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EXISTENCE AND CONVEXITY OF LOCAL SOLUTIONS
TO DEGENERATE HESSIAN EQUATIONS

GUIJI TIAN AND CHAO-JIANG XU

AssTrACT. In this work, we prove the existence of local convex solution to the following
k—Hessian equation

Slul = K(y)g(y, u, Du)
in the neighborhood of a point (yo, up, pp) € R” X R x R", where g € C*, g(yo, uo, po) > 0,
K € C™ is nonnegative near yg, K(yp) = 0 and Rank (DgK)(yo) >n—k+1.

1. INTRODUCTION

In this work, we study the following k-Hessian equation :

(1.1) Silul = f(y,u, Du),

on the open domain Q c R” with 2 < k < n, where f > 0 is defined on Q X R X R"” with
F(vo, uo, po) = 0. When u € C?, the k-Hessian operator S [u] is defined by

Silul = S (D) = o[ ADwl = > Ay Ay,
1<iy<ip...<ix<n
where S ;(D?u) is the sum of all k-order principal minors of the Hessian matrix (D*u), and
A(D?*u) = (A1(D?u), ..., A,(D?u)) are the eigenvalues of the matrix (D?u). One origin of
k—Hessian operator is from Christoffel-Minkowski problem, see [5, 6, 7, 8] and references
therein, another one is from calibrated geometries in [12]. The background of k—Hessian
operator in terms of differential geometry can also be found in Section 4, [15].
When f > 0, the solutions u of (1.1) is considered with A(D?u) in the so-called Garding

cone :

() = {1 =1, A2,..., ) € R 0;() > 0,1 < j < k).

If f > 0, the equation (1.1) is called degenerate, in this case, we consider the solutions
with
A(D*u) € Ti(n) = {1 € R o) 20,1 < j <kl

A function u € C? is called to be k-convex, if A(D*u) € Tx(n). The n-convex function is
simply called convex.

The convexity of solutions of (1.1) is an important problem in the field of geometries
analysis, including usual convexity, power convexity, log-convexity, or quasi-convexity.
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2 GUIJI TIAN AND CHAO-JIANG XU

For example, in the study of Christoffel-Minkowski problem (see [5, 6, 7, 8]), an impor-
tant subject is to prove the existence of a convex body with prescribed area measure of
suitable order, this is equivalent to prove the microscopic convexity principle (constant
rank theorem) for some k-Hessian type equation on the unit sphere S”. There is also a
strong connection between convexity properties of solutions to elliptic and parabolic par-
tial differential equations and Brunn-Minkowski type inequalities for associated variational
functionals, see [16, 17, 18]. When Guan [4] uses subsolution in place of all curvature re-
strictions on 0L to construct local barriers for boundary estimates, it is an assumption that
there exists a locally strictly convex function in C 2(ﬁ), see Theorem 1.1 and 1.3, [4].

The microscopic convexity principle, with applications in geometric equations on man-
ifolds, has been established in [2] for the very general fully nonlinear elliptic and para-
bolic operators of second order. Guan, Spruck and Xiao [9] point out that the asymptotic
Plateau problem for finding a complete strictly locally convex hypersurface is reduced
to the Dirichlet problem for a fully nonlinear equation, a special form of which is the
k—Hessian equation, see Corollary 1.11, [9] and they have proved the existence of such
hypersurface, it is especially interesting that they have proved that, if 0Q is strictly (Eu-
clidean) star-shaped about the origin, so is the unique solution, see Theorem 1.5, [9]. For
the k-Hessian equation with k£ = 2,n = 3, the power convexity for Dirichlet problem of
equation (1.1) with f = 1, and log-convexity for the eigenvalue problem have been studied
in [16, 17], see also [18]. The above convexity results are established on two facts, one is
that the equations are elliptic, another is that the existence of classical (at least C?) solution
has already known or can be proved. However, in many important geometric problem,
the associated k-Hessian equation is degenerate (see [11]), and for the degenerate elliptic
k-Hessian equation, one can only prove the existence of C!*! solution for Dirichlet problem
([14D.

In this paper, we study the convexity of solution with following definition: for a convex
domain E, the function v € C(E) is said to be strictly convex if

vity+(1 -0 <tv(y))+(1—-Hw(z), O0<t<1, y,z€eE, y#z

Which, in case v € C2(E), is equivalent to

n 1 1 621)
(1.2) i;(yi -z)(yj — Zj)L fo o, (x(s, ) duds >0

with x(s, 1) = (s + (1 — )y + (s(1 — @) + (1 — s)(1 — 1))z, this shows that the positive
definiteness of Hessian matrix (D?v) is a sufficient condition for the strict convexity, but
not necessary.

However if u € C? is a k-convex solution of Si[u] = f(y) > 0 with 2 < k < n and
f(vo) = 0, then Sy41[u](yo) > O will never occur, so that there are two possibilities: 1)
S+1[u](yo) < 0, in this case, u is not (k + 1)-convex; 2) Si+1[u](yo) = 0, in this case, it is
shown in Theorem 1.1 of [21] that, if S [u](yo) = Sk+1[u](yo) = 0, then S;[u](yo) = O for
k <1 < n. In particular, if f = 0, since the case S+[u] > 0 will never occur, then either
S+1[u] < 01in some open subset of Q or Sy.1[u] = 0 in Q itself, in the former case u is not
(k+ 1)—convex and let alone strictly convex; in the latter case, S;[u] = 0 for k < [ < n, then
the graph (y; u(y)) for k = 2 has the vanishing sectional curvature and must be a cylinder or
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a plane, see [19] and [22], meanwhile the graph (y; u(y)) for k > 2, by Lemma 3.1 of [10],
is a surface of constant nullity (at least) n — k + 1 and then is a (n — k + 1)-ruled surface.
Therefore if f = 0, the solution u to (1.1) is not strictly convex (at least) along the rulings.

Motivated by above analysis, in this work, we study the local solutions for the following
equation,2 < k < n,

(1.3) Silul = K(y)g(y,u, Du),
with the following assumptions

K € C* is nonnegative in a neighbourhood of y, € R",
(H) K(y0) = 0, Rank (D*K)(yo) > n—k+1,
g € C* near Zy = (yo, Uo, po) and g(Zy) > 0.

