynamic mass density16

or have small participation factors, which simplifies significantly the physics involved in the17

concerned inner resonance phenomena. Finally, non-dimensional resonance frequencies and18

participation factors are given for both cases of inclusions as functions of the Poisson’s ratio,19

defining completely the dynamic mass density.20
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I. INTRODUCTION21

Even if the existence of metametarials has been predicted initially in the case of22

electromagnetic properties41;36, acoustic metamaterials have been studied extensively23

during the last few decades, more specially since the production of experiments showing24

band gaps when studying the propagation of elastic waves in phononic crystals40 followed a25

few years after by experiments of wave propagation through acoustic metamaterials20 .26

Acoustic metamaterials can have more or less complex internal structures as prove the27

numerous papers in this field either studying properties of metamaterials from a theoretical28

approach17;18;19;7;11 and/or showing experimentally the properties of these29

materials20;38;28;46;33;44. These materials can have ”effective” negative dynamic density30

and/or elastic moduli for some frequency ranges, leading to forbidden frequency bands. A31

recent review paper on acoustic metamaterials23 draws a large picture of this domain,32

showing that the interesting properties of metamaterials are enhanced by inserting local33

resonators. These resonantors can be a more or less complex combination of plates, beams,34

spring-mass systems, Helmholtz resonators or (homogeneous or heterogeneous) inclusions of35

different shapes. This review paper reports also several recent studies on the conception of36

materials having simultaneously negative effective mass density and elastic moduli16;14;18.37

In the following, the study will be restricted to elastic composites containing38

inclusions of different shapes. Even so, the amount of literature devoted to this field is39
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impressive. It is known since a long time that every periodic composite containing40

inclusions is characterized by forbidden frequency bands, its response to wave propagation41

being studied usually by Bloch waves. However, these forbidden frequencies appear at high42

frequencies, when the wavelength is of the order of the inclusion size,i.e. the material being43

considered as a ”phononic crystal”. A few decades ago, it was recognized that the44

frequency range of forbidden frequency bands is lowered by introducing inner resonators45

and that the most simple way to induce inner resonance is to use matrix-inclusion46

composites containing rigid inclusions surrounded by a soft coating (i.e. ”composite47

inclusions”), the whole being immersed within an elastic matrix. This led to the concept of48

acoustic metamaterials. The composite inclusions act as ”spring-mass” resonators, the49

mass being provided by the inner inclusion and the spring by the surrounding coating. In50

the case of a large contrast between elastic properties of coating and matrix, the low51

resonance frequency of the spring-mass resonator can be reached practically without52

scattering of the waves by the inclusions. It is the extreme case of ”inner-resonance with53

negligible scattering”. Obviously, when the elastic properties of the coating become of the54

same order as the one of the matrix, it is necessary to take into account the coupling of the55

inner resonance with the scattering of waves by the inclusions. Several methods were used56

to account for this coupling48;47;43;21;45;24, the most currently used being the Coherent57

Potential Approximation37. However, in the case of a soft coating, the case of ”inner58
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resonance with negligible scattering” is certainly an interesting comparison model, which59

becomes fully valid for large contrasts of elastic properties of constituents.60

Less work was devoted to homogeneous inclusions, and these works deal mainly with61

scattering by inner inclusions. However, early works using homogenization theory based on62

asymptotic expansion1;2 have shown that ”inner resonance with negligible scattering” can63

occur also in composites containing homogeneous inclusions. This is the domain of64

application of the present paper.65

The physics of wave propagation through composite materials is complex and a strong66

physical insight can be gained by using an asymptotic series expansion8 of the dynamic67

solution for different assumptions of the ratios between physical parameters: elastic68

coefficients and mass densities. First homogenization results showing the occurrence of69

bandgaps in periodic elastic composites with ”inner resonance with negligible scattering”70

were obtained in early works1;2, but with the development of the ideas on metamaterials,71

new results were obtained with the use of asymptotic expansions in dynamic72

elasticity34;4;5;3;39;6;10;32;31;25;26. More specifically, Auriault and Boutin3 have recently73

extended the method of asymptotic expansion to materials containing composite inclusions74

and characterized by ”inner resonance with negligible scattering”. It is worthwhile noticing75

that, compared with results coming from other publications in this field, an important76

aspect does appear in the papers written by Auriault and al. that are at the basis of this77
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paper1;2;3: it is shown indeed in these papers that the use of different scalings on physical78

properties can lead to different macroscopic behaviours. In the case of a strong contrast, the79

method proves the occurrence of ”inner resonance with negligible scattering” ; it provides80

the structure of the effective constitutive equations and the local elasticity problems81

(usually called ”localization problems” or ”cell problems”) to be solved in order to obtain82

the macroscopic physical properties, more particularly the dynamic mass density. It is83

worth noticing that in absence of strong contrasts, the predicted dynamic behaviour can be84

non-local in space12;42;29;30, while the behaviour described in the case of ”inner resonance85

with negligible scattering” is local in space (while non-local in time). This point is of86

importance for modelling wave propagation through a structure which would be made of87

such a metamaterial.88

In a recent paper9 the dynamic mass density has been obtained by solving the89

localization problem described by the homogenization theory in the case of materials90

displaying ”inner resonance with negligible scattering” and containing spherical or91

cylindrical composite inclusions that act as ”spring-mass” resonators. Under suitable92

conditions, such a dynamic mass density can be obtained by studying the static behaviour93

(spring effect) of the composite inclusion. By comparison, in the case of homogeneous94

inclusions described thereafter, the dynamic mass density involves the full dynamic95

behaviour of the inclusions.96



Bonnet and Monchiet, Metamaterials with homogeneous inclusions, , p. 7

In section 2, the results of asymptotic expansions in the case of materials containing97

homogeneous inclusions are synthesized and discussed, showing that suitable ratios of the98

physical parameters can lead to inner resonance with negligible scattering. The method99

specifies also the dynamic boundary value problem (”cell problem”) to be solved in order100

to provide the dynamic mass density. In section 3, the inner motion of inclusions made of101

cylindrical fibers is studied: the eigenfrequencies are obtained and then participation102

factors and dynamic mass densities of these resonators are given in a closed form. The case103

of spherical inclusions is studied in section 4 and the full solution of the local elasticity104

problem is given in this case, providing again the eigenfrequencies, participation factors105

and dynamic mass densities. Finally, numerical applications are presented in section 5.106

II. DYNAMIC BEHAVIOUR OF ELASTIC COMPOSITES CONTAINING107

HOMOGENEOUS INCLUSIONS108

This section recalls briefly the main results from homogenization using asymptotic109

theory1;2;3 and the underlying assumptions that justify the method used in the following110

sections to obtain the dynamic mass density. Let us consider a periodic elastic composite111

material made up of a matrix containing homogeneous inclusions. This composite material112

is defined by the geometry of the periodic cell containing the inclusions and by the physical113

properties of the constituent materials. These constituents are assumed elastic and114

isotropic. They are characterized by their mass densities ρ(s), their volume concentrations115
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c(s) and their Lamé elastic parameters λ(s), μ(s). (s) corresponds to the matrix (m) or the116

inclusion (i). The effective behaviour of the composite depends strongly on the scaling117

parameters. In a first step, these scaling parameters are defined and next, the scaling118

assumptions leading to the occurrence of a negative mass density will be provided.119

A. Scaling parameters120

A first parameter is the geometric scaling ratio defined by ε = l
L
, where l is the size of121

the periodic cell and L is the order of magnitude of the wavelength within the matrix in a122

chosen frequency range. The case of interest is when the size of the periodic cell is small123

compared with L and therefore ε << 1.124

Other scaling parameters contain the various physical parameters that characterize125

the constituents of the composite.126

They comprise:127

- the ratio between the mass densities of the constituents ρ(i)

ρ(m) .128

- the ratio between the orders of magnitude of the elastic coefficients of the129

different constituents.130

The order of magnitude of the elasticity coefficients of a given material will be defined131

by the value of a(s) = λ(s) + 2μ(s) (i.e. a norm of the elasticity tensor) . The scaling ratio132

related to elastic coefficients will be defined by λ(i)+2μ(i)

λ(m)+2μ(m) =
a(i)

a(m) :133

B. Scaling assumptions leading to the occurrence of a negative dynamic mass134
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density135

Using asymptotic expansion along the scaling parameter ε , Auriault and Bonnet1136

(see also2;3) studied the effect of different values of the previously defined scaling ratios on137

the overall behaviour of the composite. These authors showed that the resonance of the138

inner inclusions can be obtained when the inclusions are very soft compared with the139

matrix, the densities being of the same order of magnitude. More precisely, the inner140

resonance is obtained when the scaling ratios meet the following conditions: a(i)

a(m) = O(ε2)141

for the elastic parameters and ρ(i)

ρ(m) = 0(1) for the mass densities.142

C. The dynamic mass density143

Under the previously defined conditions, the composite has an overall effective

behaviour for harmonic time excitation at radial frequency ω that is characterized by the

dynamic equation

∂(a
(eff)
ijkl εkl)

∂xj

+ ω2ρ
(eff)
ij uj = 0 (1)

where a
(eff)
ijkl are the ”effective” elastic coefficients of the composite , εkl are the components144

of the overall strain tensor, uj are the components of the displacement and ρ
(eff)
ij are the145

components of a frequency-dependent dynamic mass density. With a periodic array of146

inclusions, the effective elastic behaviour is not isotropic, contrarily to the behaviour of the147

constituents. Due to the scaling assumptions, the inclusions are very soft compared with148
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the matrix. As a consequence, the effective elastic coefficients a
(eff)
ijkl can be computed as for149

a matrix that contains voids in place of inclusions by usual means to obtain effective150

properties of heterogeneous elastic materials.151

Concerning the components ρ
(eff)
ij of the mass density, they must be considered as the

ones of a tensor of second rank. In the following, it will be assumed that the inclusions

have three orthogonal symmetry planes. In this case, the dynamic mass density is diagonal

for a coordinate system whose axes are parallel to the symmetry planes, with:

ρ
(eff)
ii (ω) = 〈ρ〉+ c(i)ρ(i)hii(ω) (2)

where Einstein’s convention summation must not be applied to the repeated index i in152

ρ
(eff)
ii , hii . 〈ρ〉 is the volume average of the density within the periodic cell and c(i) is the153

volume concentration of inclusions. hii are the components of a diagonal second order154

tensor.155

The homogenization method provides the localization problems (”cell problems”)

allowing to compute the effective elastic properties and the tensor of components hij, as

recalled in Appendix I. The asymptotic process proves that, at the first order, due to the

large wavelength within the matrix, the fluctuation of displacement of the matrix �u(m)

within the periodic cell is of the order of ε (while the fluctuations of strain field are of the

same order as the macroscopic strain). It means that the displacement and acceleration of

the matrix are nearly constant inside a periodic cell. As a consequence, the localization
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problem obtained by homogenization theory recalled in Appendix I corresponds to a

dynamic localization problem within the inclusion moved by an uniform acceleration

induced by the matrix. It can be expressed by using the relative displacement

�w = �u(i) − �u(m). This relative displacement is null over the boundary of the inclusion and is

the solution of

μ(i)Δ
→
w +(λ(i) + μ(i))