This assumption is independent of coordinates. Our main Theorem is :

Theorem 1.1. If K, g satisfy the assumption (H), then for any s > 2[5] + 5, the equation
(1.3) admits a strictly convex H-local solution in a neighbourhood of yo € R".

Remark that u = % Z;’;l' yl.2 + 11—2 y*is a strictly convex solution of the following Monge-

Ampere equation :
det D*u = y?.
But the Hessian matrix (D?u) is not positive definite at origin.

This article is arranged as follow: In Section 2, we will introduce the idea of how to
construct convex local solution in terms of K(y). In Section 3, we will construct the first
order approximate solution ¥(y) which is strictly convex. The Section 4 will be devoted to
proving the degenerate ellipticity of the linearized operator of S4[u] around . In Section
5, we will use Lax-Milgram theorem to prove the existence of H-weak solution and their
a priori H*-estimates. In Section 6, we will prove the existence of k-convex solution by
the Nash-Moser-Hormander iteration procedure. In section 7, we will prove the strict
convexity of the local solution obtained in Section 6. Section 8§, as an appendix, is devoted
to the estimates of eigenvalues and eigenvectors for a matrix after a small perturbation, the
conclusion of which is a generalization of Lemma 1.1 of [13].

2. SCHEMA OF CONSTRUCTION OF CONVEX LOCAL SOLUTIONS

The assumption (H) is independent of coordinates. Now we choose special coordinates
under which the leader term of the solution can be explicitly expressed. Since the degen-
eracy is come from the term K, for the simplicity of notations and also computation, we
suppose that

(B) g =1, Rank (D’K)(yo) =n—k + 1.

By a translation y — y + yo and a change of unknown function u — u — u(yo) — Du(yy) - y,
we can assume Zy = (0, 0, 0). On the other hand, the solution is searched for locally, that is,
we assume without loss of generality that K(y) is defined in some neighborhood of origin
and

n

1) KO) =D cpyd + 0P
=k



4 GUII TIAN AND CHAO-JIANG XU
where 2¢; > 0, k < j < n are the positive eigenvalues of (D*K)(0). In order to describe the
“localness”, small € > 0 is introduced by the change of variables y = &2x, we fix a domain
Q — Qn’ % Q§0 c Rk—l X Rn—k+1
with g > 0 being chosen small later and x* = (x1,- -, x-1), X" = (X, -+, Xp),
n
Or =¥ eRF Il <m 1 <i<k—1), Qp =1 eR™ 3 [P < &}).

i=k
We will determine some gy > 0 and study the equation (1.3) in the following form

(2.2) Silul =K in Qg = {y =elx;x € Q}

with

2.3) RG) = (1= x(72) Y ey} + x(& YK,
i=k

where y(x') € C7°(Q;) is a cutoff function equal to 1 if [x’| < %, equal to zero if x| > 7,
and 0 < y < 1. The local solution of (2.3) is also the one of (1.3). The aim of introduce
of function y(x’) is to guarantee the periodicity with respect to variable x” for nonhomo-
geneous terms and the coefficients of all the linearized equations, which is important and
convenient for existence of solution because the linearized operator Lg(w) of (4.1) may be
degenerate in the direction x’.
We will construct the local solution of equation (2.2) in the following form
k=1

] 17
2.4 u(y) = 3 Z ij§ +POy)+e? w(s_zy).
j=1

So the construction of solution is by three steps:

1) Solutions of the homogeneous equation

Lett= (11, ,7k-1,0,--- ,0) with 7y > --- > 1,1 > 0, then the convex function
=
2.5) ¢ = 5 >t

satisfies the homogenous equation S[¢] = 0, and the linearized operators
n
(2.6) L= 01 /(0
j=1
is degenerate elliptic with
k-1
O'k_1yj(T) =0,1<j<k-1; O'k_1yj(T) =0o-1(7) = l_[Tz >0, k<j<n
I=1
We have also Si+1[¢] = -+ = Sule] = 0.

Remark that, in [20, 21], we choose 7 € dl'x(n) with o41(7) < 0, so ¢ is not (k + 1)-
convex; also the solutions constructed in [3] must not be (k + 1)-convex, because in these
cases every linearized operator (2.6) is uniformly elliptic. But in present work, we want
to construct the local strictly convex solution, so we can’t make that choice. On the other
hand, the function ¢ defined in (2.5) is only weakly convex, so it is difficult to guarantee
the convexity after a perturbation.
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2) Approximate strictly convex solution
Using the assumption (H) on K, we construct a function P such that
k=1

1
2.7 WO) =5 ) T +PO)
Jj=1

satisfies
Syl = K + 0(1)s?,

and ¢ is strictly convex on .. The construction of the function P is algebraic by using
the assumption (H) of K.

3) Nash-Moser-Hormander iteration
We construct finally the smooth function w such that the function u defined by (2.4) is
a local solution of equation (2.2). We use the Nash-Moser-Hormander iteration procedure:

(28) { wo = O, Wi+l = Wy + Smpm

LG(Wm)pm + GmA,Om = 8m> in x e Q.
where {S,,} is a family of smoothing operators,

1

2.9) g =-Gwn) = =[Sk + &3 wu(e?y) — K}, 6, = sup IGOw)| = Ilgnlu~

&

and
n

Low) = Y _6S§:§—W))6,»a B
ij

ij=1
where

k=1

r(w) = | > 6/6%t + Pi(e™x) + &2 wij(x)
I=1 1<i, j<n

The procedure is to prove the existence and the convergence of the sequence w,, — w in

some Sobolev space with 6,, — 0 which imply that the function u defined in (2.4) by w

is a local solution of equation (2.2). We also need to prove that the perturbation doesn’t

destruct the strictly convexity of ¢ constructed by (2.7).

Remark that the linearized equation is degenerate elliptic, so that there is a loss of the
regularity for the & priori estimate of solution p,,, but the coefficients of linearized operators
depends on D?w,,, so that we need to smoothing the solution p,, to continue the iteration
(2.8) for m € N. This is quite different from the procedure of iteration used in [21] where

the linearized equation is uniformly elliptic.