→
grad (div(

→
w)) + ρ(i)(ω)2

→
w= −ρ(i)(ω)2

→
u
(m)

(3)

It means that the motion within a given inclusion, in a local reference frame moving with156

the matrix, is impulsed by the inertial acceleration −ρ(i)(ω)2
→
u
(m)

.157

The solution of this problem can be expressed by using the eigenfrequencies ωp and

eigenmodes
→
u
p
of the inclusions for fixed boundaries in the reference frame moving with the

matrix, i.e. the solutions of

μ(i)Δ
→
u
p
+(λ(i) + μ(i))

→
grad (div(

→
u
p
)) + ρ(i)(ωp)2

→
u
p
= 0 (4)

with
→
u
p
= 0 on the boundary of the inclusion.158

Finally, for an acceleration of the matrix given by γ
→
e j where

→
e j is a unit vector along

one of the axes, the related component hjj(ω) is given by:

hjj(ω) =
∞∑
p=1

Kp
jj.

1

(ω
p

ω
)2 − 1

(5)

where the participation factors Kp
jj do not depend on ω and are given by

Kp
jj =

(<
→
u
p
>(i) .

→
e j)

2

< || →
u
p ||2 >(i)

, (6)
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the volume average < f >(i) being computed over the volume of the inclusion. Due to the159

dependence on ω, hjj tends to minus infinity just above each resonance frequency. As a160

consequence, the related component of the overall dynamic mass density ρ
(eff)
jj tends also161

to minus infinity and remains negative until its negative frequency dependent part is162

equilibrated by the static overall mass density < ρ > in equation (4).163

It is worthwhile noticing that, due to the condition at the boundary of the inclusion164

(induced obviously by the assumption of ”negligible scattering”), the contributions of165

different separate inclusions within a periodic cell are completely independent and can be166

summed in order to compute the overall dynamic mass density for any distribution of167

inclusions.168

Finally, the eigenfrequencies and eigenmodes (ωp,
→
u
p
) must be obtained for each169

direction of
→
e j by solving a ”localized eigenmodes problem”(4). Next, the averages in (6)170

are computed to produce the three components of the participation factors. In the following171

sections, the localization problems will be solved for cylindrical and spherical inclusions.172

D. Physical discussion of the results173

The results obtained from asymptotic expansion may be surprising by some aspects.174

Indeed, these results show that the inclusion behaves as if the surrounding material moves175

uniformly at its boundary. In addition, the field inside the inclusion does not depend on176

the wavelength within the surrounding material and is therefore not affected by the177
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scattering of these waves by the inclusions.178

Obviously, the displacement within the matrix is not exactly uniform, due to the179

varying strain around the inclusion. However, the ratio of strain fields between matrix and180

inclusion is very large, due to the elasticity contrast, and as a consequence, the fluctuation181

of displacement around the inclusion is very small compared with the displacement inside182

the inclusion and may be considered as negligible. The absence of scattering comes183

naturally from the initial assumption of a large ratio between the wavelength related to the184

propagation within the matrix and the size of inclusions. Finally, the results coming from185

the asymptotic theory appear as physically sound. Indeed, numerous devices entering the186

composition of metamaterials use inner resonators whose resonance appears at low187

frequencies, below frequencies inducing a scattering by the cells containing the resonators188

(Helmholtz resonators, spring-mass resonators,...) .189

Another point of discussion is the fact that the dynamic density tends to infinity at190

the resonance frequencies. Obviously, this result comes from the assumption of perfectly191

elastic materials. For real materials, the physical damping must be taken into account.192

This can be effected by assuming the inclusion material as viscoelastic.193

In this case, the viscoelastic behaviour of the inclusion material can be taken into194

account by using complex and frequency dependent elastic moduli. As a result of the use of195

complex moduli, the orthogonality of modes is no more ensured. Due to this loss of196
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orthogonality, the method presented previously cannot be used as such in the case of197

viscoelasticity and will not be studied thereafter. For a slight damping, an asymptotic198

procedure can again be used in order to provide the viscoelastic solution3. It leads to a199

finite value of the dynamic density and to a small shift of the resonance frequency.200

III. DYNAMIC MASS DENSITY FOR CYLINDRICAL INCLUSIONS201

Let us consider a composite containing long parallel cylindrical inclusions, i.e. long202

cylindrical fibers of radius a. As seen in section 2, the dynamic contribution to the203

dynamic mass density depends only on the properties of the inclusions. Therefore, in the204

following, the notation λ(i) = λ, μ(i) = μ, ρ(i) = ρ will be used. In a first step, the general205

dynamic displacement within the fiber is given by using separate variables. Next, it will be206

shown that numerous contributions to this general field do not provide contributions to the207

participation factors. Finally, the expression of the dynamic mass density will be given.208

A. Dynamic displacement field within a cylindrical domain209

Different solutions exist for the dynamic displacement field within a cylindrical210

domain22;15 using separate variables. The expression below is given in Eringen and211

Suhubi15( eq.8.9.17-8.9.18) where it is shown that the displacement field is the212
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superposition for integer values of n of the following partial displacements:213

ur =
1

r

[
A1U1(αr) cosnθe

±iγpz +B1U2(βr) sinnθe
±iγqz + C1U3(βr) cosnθe

±iγqz
]

uθ =
1

r

[
A1V1(αr) sinnθe

±iγpz +B1V2(βr) cosnθe
±iγqz + C1V3(βr) sinnθe

±iγqz
]

uz = A1W1(αr) cosnθe
±iγpz + C1W3(βr) cosnθe

±iγqz

for n = 0..∞, where α = ω
cp

, β = ω
cs

are the wave numbers related to the celerities of214

compressional and shear waves given by cp =
√

(λ+ 2μ)/ρ, cs =
√

μ/ρ, with an215

”alternative expression” obtained by replacing the cos terms by sin ones (and reversely)216

and the constants A1, B1, C1 by another set of constants A2, B2, C2.217

U1, U2, U3, V1, V2, V3,W1,W3 are functions of r which are expressed by using Bessel218

functions.219

As shown previously, the displacement field is sought for an acceleration parallel to220

one of the base vectors
→
e j. This displacement field has the symmetry with respect to the221

planes containing two coordinate axes. As a consequence, the symmetry induces that222

γp = γq = 0. From the expression of the radial components, it comes that U3, V3 and W1223

are null. As another consequence of the symmetry, the constants B1, A2, C2 are null.224
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Finally, replacing A1, B2, C1 by A,B,C, it comes that the displacement field is given by:225

ur =
1

r
[AU1(αr) cos(nθ) +BU2(βr) cos(nθ)] = u0

r cos(nθ)

uθ =
1

r
[AV1(αr) sin(nθ) +BV2(βr) sin(nθ)] = u0

θ sin(nθ)

uz = CW3(βr) cos(nθ)

The radial dependence is described by the following functions:226

U1(αr) = αrJn−1(αr)− nJn(αr)

U2(βr) = nJn(βr)

V1(αr) = −nJn(αr)

V2(βr) = −βrJn−1(βr) + nJn(βr)

W3(βr) = β2Jn(βr)

where Jn is the nth order Bessel function of first kind. It can be seen that this displacement227

field contains two independent fields: a first one with components (ur, uθ) and a second one228

corresponding to uz. The first one corresponds to a transversal displacement and the229

second one to a longitudinal displacement.230

At this stage, the expression of the displacement field contains the components related231

to any value of n. However, it will be shown now that only a few of them contribute to the232

participation factors.233
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B. Selection of the modes contributing to the dynamic mass density234

As seen in section 2, the participation factors are functions of the average of the235

projection of the displacement field along the direction of the unit vector
→
e j. In a first236

step, this average projection is studied, because it is important to select only the modes237

which contribute to the dynamic mass density.238

1. Transversal motion239

It is assumed that the acceleration is transversal, i.e.
→
e j is perpendicular to the axis of the240

cylinder. Due to the symmetry, the direction of
→
e j can be chosen as

→
e x corresponding to241

θ = 0. The average of the projection of the displacement field over the section is given by242

It/S, where S = πa2 and It is the integral of the projection of the displacement field onto243

→
e x= cos θ

→
e r − sin θ

→
e θ given by It =

∫ →
u .

→
e x rdrdθ, where244

→
u .

→
e x= u0

r cosnθ cos θ − u0
θ sinnθ sin θ. The integral over θ is null except for n = 1. It245

implies that only the contributions corresponding to n = 1 must be taken into account in246

the computation of the dynamic mass density. Finally, the transversal displacement field is247

given by:248

ur =
1

r
[AU1(αr) cos θ +BU2(βr) cos θ] = u0

r cos θ

uθ =
1

r
[AV1(αr) sin θ +BV2(βr) sin θ] = u0

θ sin θ
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with249

u0
r =

1

r
[AU1(αr) +BU2(βr)]

u0
θ =

1

r
[AV1(αr) +BV2(βr)]

and250

U1(αr) = αrJ0(αr)− J1(αr) = r
dJ1(αr)

dr

U2(βr) = J1(βr)

V1(αr) = −J1(αr)

V2(βr) = −βrJ0(βr) + J1(βr) = −r
dJ1(βr)

dr

2. Longitudinal motion251

The longitudinal motion is obtained for
→
e j=

→
e z. In this case, the integral of the projection252

of the displacement field is given byIl =
∫ →

u .
→
e z rdrdθ =

∫
uzrdrdθ. It involves the253

integral over θ of cosnθ which is null except for n = 0. The longitudinal motion is therefore254

given by uz = CW3(βr) = DJ0(βr), where D is an undetermined constant.255

C. Computation of the eigenfrequencies256
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1. Transversal motion257

The eigenfrequencies correspond to the displacement fields which comply with the258

condition of null displacement over the boundary of the cylinder (r = a) and therefore to259

the linear system260

AU1(αa) +BU2(βa) = 0

AV1(αa) +BV2(βa) = 0

This homogeneous system has a solution only when its determinant is null and finally the

eigenfrequencies equation is given by U1(αa)V2(βa)− U2(βa)V1(αa) = 0. Using the

expressions of functions Ui, Vi, this relation can be written by using only the

non-dimensional frequency ω∗ = ωa
cs

as:

−kcω
∗J0(kcω∗)J0(ω∗) + kcJ0(kcω

∗)J1(ω∗) + J0(ω
∗)J1(kcω∗) = 0 (7)

where kc = cs/cp is the ratio between celerities of shear and compressional waves, which261

depends only on the Poisson’s ratio ν and is given by kc =
√

1−2ν
2(1−ν)