3. THE FIRST ORDER APPROXIMATE SOLUTIONS

Since K(y) attains its minimum O at origin, the critical-point theorem implies VK(0) =
0. Then we have

Proposition 3.1. Suppose that K(y) satisfies assumption (H) and (2.1), then we have the
following decomposition

, ] - 62[( ’ 2
KG) = K(/.0) + 5 Z; a_y,?(y .0)y7 + R(y)
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where K(y',0) vanishes at y' = 0 up to order greater than four and

@)-Za ', 0y + 2 Z

i,j=k,i#j

Bydy (y 0)yiy; + O(DY"P.

In particulary, for y = £%x, x € Q, we have
R(y) = O(1)&°.

Formally, if u € C>! is a solution to (1.3), by Taylor expansion

n

3.1 u) = 3w O)yiy; + o)
ij=1

substituting (3.1) into (1.3), we see that,
SKD*u(0)) = S k(i (0)) = lim S «(D*u(y)) = K(0) = 0
Therefore, a smooth (at least C>!) local solution to (1.3) is a solution of S[u] = 0 plus a

small perturbation o(lyP?). So we wish to construct the first order approximate solution as
following form

k-1
1 2
vo) =3 Z] Ty} + PO)
with 7y > 15 > ... > 141 > 0, such that

Sl = K + 0(De?,

which is difficult to arrive at. Our observation is that o_(7) 2;{:/{ P;;(y) is the main part
of S[y], so we only need to find out P(y) to satisfy the weaker version

Ti1(D) ) Py = K = x(6 Y IRE).
j=k

This is our trick how to construct P(y). Let

— 1 2.7
PO) = 5 Do Ve K O),Z,:‘y’
(3.2) 240_ (_2)’/)2( > 0/,0) - 20,‘))’?
1 n n n
— —  _datn-k 2,2
* 12 Zk:|:o-k l( ) a(n ) +a’jz/;[%;ﬁjy’y]
where
33 0 ! in{—J
3-3) sas 16(n—k)2+4(n—k+1)132}31{2@_1(7)}'

Remark 3.2. Giving an example, K'(y) = K'(y") = i c[yl?, then

PO) = PO = 122[@ R RET D WP I

=k i=k.i#]
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‘We have
T Y PLOY) = K7,
j=k

and the strictly convex function ¥/ (y) = § Y571 7y2 + P'(y”) satisfies
Sewh =K'+ oWy ).
The direct calculation gives
Proposition 3.3. Ler P(y) be defined in (3.2), then

011() Ty Pji(y) = K = x(72Y)R();
(3.4) Pi(y/,0) = 0(Dly'l", k<j<n,
Pij(y) = 8ayiyj, i#j, k<i,j<n,
and
(3.5) Pji(y) > daly’’, k<j<n.
For small |y|, the minor matrix (P;j)<i,j<n 18 strictly diagonally dominant, more explicitly,
for fixed k < jo < n,

n

(3.6) Piyjo) = 20y + " 1Py

i=k,i# o

Proof. From (3.2), we obtain, for fixed k < j < n,

— 1 2.7 ’
P/J(y) - (n_k+ l)O'k_](T)X(S y )K(y 90)
2.7 162]{ ’ 2
3.7) + O_k_](T)X(S y )[5 g?(y ,0) - Cj]yj-

n

y? +4da Z yiz.

i=k,i#j

[ ¢
+ —4da(n-k)

or1(t

By (3.7) we have
C -2.7 ’ 1 C 62K ’ 2 2.7 - 2
1) ) Pij) = x(&7y) K(y,0>+526—y2<y,0>yi +(L=x(EY) Y e
=k i=k Vi =k

which proves the first equality in (3.4). Since K(y’,0) vanishes up to order greater than
four, we have

(v — 1 -2,/ / _ 74
P00 = o ek KO0 = 0T,

then the second equality in (3.4) is true. The third equality in (3.4) is obvious.
Now we return to (3.7) for P;;(y). Since K(y’,0) > 0, employing (2.1), choosing small
[y'| and then taking « to satisfy (3.3), we have

n

Vida Y7

i=k,i#j

Cj
ij(y) > m —4&’(1/1 —k)
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which implies (3.5). By virtue of inequality above , for fixed jy with k < jy < n, we obtain
by Cauchy inequality,

n

Cj
Piia0) 2 52— datn= O, +4a 37 7}
i=k,i# jo
1 - Cio
>2aly’|* + — —L  _da(n-k+ D]y +2
22"+ - — i:kzi;/ [[20_k = a(n )]yjo ay,]
22aly"P+ ) Iyl \/ —da(n —k+ 1)
i= kntjo _](T)
>2aly" " + Z Balyiy,| = 2aly" + Z 1Py ),
i=k,i#jo i=k,i#jo
so the minor matrix (P;;)i<;, j<n 1s strictly diagonally dominant and (3.6) is proved. O

We will construct the solution as a perturbation of the strictly convex function ¥(y) in
the following form,

17 1 ! 17
(3.8) u) =+ e we ) = 5 ) Ty + PO) + T wie ),
J=1

see (2.4), where w(x) will be proved to be a smooth function later.
By a change of variable x = £72y, the Hessian matrix of u defined in (3.8) is

(3.9) (D*u)(&*x) =1 = (Z 8I8ta) + Pyj(e®n) + 1w, j(x)].

We study firstly the minor matrix ry_; = (7;)1<;, j<k—1 Which is real-valued and symmetric,
then there is an orthogonal (k — 1) X (k — 1) matrix Q such that

O(x, &) ri_1 'O(x, &) = diag(A,(x, €), . . ., U1 (x, €)).

Let
- )
0 Diksrn—k+1

then

/11 0 0 'k Fin

0 /12 0 .k on

t
QI‘ Q= 0 0 R o Ye=1k -+ Fk-1n]>
rk,l rk,z e rk,kfl rk,k . rk,n
"n,1 2 .. Tnk-1 Tnk Tnn

where all terms r;; in the above matrix are in the form

(3.10) rij(x) = Pij(*x) + S%Wij(x)'
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Noticing the existence of y(¢72y’) in P(y), we have
Pif(e*x, &8x") = O 'F + O, 1 <i,j<k-1,
applying Lemma 8.1 to the minor matrix ry_;, we obtain that
(3.11) Li=1i+0D&, A >b>... .4 >0,
for £ > 0 small enough.
Lemma 3.4. Let r be defined in (3.9), then Si(r) = © + @ + @ with

@ =041y e s )T 1 Thdes < o5 ) — Do Zl,:% Ok-1,j(A1, .. -»/lk—l)r?i
@ = o521, ... A1) [O'Z(ka» oo Tun) = Dl Dimkossi Vfi] + O(Zskeizt [rmil®)
®= ZIJQ Tk jAs s )OO Esteizt i) + O it 1rimil)s

where 1y = iy = O(l)s4f0rm >k;i>1.

Proof. Since S(r) is invariant under orthogonal transform, then S;(r) = S;(Qr'Q). By
virtue of (3.11), we can separate S ;(Qr' Q), which is the sum of all principal minors of order
k of the Hessian (Qr' Q), into three parts : @ are the minors containing o—1 (41, . .., 4—1) =

f:l' A;; @ are the ones containing all of the elementary symmetric polynomials of (k —
2)—orderin Ay, - -, A¢—1; @ are the ones containing all of the elementary symmetric poly-
nomials of order < k —3in Ay,..., 4j_;. O

Proposition 3.5. We have for any w € C 2(Q), the function u defined by (3.8) satisfy
(3.12) Silul(y) = K + O(l)s%,
where O(1) depends on ||wl|c2 and K is defined in (2.3).
Proof. By (3.10) and (3.11), we have
Tt (A1, det) = e (1) + O(De™,

Noticing that r;; = Pij(szx) + s%w[j(x) fori > kor j > k, we obtain Sy(r) =D +@+®
with

© = [op1(@) + ' 0D T ru(e™x) = Tity T Trer, j A1 oo e (67%)
0p1 (1) 0, ru(e2x) + £80(1) = o1 (1) Yt Pu(e2x) + €2 0(1)
@ =021, A1) Dety tyen(Tin (EX)111,(82%) = 17 (£2X))
+O(ri3[(82x)) =&%0(1)
® =0(riEx)) = &20().

Therefore,

Skr) = 01 (1) ) Pjyehx) + O(1e?,

J=k

from which, using (3.4) and recalling y = &, we obtain (3.12). m]
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4. LINEARIZED DEGENERATE ELLIPTIC OPERATORS

By the construction of Section 3 and Proposition 3.5, we have

i%{sk(u)— K} = L {oet} = o),

9
g2

A.1) G(w) =

&
So that for any w € C*(Q),
4.2) O(w) = sup |G(w)(x)| < +o0
xeQ
uniformly with respect to &, and then (4.1) is well-defined for 0 < & < gy << 1.
The linearized operator of G at w is

Lo(w) = Z S j{j(W)aia s

i,j=1
where

6Sk(w) _ (9Sk(l')

4, Y(w) =
*- S rij rij

(w).

Since the matrix (S f{j )(w) and r is simultaneously diagonalizable, see [23], that is, for any
smooth function w, we can find out an orthogonal matrix 7'(x, €) satisfying

“44) T(x,8)(S)) 'T(x, &) = diag | 224xa) Gnlhxa) | dnilione)
T(x,e)r 'T(x, &) = diag [41(x, &), 22(x, &), .. ., Au(x, &)],
where T;i(x, €) is the corresponding unit eigenvectors of A;,i = 1,2,...,n.
The linearized operator Lg(w) is not guaranteed to be degenerately elliptic, because
(A1(x, &), Aa(x,€), ..., A4,(x, €)), as a result of the perturbation by &3 w;;(x), may be not in

;. But we have

Proposition 4.1. Assume that |wl|c2) < 1, then the second order differential operators
Lo(w) + 6A

is a degenerate elliptic operator if € > 0 is sufficiently small, where 6 is defined in (4.2).

Proof. By the definition of degenerate elliptic operator, we have to prove
A=0¢R + Z SUgg; >0, forany ¢ €R"
ij=1
which is equivalent to prove,
A =6 +((S)'TE,'TE) = & +(T(S)'TE.8) 2 0, forany Z € R",

where T is the orthogonal matrix in (4.4), then

k-1 n
(4.5) A= 08 + ) o A eNE + ) our i(Alx, e)E
i=1 i=k

k-1

Since for small &, we have o_; ;(A(x, €)) = ]—[j:1

to prove

(4.6) 0+ 0 1(A(x,e)>0, 1<i<k-1.

T+ O(g) > 0, k <i < n, we only need
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If ok (A(x, €)) > 0, together with the fact o ;(A(x, &)) = o j(11,72,...,Tk=1) + O(g) > 0O for
1 < j < k-1, then A(x, &) € T; which yields
Ok-1,i(A(x,8)) >0, 1<i<n.
It is left to consider the case o(A(x, €)) < 0, in which case, since K > 0,
6 = O(w) = max |G(w)|
xeQ

1 - 1
= max —|oy(A(x, &) — K| = ——0ox(A(x, €)).
xeQ & &

Now we prove (4.6) for i = 1 with o—;,1(1) < 0, the other cases can be proved similarly.
By the definition of G(W) and O'k(/l) = /1] Tk-1,1 (/l) + 01 (/1),
o1 () — op,1(A)

A
o () — o1 (D)
— =

0+ 20'k_1y1(/l) =0+2
4.7

1 1 2 2
> = —op(D) +2 (== + ) = — o1 (D).
& e A A

Under the assumption o—; 1(1) < 0 and o4(1) < 0, we will distinguish two cases.
Case 1. If 04 1 (1) < 0, we have by (4.7)

1 2 2 1 2
O+0p-11>0+20411 2 (—— + =)o) — —0r1 (VD) =2 (—— + —)or(D) >0
’ ’ & /11 /11 ’ & /11

provided ¢ is small enough.
Case 2. Next it is left to consider the case in which

o) <0, o) >0, 01,1 (D <0

hold simultaneously. Using Newton’s inequalities for (n — 1)-tuple vectors

(k —1)(n — k)

T (DT-2,1(A) < Mn_k+n[ahuun% A€R"

and the fact
k-1

T2 = [ [7i+0@) >0, o) = 0),
i=2
we obtain
(k= D(n—k) [ok-11(DT?
0< Or1 =
’ k(l’l—k+ ]) O'k_z,](/l)
Back to (4.7), using o(1) < 0, then for £ > 0 small, we have

< 10(€)Ti-1.1(D)].