.262

The solutions of this equation in ω∗ are the non-dimensional eigenfrequencies263

ωp∗(p = 1..∞) related to the transversal modes. Having computed these eigenfrequencies,264

the eigenmodes are obtained by noticing that A and B must comply with the homogeneous265

equations and therefore B = qp.A with qp = −U1(kcω
p∗)/U2(ω

p∗). These eigenmodes are266

thus defined up to the multiplying constant A.267
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The expression of the displacement field is no more valid for the case of an268

incompressible material, which corresponds to kc = 0. However, the limit of the equation269

for eigenfrequencies when kc tends to 0 can be obtained and leads to J2(ω
∗) = 0. Therefore,270

the eigenfrequencies tend to the zeros of Bessel function J2 when kc tends to 0 (and also ν271

tends to 0.5).272

2. Longitudinal motion273

In this case, the non-dimensional eigenfrequencies are the solutions of J0(ω
p∗) = 0. The274

non-dimensional eigenfrequencies ωp∗ are therefore the zeros of Bessel function J0.275

D. Computation of the participation factors276

The participation factors Kp
jj are given by averages of the projection of the

displacement field and of its quadratic norm. These averages involve the integrals of the

projection Ij =
∫ →

u .
→
e j dS and of the square of norm of the displacement field

Mj =
∫ || →

u ||2dS. Using these quantities, Kp is given by:

Kp
jj =

I2j
S.Mj

(8)

where S is the cross section area of the fiber. The integrals Ij and Mj are given below in a277

closed form.278
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1. Transversal motion279

The integrals involved in the transversal motion are given by:

Ix = aAπ[J1(kcω
p∗) + qpJ1(ω

p∗)] (9)

and

Mx = πA2[G(kcω
p∗) + qp2G(ωp∗) + 2qpJ1(kcω

p∗)J1(ωp∗)] (10)

where

G(x) =
1

2
[(x2 − 2)J2

1 (x) + x2J2
0 (x)] (11)

A further simplification can be effected on the participation factors by taking into account

the equation for eigenfrequencies (10). Finally, the participation factors are given by:

Kp
xx =

2α∗β∗J2(α∗)J2(β∗)
J1(α∗)J1(β∗)(α∗2 + β∗2)− α∗β∗ [J1(β∗)β∗J0(α∗) + J1(α∗)α∗J0(β∗)]

(12)

where α∗ = kcω
p∗ and β∗ = ωp∗.280

It is noteworthy that, in the case of incompressibility, the participation factors tend to281

0, because their numerators contain J2(β
∗) which tends to zero with kc as observed282

previously.283

2. Longitudinal motion284

In the same way, the participation factors for the longitudinal motion are given by:

Iz =
2πDa2

β2
J1(ω

p∗) (13)



Bonnet and Monchiet, Metamaterials with homogeneous inclusions, , p. 22

Mz = πD2a2[J2
0 (ω

p∗) + J2
1 (ω

p∗)] (14)

Kp
zz =

4J2
1 (ω

p∗)
ωp∗2[J2

0 (ω
p∗) + J2

1 (ω
p∗)]

(15)

Taking into account the properties of eigenfrequencies leads finally to Kp
zz = 4/β∗2.285

E. Synthesis of the results for cylindrical inclusions286

The dynamic mass density (4) for cylindrical inclusions of radius a is characterized by287

two sets of eigenfrequencies.288

-The set of eigenfrequencies for transversal motion that are solutions of

−kcω
∗J0(kcω∗)J0(ω∗) + kcJ0(kcω

∗)J1(ω∗) + J0(ω
∗)J1(kcω∗) = 0 (16)

where ω∗ is the non dimensional frequency given by ω∗ = ωa
cs
, kc is given by kc =

√
1−2ν
2(1−ν)

289

and J0, J1 are Bessel functions.290

-The set of eigenfrequencies for longitudinal motion, solutions of J0(ω
p∗) = 0.291

The participation factors Kp
xx = Kp

yy, K
p
zzfor the transversal motion which enter the292

expression of the dynamic density through (4), (6) and (7) are given293

294

- for transversal motion by:

Kp
xx =

2kcJ2(kcω
p∗)J2(ωp∗)

J1(kcωp∗)J1(ωp∗)(1 + k2
c )− kcωp∗ [J1(ωp∗)J0(kcωp∗) + kcJ1(kcωp∗)J0(ωp∗)]

(17)

-for longitudinal motion by Kp
zz = 4/(ωp∗)2.295
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IV. DYNAMIC MASS DENSITY FOR SPHERICAL INCLUSIONS296

We consider now a composite containing spherical inclusions having a radius a.297

Similarly to the previous section, it is necessary to compute the eigenmodes related to null298

displacement at the boundary of the inclusions. Numerous papers dealt with299

eigenfrequencies in the case of free boundary, but the case of fixed boundary is less300

frequently seen. This problem was studied early by Debye13 for the estimation of the301

phonon contribution to the specific heat of solids. Some eigenfrequencies for the fixed302

boundary problem were obtained also by Schafbuch et al.35 However, to our knowledge, the303

computation of the participation factors and of the dynamic mass density has never been304

produced.305

Taking into account the symmetry of the problem, the components of the dynamic306

mass density are the same for any orientation of the acceleration of the solid. Therefore,307

the participation factors Kp
ij are the components of an isotropic tensor with Kp

ij = kpδij ,308

where δij is the Kronecker symbol.309

A. Displacement field within a sphere310

The displacement field within a sphere is given in classical books. The solution

proposed in Eringen and Suhubi15(equations 8.13.14-8.13.15) for an harmonic motion leads

to the following expression of the partial components of the displacement field in spherical
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coordinates:

ur =
1

r
[AU1(αr) + CU3(βr)]P

m
n (cos θ) exp i(mϕ) (18)

uθ =
1

r

⎡
⎢⎢⎣

[AV1(αr) + CV3(βr)] [n. cot θ.P
m
n (cos θ)− n+m

sin θ
Pm
n−1(cos θ)]