1 2 2 2
0+ 2011 > (—g + —)O'k(/l) - /l—]Uk,l(/l) > _/l_lo'k,l(/l) = —|0(g)p-1,1(D|,

A
which yields
0+ 01,1 2 0+ 20%-1,1 +|0(&)04-1,1 (D] = 0
provided € > 0 small enough. Proof is done. O

Equality (4.5) shows that the operator Ls(w) + A may be degenerate elliptic in the
directions of (51, e ,S,H) and is uniformly elliptic in the directions of (Sk, e ,gn) after
the orthogonal transform 7'(x, &) which is a perturbation of unit matrix, so we can impose
the Dirichlet boundary condition on dQs, (the x” direction), but we can’t do that on 0Q,
(the x’ direction). Instead of treating a Dirichlet boundary value problem, we shall prove
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the existence, uniqueness and a priori estimates of the solution, which is periodic with
respect to x’, to the degenerately linearized elliptic equation

4.8) Le(w)p + 60Ap = g,in Q;
' p(x’, x"") is periodic for x’ € Q, and p(x’,x’") =0 for x” € 0Qs,,

in some suitable Hilbert space defined below, this idea is inspired by Hong and Zuily [13]
where they consider the case k = n. We introduce the space H*(Q) (s is an integer), which
is the completion of the space of trigonometrical polynomials

p(x) = Z a[(x//)eﬂz’;;: lix;
6:(11 JZ»»-»,/k-])EZk_'

with the (complex-valued) coefficients @, subject to the condition ay(x”) = a_/(x") €
C*(Qs,), with respect to the norm

k-1
2 _ 2t 2
biE= > > a+ E_] BYllaely g,

1+ j<s ek

where Hj(Q(;O) is the usual Sobolev space. We define Hj(€2) in the same way by taking
ay € C7(Qs,)- We will prove, in the next section, the following Theorem.

Theorem 4.2. Let w be smooth and ||w|| ot < 1 with nonnegative integer ly. Then

]+3+IO(Q)
for any so € N U {0}, one can find a constant &(sy) such that the equation (4.8) possesses a
solution p € H{(Q) provided that g € H¥(€Q), 0 < s < so and 0 < & < &(so). If s 2 1, the

solution is unique . Moreover,

{ llolls < Cyllglls + 27 oy IWiillssallolizs), if s > [4] + 1+ los

(4.9) =1 1
llolls < Csllglls,  if s < [5] +1+1

holds for some constants C independent of w and €. Here
9
Wij(x) = Py, (£22) + 87wy, (0).

Remark 4.3. Since the equation (4.8) is degenerate elliptic, we can only get the a priori
estimate (4.9) with a loss of order 2. This loss of regularity of linearized equation ask us to
use the Nash-Moser-Hormander iteration to deal with the solution of (4.8). By definition of
ri; by (3.9),if P(y) = 0, then Z}’,FI [[(W;lls+2 is reduced to ||(w)l|s+4 Which is introduced in
Theorem 1.3 of [13]. When [y = 0, Theorem 4.2 (2 < k < n) is a generalization of Theorem
1.3 (k = n) in [13]. The assumption ||w||c[%1+4(9) < I(lp = 1) is necessary in the estimates of
the quadratic error in Lemma 6.2 for f = f(y, u, Du) in Lemma 6.2, although we will not
give its estimates of the quadratic error ; while the assumption ||w/| A4 @) <1(p=0)is
enough in case f = f(y,u). The uniqueness for s > 1 follows from (5.4) by taking v = 0.

5. A PRIORI ESTIMATES OF SOLUTIONS FOR LINEARIZED EQUATIONS
: : L "2
First of all, using the change of unknown function g = pe* £, we reduce (4.8) to

ij j = n = — nox2 .
(5.1) Lp = 7 121 (S (W) + 6]0)0:0,p + Xy bidip + cp = ¢ *+"ig, in Q
p =0 on 0Q;, and periodic on Q.
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The coeflicients b; and ¢ are expressed as follows.

o] XS, 1<i<k-1
’ —4(ux)f — 4 X (xSl w),  k<i<n.

c=-2u Z(s (W) +60) +4 Z Z(,lxi)(,lxj)s U(w) + 46 Z(ﬂx;)z.
i=k i=k j=k i=k
We would like to prove Theorem 4.2 for (5.1) rather than (4.8), and write p instead of p,
but also not do it directly, we will consider the solution p, to the regularized version of
(5.1), i.e., the following uniformly elliptic equation, for0 < v < 1,

5.2) L= Z;’,FI(S;? + 6{9)6;61',0 +vop + Y, bidip+cp =g,in Q,
' o =0 on dQs, and periodic on Q.

We first need the following Lemmas which is standard for the degenerate elliptic oper-
ators. So we only point out some important steps for the proof.

Lemma 5.1. Suppose that w is smooth and ||Wllc+y < 1. Then there exists two positive
constants uy large and gy small such that, for 0 < & < 8, uodo < 1, g € H'(Q) and v > 0,
problem (5.2) admits an unique solution p, € H(IJ(Q) , which satisfies

(5.3) llovllo < Collgllo,

where Cy is uniform for v €]0, 1[, € €]0, o] and independent of w.

Proof. We prove the existence and uniqueness of the solution p, to (5.2) by applying Lax-
Milgram Theorem to the bilinear form

<-=L,p,0>
where < -, - > is the dual pair on H~! x Hé. The condition |[w||c+ < 1 yields
| < =Lyp.0 > 1< Clllhlielli.  Yp.o € Hy.

where C is uniform on 0 < € < 1,0 < v < 1. For the coercivity, the proof of which is
almost the same as that of Lemma 1.4, [13], there exist &y > 0 small and large u > 0 such
that

54 — < Lyp,p > 2 VIDpll} + 2011 (Dllpll3,

then by using Lax-Milgram Theorem, for g € H(Q) and v > 0, problem (5.2) admits an
unique solution p, € H(l)(Q). Since |- < Lypy,pv > | =1 < g0y > | < llglolloyllo, then (5.3)
follows from (5.4). O

Similarly to the proof of Theorem 1.3, [13], we have the higher order a priori estimates

Lemma 5.2. Suppose that w is smooth and |[w|| A4 @) < 1. For s > 0, then there exists
&o(s8) > 0 small such that, for 0 < € < gy(s), and g € H*(Q), the problem (5.2) admits an
unique solution p, € Hg” (Q), which satisfies

llovlls < Clllglls + 27 oy IWigllssalloslles), if s > [4] + 15
loulls < Cllglls, i s < [2] +1

where Cj is uniform for v €]0, 1], € €]0, go(s)] and independent of w.