+BV2(βr)
im
sin θ

Pm
n (cos θ)

⎤
⎥⎥⎦ exp i(mϕ)

uϕ =
1

r

⎡
⎢⎢⎣

[AV1(αr) + CV3(βr)] .
im
sin θ

Pm
n (cos θ)

−rBV2(βr)[n. cot θ.P
m
n (cos θ)− n+m

sin θ
Pm
n−1(cos θ)]

⎤
⎥⎥⎦ exp i(mϕ)

where A,B,C are constants, Pm
n are associated Legendre polynomials and the radial311

dependence is given by312

U1(αr) = njn(αr)− αrjn+1(αr) (19)

U3(βr) = n(n+ 1)jn(βr)

V1(αr) = jn(αr)

V2(βr) = jn(βr)

V3(βr) = (n+ 1)jn(βr)− βrjn+1(βr)

These functions are expressed using spherical Bessel functions27 jn given by313

jn(kr) =
√
π/2krJn+1/2(kr). The computation of these spherical Bessel functions can be314

significantly alleviated, because these functions can be obtained by using trigonometric315

functions as: j1(z) = sin z/z2 − cos z/z and j2(z) = (3/z3 − 1/z)/sinz − 3 cos z/z2.The316

dynamic mass density does not depend on the direction of the matrix acceleration. It is317



Bonnet and Monchiet, Metamaterials with homogeneous inclusions, , p. 25

convenient to choose this direction along axis z. As for the case of cylindrical inclusions,318

the integral of −→u .−→e z over the volume of the sphere must be different from zero for the319

components which contribute to the dynamic density. The computation of these integrals320

has been performed, leading to the result that the only contributions of the partial321

solutions correspond to m = 0, n = 1. All other components do not contribute to the322

dynamic mass density.323

Finally, the dynamic displacement field is given by:

ur =
1

r
[AU1(αr) + CU3(βr)] cos θ

uθ =
−1

r
[AV1(αr) + CV3(βr)] [sin θ]

with:324

U1(αr) = j1(αr)− αrj2(αr)

U3(βr) = 2j1(βr)

V1(αr) = j1(αr)

V3(βr) = 2j1(βr)− βrj2(βr)

It is noteworthy that the structure of the displacement field presents strong similarities325

with the transversal displacement field within the cylinder, but involves spherical Bessel326

functions instead of usual Bessel functions.327
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B. Resonance frequencies328

The non-dimensional resonance frequencies are obtained again by the determinant of

the homogeneous system corresponding to a null displacement at r = a. It leads to the

equation in ω∗ = ω.a
cs
:

kcω
∗j2(kcω∗)j2(ω∗)− j1(kcω

∗)j2(ω∗)− 2kcj1(ω
∗)j2(kcω∗) = 0 (20)

Having solved this equation and obtained the eigenfrequencies ωp∗ , the boundary329

condition leads also to the ratio qp = C
A
for each eigenfrequency, with330

qp =
C

A
= −U1(kcω

p∗)
U3(ωp∗)

= −V1(kcω
p∗)

V3(ωp∗)

=
kcω

p∗j2(kcωp∗)− j1(kcω
p∗)

2j1(ωp∗)

As for the case of cylindrical inclusions, it is useful to study the case of incompressibility331

when kc tends to 0. In this case, the eigenfrequencies equation becomes j2(ω
∗) = 0 and the332

eigenfrequencies are the zeros of spherical Bessel function j2.333

C. Participation factors334

The participation factors are computed from the integrals I =
∫ →

u .
→
e z dV and

M =
∫ || →

u ||2dV . These quantities are given by:

I =
4πAa2

3
[j1(kcω

p∗) + 2qpj1(ω
p∗)]
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and

M =

∫
‖up‖2 = 4πaA2

3

{
Q11(kcω

p∗) + 4qpj1(kcω
p∗)j1(ωp∗) + (qp)2Q33(ω

p∗)
}

where335

Q11(x) = j21 −
5

2
xj1j2 +

x2

2
(j21 + j22)

Q33(x) = 4j21 − 5xj1j2 + x2(j21 + j22)

with j1 = j1(x), j2 = j2(x).336

As previously, the participation factors are finally given by introducing the averages

I/V,M/V over the volume V = 4
3
πa3 of the sphere by kp = I2/VM or:

kp =
[j1(kcω

p∗) + 2qpj1(ω
p∗)]2

{Q11(kcωp∗) + 4qpj1(kcωp∗)j1(ωp∗) + qp2Q33(ωp∗)} (21)

Introducing the values of the factors qp and taking into account the equation for

eigenfrequencies leads finally to:

kp =
2α∗β∗j2(α∗)j2(β∗)

α∗β∗(β∗j1(β∗)j2(α∗) + α∗j1(α∗)j2(β∗))− j1(α∗)j1(β∗)(2α∗2 + β∗2)
(22)

When kc tends to zero, the participation factors tend also to 0, because their numerators337

contain j2(β
∗) = j2(ω

p∗) which tends to 0 with kc, as observed previously.338

D. Synthesis of the results for spherical inclusions339
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The dynamic mass density (4) for spherical inclusions of radius a is characterized by

the eigenfrequencies that are solutions of:

kcω
∗j2(kcω∗)j2(ω∗)− j1(kcω

∗)j2(ω∗)− 2kcj1(ω
∗)j2(kcω∗) = 0 (23)

where j1, j2 are spherical Bessel functions.340

The participation factors which enter the expression of the dynamic density through