(5.5)
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Proof. For s =0, Since —(L,p, p) = —(g, p), then (5.4) and Cauchy inequality yields

VDI + lloll} < Co(@)llgli?,

where Cy(7) is independent of v, w and &. On the other hand, for @ € N”, |a| < s

(Ly(0"p), (0"p)) = (0"g, (0"p)) + ([Ly,3"]p, (0" p)),

where the commutators is

(L0 == > ) Cop(PSH0:0;+ ) Pbidi + )™,
B<a,|B21i,j=1 i=1
here the coefficients depends on D?w, by using the interpolation inequalities, we can get:

DIfs< [g] + 1, then the condition ||W“c[%l*3(§z) < 1 imply

([L,, 810, (8P))| < &Cllpl2.

2) If s > [5] + 1, a little involved computation also give

(L 010, @) < Culellol? + Nl (gl + llpllzs D 1Wiflee)).

i,j=1

where C; depends only on s, so we finish the proof. O
With Lemmas 5.1 and 5.2, we can now prove Theorem 4.2.

Proof. The proof of Theorem 4.2. To simplify the computation, we consider only the case
lop = 0, and prove (4.9) under the assumption IIWIIClg,+3(9) <1.Nowfor0<s < [%] +1, we
can apply Banach-Saks Theorem to find a subsequence p,; with v; = j2 and an element
po € Hy such that

+.-.+
P 2 TP il = 0 (m — o).

I
Py trtp

Since p ™ is periodic in x” for each m, so is pg. Back to (5.2), we have

n

ij s ; Prttpn, 15
Z(Sk’ +610)0,0; + Zb,ﬁi N D ——— ZVjApr =&

ij=1 mn =1
For any test function ¢ € C;°, Lemma 5.1 yields

m m m

1 1 1
(= D vidou il < lladlholl= > viowlb < Collagloliglo — > v; = 0,

J=1 J=1 J=1

taking m — oo, we have that py is a solution of (4.8) in the sense of distribution :

Z(S j{j + 6{9)61‘3]‘p0 + Z b,ﬁipo +coo = 4.

ij=1 i
Moreover, by Lemma 5.2

. Py 0+ Py,
lleolls = lim [|—=———"1
m—00

smwbmumsﬂ;+L
Now we prove (4.9) for s > [%] + 1. Since Lemma 5.2 yields

lovliig e < Crgreillgliigien
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by Sobolev imbedding theorem , ||po, ||z~ < oo, moreover if Z?,j:l [IWijlls+2 < oo, then (5.5)
shows that

loull < C <o for s> [51+1,

then, by weak compactness theorem, there is a subsequence p,. of p, and po such that
Py, = po in the weak topology of W**(Q) and

llov; = poll= = 0, lloy;, — pollwiz@) — 0,

therefore py is periodic in X", pg € H{(€2), and by Lemma 5.2 again

n
lloolls < liﬂglfIIPVflls < Cs(lglls + Z Wil s+2lloolls)s
: ij=1

so we complete the proof of (4.9). O

6. NasH-MoSER-HORMANDER ITERATION

We prove firstly the existence of k-convex local solution of (2.2) as a perturbation of
¥ constructed in Section 3 by employing the Nash-Moser-Homander iteration, which is
based on the a priori estimates established in last section. Since the linearized operators is
degenerate elliptic, a loss of regularity of order 2 has occurred for the solution of linearized
equation, so we need to mollify the solution by taking a family of smoothing operators
S(1),t > 1 such that

S(0) 1 UsoHp(Q) — NyoHY(Q)

with the following properties:

(6.1) IS @ulls, < Csyllulls,, i 51 < 82,
(6.2) IS Dulls, < Coy5ot™ " lully,,  if 512 52,
(6.3) IS (Du = ulls, < Coy ot lully,,  if 51 < 52,

where Cj,,, is independent of ¢ and depends only on sy, s, , see [1] for more detailed
properties of smoothing operators.

Now we define S, = S () with w,, = 0" where o > 1,7 > 1 to be determined later,
we use the following iteration procedure:

wo = O, Wi+l = Wy + Smpm,
(64) L(Wm)pm = LG(Wm)pm + GmApm = 8m> xeQ
pm € Hy(Q), gm € H(Q).
where g, and 6,, are defined in (2.9), G(w) is defined in (4.1).
Remember we are studying the equation (4.3) in the variables x rather than y = &2, and

| =

k—1
17 _
Un() = 5 DTy + PO) + &7 wale 7).
j=1
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Denoting

M) = ligolls + & D 11Py(e lls-1,

i,j=1

NG = M09+ 2 175 a1+ (5] 1)

ij=1
which are small if € > 0 small. We prove the a priori estimates by induction.

Lemma 6.1. Suppose that |lwill 315 < 1 for 0 <1 < m. Then

(6.5) ligmlls < CxM(s) + IWinlls+2)
and

m+1 4
(6.6) Wsillyrs < CIUE  NCs),  for = —

where Cj is independent of m and vy.