(6) and (7) are given for each solution ωp∗ of the previous equation by

Kp
xx = Kp

yy = Kp
zz = kp, where kp is given by:

kp =
2kcj2(kcω

p∗)j2(ωp∗)
kcωp∗(j1(ωp∗)j2(kcωp∗) + kcj1(kcωp∗)j2(ωp∗))− j1(kcωp∗)j1(ωp∗)(1 + 2k2

c )
(24)

V. APPLICATIONS341

A. Cylindrical inclusions342

As seen in sections 3 and 4 , the resonance frequencies and participation factors343

depend only on the non-dimensional frequency ω∗ = ω.a/cs. However, the coefficients344

appearing in the equation giving ω∗ for the transversal motion depend on the ratio345

kc = cs/cp, which itself depends only on Poisson’s ratio ν.346

Figure 1 displays the non-dimensional resonance frequencies for the transversal347

motion related to the first six modes as a function of the Poisson’s ratio. The part near348

ν = 0.5 has been enhanced on the right part of the figure. The resonance frequencies349
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increase moderately with ν for any mode, except when the Poisson’s ratio is nearing350

ν = 0.5 where higher modes display a significant increase near this value of ν. In all cases,351

the value of the eigenfrequency for ν = 0.5 has been computed by using the zeros of J2,352

confirming the limit of the eigenfrequencies when ν tends to 0.5. All curves display a353

plateau near ν = 0.5, which is very short for the sixth resonance frequency, but is clear on354

the enhanced figure at the right.355

The participation factors related to these first six modes have been displayed on356

Figure 2. The left part corresponds to all values of Poisson’s ratios and the right part to ν357

between 0.45 and 0.5. It shows that the first mode contains the main participation to the358

dynamic mass density with a participation factor being near to 0.7 for small values of the359

Poisson’s ratio. However, when the Poisson’s ratio increases, the first participation factor360

decreases, the highest participation factor being successively the one related to increasing361

ranks of modes, as show the values corresponding to ν nearing 0.5.362

All participation factors tend to 0 for ν reaching 0.5, as expected from the expression363

of the participation factors. These results show therefore that the use of nearly364

incompressible materials leads to a prediction of the dynamic mass density which is very365

sensitive to the value of the Poisson’s ratio.366
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Figure 1: Cylindrical inclusions. First six non-dimensional resonance frequencies ωp∗ =

ωp.a
cs

, p = 1..6 for the transversal motion as functions of the Poisson’s ratio ν. Right: enlarge-

ment of the range of ν between 0.45 and 0.5.
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Figure 2: Cylindrical inclusions. First six participation factors for the transversal motion as

functions of the Poisson’s ratio ν. Right : enlargement of the range of ν beetween 0.45 and

0.5.

B. Spherical inclusions367
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The nondimensional eigenfrequencies for spherical inclusions are reported in Figure 3368

and show values of eigenfrequencies that are higher than the ones for cylindrical inclusions369

with a trend being overall very similar to the one observed in the case of cylindrical370

inclusions.371

The values of the related participation factors displayed on Figure 4 are also very372

similar to the ones observed in the case of cylindrical inclusions, the value for the first373

mode being however lower than for cylindrical inclusions, at low values of ν. The results374

show also a trend similar when the Poisson’s ratio is nearing 0.5, the highest participation375

factors being related to higher modes. It is noteworthy that the participation factors are376

closed form expressions of the eigenfrequencies. However, the eigenfrequencies are more377

difficult to obtain. So, in order to make easier a further use of this work, precise values of378

nondimensional eigenfrequencies have been reported in Appendix II.379

An example of dynamic mass density has been reported in Figure 5 for the case of a380

composite containing a matrix made of alumina (Young modulus Ea = 350MPa,381

νa = 0.25, ρa = 3950kgm3) and spherical inclusions made of polystyren382

(Ep = 2MPa,νp = 0.11, ρp = 900kg/m3) with a concentration of 0.5 and a radius of 2mm.383

The frequency range has been chosen to display the dynamic mass density ρeff around the384

first two eigenfrequencies, showing the ranges where ρeff is negative (highlighted by a bold385

line along the axis ρeff = 0). The frequency range of practical interest where ρeff is386
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negative could be enlarged by using reinforced polystyren containing inner inclusions with387

a material of higher density, which would increase significantly the density of the inclusion388

material and as a consequence the dynamic part of the density.389
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Figure 3: Spherical inclusions. First six non-dimensional resonance frequencies as functions

of the Poisson’s ratio ν
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Figure 4: Spherical inclusions. First six participation factors as functions of the Poisson’s
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matrix containing spherical inclusions of polystyrene
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VI. CONCLUSION390