Proof. We prove first (6.5). Remembering
=1 \
Iy = [Z 5f5lj7'/ + Pij(e7X) + &2 (Wm)ij(x))
I=1

using Taylor expansion and wy = 0, we have

s

’w
Xi0X

1 0 1 n y
g = Glo) = GO+ [ Gl = =0+ [ ) {00

ij=1
Hence

W

n . 62
lgnlls < lgolls+ ) D CRlla"s /(r)d(5—
iOXj

i,j=1|al+BI<s

lo-

By using |[w,]| ; < 1, we have

clal+
2
0“Wi

@ glij
167 7,08 Sndn

lal+(Bl<s,lal<[5]+]1

Mo < Cliwill+2-

8wy,
<
grar o= € wzquc'ﬁ(
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On the other hand, by interpolation and [[wy[l 415 < 1,

ij 62Wm
198/ (e (5—")lo
lel+BI<s, lal>[4]+1 XiOXj
0 n i %w,
— a—[5]-19[5]+1 giJ m
= DL e S el

lal+(Bl<s,lal>[5]1+1

<c > IS Tl 19:0 wallogs-131-1

|l +(BI<s,lal>[51+1
o
1058 )l tp1-121-110:0 il |

ot ki
<C Z [||Wm|||a|+w—[g]+1 + ||t S;{j(l‘m)|||a|+w—[g]—1]

lal+|Bl<s,lal>[5]1+1

n
<Clwlls-gz101 + € DI Waifls

i,j=1
where
9
(Win)ij(x) = Py, (£22) + €7 (Wir )y, (5.
Therefore
. 8w
SU m “ s
IS (xm) i 6xj||A
< Clbwllsen + Clwally—gz101 + € D IWa)ifls
i,j=1
< Clbwllsea + € D IWails
i,j=1
Thus
lgmlls = IGWIls
L
< IGwo)lls + f =[G @wm)lllsdt < ligolls + Clhwinllsso + Cll6* unlly—2-
0
Remembering
80050, [Un(¥) ly—ezx] = 0 (W,n)ij(x) = 8*0,[Pij(62%) + &7 (W) (0],
we have

n
lgnlls < Igolls + C&* > IPi(e lls1 + Cliwnllsa < CM(S) + winllss2),

ij=1

this completes the proof of (6.5).
We prove now (6.6). By using (6.2) and (6.4), we have

4
||Wm+l ||s+4 < ||Wm||s+4 + ||Smpm||_s+4 < ||Wm||s+4 + Cs,um”pm”_s

17
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The a priori estimate (4.9) and Sobolev imbedding theorem yield

llomlls < Cllgmlls + Z I(Widlls+2llomllz=)

ij=1

< Cllignlls + D NWipllssallomliig 1)

ij=1

6 < Cllignlls + D IWipllssallgmiz o)

i,j=1

< C(M() + Iwmllssa + CCY " IPE llssa + Iwllsse)

i,j=1
n
X (MAZT+ 1) + Iwallige3))
< C (N(S) + ||Wm||s+4) .
Thus we get
(6.8) Wi llsea < IWallssa + Coimllomlls < Cin (N () + IWinllssa),

then by using wo = 0 and y,, = 0", the iteration of (6.8) gives

m+1 _1

Ws1llssa < C7(m + Do 5T N(s),

if we choose C; > 1, C;, = 2C, and 8 = %, then

Wastllsras < (CO™ L NCs).
This completes the proof of (6.6). O

Lemma 6.2. Suppose |wil| <1forl=0,1,...,m Then for any given s* > s > 1,

Clal
there exists o > 1,7y > 1 and a > 0 such that

(6.9) llgm+illo + llgm+illre < g, % N (5™).

Proof. By Taylor formula with remainder and (6.4), we consider the quadratic error of
G(Win+1)

—8m+1 = G(Wm+1) = G(Wm + Smpm)

1 2
= G(Wn) + Lo (wn)S b + f (1—t)%[c<wm+rsmpm)1dt
0

= [G(Wm) + L(Wm)pm] + L(Wm)(Sm - I)pm - GmASmpm

1 62
+ j()‘ (1 - t)ﬁ[G(Wm + tSmpm)]dt

1 2
0
= L(Wm)(Sm - I)pm - QmASum + f (1 - t)ﬁ[G(Wm + tSmpm)]dt
0

1
= (A)+ (B + f (1— 0(C)dt.
0
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For the last terms, we have

62
(C) = ﬁ [G(Wm + S mpm)]

n 62
= D 5 O+ 10 )S wou)if (S o)y

Noticing ar, 6k (r) is a polynomial of order k — 2, we have, by Sobolev imbedding theo-
rem, a priori estlmate (4.9), (6.5) and (6.2),

n
IS momlliz143 < Chtpllomllizier < Crpligmllizier < Cﬂi(M([E] + 1) + [Walliz143) < Ctpys

and
”—(Wm + tSmpm)”L"“ < ”D Wi + tD um”
6)’,]6 pl
< D wlls + 11D?S mpmll= 17 < 11+ IS momlliza]
< (O 262
< .
Then (6.2) yields

”(C)HO_”;1”3 o (Wm+tSmpm)”L"“||(Smpm)lj”L"°”(Smpm)pIHO

k=2 2(k-2 k=2 2(=2)+[51+5 2
<C* 8 PNS momlliziallS momllz < C 2 2 llomlly

k=2 2(k=2)+[5]+5
<C""tm 2 Igmllp-

By (6.3), (6.7) and (6.6), we have

Ao = 1L~ Dpullo < CI(Sm — Dpallz
< CCoutty llpulls

< C/*/Jm(b Z)Cm+]f18 N(S )
By (6.2) and the a priori estimate (4.9),

B)llo = 16 AS momllo < CORIS mpmlly < COmlIomllo < COnpillgmllo-

Now by combining the estimates of (A), (B) and (C) , we obtain

2(k=2)+[51+5

(6.10) lgmllo < Clun™ > P CEIANCS") + Ot ligmllo + i lgmll3).

Since 6,, = llgnllz~ by (2.9), we need to prove two estimates in (6.9) together. By same
computation, using Sobolev imbedding, we have

[ 1+1 ) 2(k— 2)+[ 1+5
6.11) ligmeille < Chy T P C™INCS") + llgmllz=plIgmllo + o

By comparing the powers of 1, on both sides of (6.10) and (6.11), we can choose a > 0
and large s* > s such that

llgmll5]-

(6.12) {2<k—2>+2[§]+6+aysza_1

s*=[51-3-B=zay+1.
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Noticing that g+ = 1, we can change (6.10) and (6.11) as

CLtly i gmeillo <C?[p™ PPN + lgmlli=t) * gmllo

ay+2(k-2)+[ 3145 2
+ Hin llgnl]
[4]+1

Cutly gmetllis <Cpai ™ [ 2PV CEINCS) + gl llgmllo
i P, 2],
from which we obtain, by using (6.12) and y,,, > 1,
6.13) { Cu®, lIgmillo < C* [ﬂ,’,,lcg;fl/v(s*) + lgmllz= 125 g mllo +y3,;1*1||gm||g]
i llgmllis < C2 | Cor NG + ligmllem s ligmllo + e~ llgmllF] -

Noticing y > 1, we can choose o = o(s*) > 1 so large that y1,,' = ™" < § and

2 1 el 2 " ml 2f Cs o
(6.14) et = Clo et = ¢ <

o_ﬁym
Inserting such o(s*) into (6.13), we have

{ Crl llgmeillo < IN(s*) + 2C2Ngmlli=r2NIgmllo + $C212IgmlI?
Cu®, Ngmell= < IN(s) + 2C2lIgmlli= 2l gmllo + 3 C212 gl

Set
A1 = max{Cuy 1gme1llo, Cptyyy lgmstllze,

we get

{ Crl, lgmello < FN(s™) +d,
Cr, igmills < FN(s7) + o,

So we obtain,
1
(6.15) i1 < N () + d2.