In this paper, the basic results obtained from the homogenization theory using391

asymptotic expansions have been summarized for composite elastic metamaterials with392

homogeneous inclusions displaying ”inner resonance with negligible scattering”. These393

results show, under specific conditions corresponding to very soft inclusions with a394

relatively high density, that the dynamic behaviour of the composite displays a395

frequency-dependent and tensorial dynamic mass density. This dynamic mass density can396

be computed knowing the resonance frequencies of the inclusions for the condition of null397

value at the surface of the inclusion of the relative displacement between matrix and398

inclusion. This greatly simplifies the computation of the dynamic mass density. In399

addition, it shows that all resonators are independent.400

The resonance frequencies of these resonators have been computed successfully in the401

case of long cylindrical fibers or spherical inclusions. Having obtained these resonance402

frequencies, the participation factors related to the different modes are given by simple403

closed-form expressions. The results show that the participation factors decrease with404

increasing ranks of resonance frequencies at moderate values of the Poisson’s ratio. In this405

case, the first modes constitute the main contribution to the dynamic mass density. When406

the material is nearly incompressible, the contribution of modes related to higher407

frequencies become more important and the dynamic mass density is very sensitive to the408
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exact value of the Poisson’s ratio of the inclusions.409

It can be noticed that the dynamic mass density tends to infinity at the resonance410

frequencies, because the results have been obtained for a perfectly elastic material.411

However, these results can be extended to viscoelastic materials in order to account for412

physical damping, leading to a finite dynamic mass density by using an asymptotic solution413

for a slight damping3. Such an extension will be the subject of a further paper.414
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APPENDICES415

I. THE CELL PROBLEM WITHIN THE INCLUSION416

The cell problem over the inclusion can be obtained1;2 by using a homogenization417

method based on double scale asymptotic expansion8, whose main aspects are recalled418

thereafter.419

The microscopic structure is assumed periodic with a periodic cell Ω, splitted into Ωm420

and Ωi for matrix and inclusion, separated by the interface Γ between matrix and421

inclusion. One considers that the ordering is such that Ωm is connected over all the422

domain, while Ωi is made of separate inclusion domains.423

The double scale method can be described as follows: the position of a point at the424

macroscopic scale is determined by using the so-called ”slow position vector” �x , while the425

position of a point at the microscopic scale (i.e. inside the periodic cell) is determined by426

the ”fast position vector” �y = �x/ε, leading to an amplification of the fluctuation of physical427

variables when looking at the microscopic scale. The components of the displacement field428

are assumed to be functions of fast and slow variables by �u = �u(�x, �y) and their dependence429

in �y is periodic. Elasticity parameters and densities are also periodic functions of �y, by430

construction of the composite material.431

The di:splacement field is searched by using an asymptotic expansion of the form:432

�u(�x, �y) = �u(0)(�x, �y) + ε�u(1)(�x, �y) + .... Finally, the spatial derivatives ∂
∂xj

within local433
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dynamic equations are replaced by ”double scale spatial derivatives” ∂
∂xj

+ 1
ε

∂
∂yj

. The factor434

in front of the second derivative accounts for the enhancement of the fluctuations at the435

local scale.436

The asymptotic expansion of the displacement field can be introduced into the437

dynamic equations (within matrix and inclusion) and continuity equations of displacement438

and traction over Γ. Using the double scale derivatives, it produces a set of cell problems439

that can be solved sequentially to obtain the displacement fields over matrix and inclusion.440

The displacement field within the matrix is found to be1;2 of the form441

�u(m)(�x, �y) = �U (m)(�x) + ε�u
(m)
(1) (�x, �y), where �u

(m)
(1) is the solution of the cell problem442

corresponding to the static homogenization within the matrix for a macroscopic strain443

tensor computed from �U (m)(�x), with null traction over Γ. Indeed, at this stage, due to the444

large wavelength within the matrix, the inertia term does not contribute to the localization445

problem within the matrix.446

The first order components u
(i)
j(0) of the displacement field �u

(i)
(0) within the inclusions447

are then obtained by solving the first order cell problem for �u
(i)
(0):448

∂

∂yk
(λ(i)ε

(i)
ll(0)(y)δjk + μ(l)ε

(i)
ik(0)(y)) + ρ(l)ω2u

(i)
j(0) = 0

u
(i)
j(0)(�x, �y) = �U (m)(�x), �y ∈ Γ

where ε
(i)
ik(0)(y) stands for the components of the strain tensor within the inclusion computed449

from �u
(i)
(0) by using y−derivatives.450
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Equation (5) is then obtained by making the change of variable �w = �u
(i)
(0) − �U (m)(�x)451

II. DETAILED VALUES OF EIGENFREQUENCIES452

Frequency rank→ 1 2 3 4 5 6 7 8

↓Poisson’s ratio

0 2.9345 5.334 7.519 8.561 11.670 12.106 14.861 16.554

0.1 3.050 5.346 7.944 8.590 11.694 12.812 14.865 17.545

0.2 3.230 5.364 8.408 8.828 11.704 13.930 14.876 18.009

0.3 3.553 5.403 8.511 9.981 11.718 14.851 15.977 18.019

0.4 4.277 5.588 8.548 11.678 13.069 14.877 18.013 20.865

0.5 5.136 8.417 11.620 14.796 17.960 21.117 24.270 27.421

Table 1: Values of non-dimensional eigenfrequencies for transversal motion of cylindrical

inclusions.
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Frequency rank→ 1 2 3 4 5 6 7 8

↓Poisson’s ratio

0 3.607 6.129 8.357 9.365 12.444 13.057 15.642 17.538

0.1 3.709 6.148 8.800 9.425 12.472 13.815 15.650 18.553

0.2 3.870 6.178 9.193 9.813 12.488 15.000 15.678 18.789

0.3 4.157 6.241 9.291 11.101 12.518 15.632 17.223 18.807

0.4 4.798 6.494 9.354 12.461 14.521 15.690 18.797 21.908

0.5 5.763 9.095 12.323 15.515 18.689 21.854 25.013 28.168

Table 2: Values of non-dimensional eigenfrequencies for spherical inclusions.
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