Since
llgollo = [IG(wo)llo = IG(O)llo = O(e), llgollz> = O(e),

we choose £(07) > 0 small such that N(s*), |lgollz~ and ||gollo small. By (6.13), (6.14) and
llgollo < llgollss < N(s*), we have

1 1 1
di < ZN(s*) + 7 lIgollo = EN(S*)‘
By induction and (6.15), we see that
1
dps1 < EN(S*),
this completes the proof of (6.9). O

Remark 6.3. The estimates in Lemma 6.1 and 6.2, obtained only in the special case f =
f(), are also true for the general case f = f(y,u) or f = f(y,u, Du). Here we only give it



DEGENERATE HESSIAN EQUATIONS 21

as an example the estimate of [|(C)||p in the proof of Lemma 6.2. In fact, from (6.5), and a
priori estimate (4.9), it follows that if [|w,[l{21+3 < 1,

Wi + 1S momll= < MWilles + IS momllzs
<1+ 1S momllizrsr < 1+ Cllowllizan
<1+ Clgalligrer < 1+ COMAZT+ D+ wnlligra) < €.
and similarly, if ||wm||[%]+4 <1,
VWi + 1VS ypmllrs < (IVWillze + IVS mpmlle < C7,
so we have similar estimates
IOl < Cpan™" gl
for the quadratic error of f = f(y,u) or f = f(y,u, Du).

Existence of k-convex solution of Theorem 1.1

Now we employ the Nash-Moser-Hormander iteration to prove the existence of solution
of main theorem with s > 2[%] + 5. We shall prove by induction that, there exists &g > 0
small such that, for any € €]0, o]

(6.16) wnlls <1, VmeNN.

Since wp = 0, we may assume that (6.16) holds for 0 < / < m, which, by Sobolev imbed-
ding theorem, guarantees the assumption of Lemma 6.1 and 6.2. Interpolation inequality
and (6.1) yield, for any 0 < s < s%,

m m m _:( ]_;*
Wmsalls < ) IS 01lls < €5 D lloils < €5 D Nl lledlly ™ -
1=0 1=0 1=0
By (6.6), it follows that, for 0 </ < m,
loily < (€)' N (s
with g = 07,0 > 1,y > 1,8 = -, and by (6.9),
llodllo < Cligillo < C'u; “N(s™),
thus "
RNES %’H(I*%) 5
Wmealls < Cy Y (Cpo)'F 4l N(s").
1=0
So that we can choose s* large enough such that
B~ —a(l-=)=-a<0,
s s
We choose gy = £y(07) > 0 smaller to make N(s*) small enough such that for s > 2[5] + 5,

mells < Cy Y (CLYF ™ N(s™) < 1
=0

This completes the proof of (6.16).
On one hand, by (6.16) there is a subsequence of wy,, still denoted by itself, such that
wm — w in weak topology of H*(Q), s > 2[#] + 5 and w,, — w in C'2**. Hence

gm = —-G(w,) = —=G(w) in  CB*2(Q).
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On the other hand, by using (6.16), Lemma 6.2 can be applied for all m € IN, letting
m — oo in (6.9) and recalling (2.9), we see that G(w) = 0, thus

k=1

1 .
u(y) = 3 E ‘z'iyi2 + P(y) + &7 w(e™2y) e H'(Q)
i=1

is a local solution of the Hessian equation (1.1).

7. STRICT CONVEXITY OF LOCAL SOLUTION

In this section, we will prove that the smooth k-convex local-solution obtained in Sec-
tion 6 is locally strict convex under the hypothesis of Theorem 1.1, that is, by (1.2) we need
to prove that, forO <r <1, y,z€Q, y # z,

n 1 1
(7.1) Z fo fo u;j(x(s, p)dpds(y; — z)(v; — z;) > 0

ij=1
with x(s, 1) = (s + (1 = s)H)y + (s(1 — ) + (1 — 5)(1 — £))z. Recalling from (3.9),

k-1
(Uiji<ijen =T = {Z 616771+ Pij(e”x) + £2wij(x) |,
=1

we separate this matrix into two parts: one is

§Isha) + Piy(e®n) + efwy(x),  1<ij<k-1,

k-1
l",‘j =
1=

1
the principal term of which is Zf;ll 6{ 657’1 and obviously can control the perturbation term
P; j(szx) +Ew; j(x) for small & > 0. The other is
rij = Pij(szx) + S%W,‘j(x), i>kor j>k,
for which, in order to control the perturbation term, our idea is to prove
(7.2) W,‘j()C’,O) = w;j,,(x’,O) =0, k<p<n,
if i > k or j > k. Then the Taylor expansion with respect to x” = (xg, -, Xp,)
n
wij(x) = wi;(x', x7) = wi(x’,0) + Z wijp(x', 0)x, + O(IX" ),
p=k
yields
rij(x) = P& + £20(X"P), ik or j>k

which, together with (3.6), implies the minor matrix (7;;)k<;, j<n 15 strictly diagonally domi-
nant with

rijl < o(D&*x"| + O(l)s§|x”|2, 1<i<k-1,k<j<n,
9 e .
Fiojo(X) = Pjojo(szx) +e2wjj,(x) = agtx’F + Z?Zk#jo [7ijol, k< jo <n.
Choose € > 0 small (¢ < @) enough such that, fork < j < n,

n
4y 12
P = > Il 2 agllyP,

i=k,i#
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Then Cauchy inequality yields

O x’| + 831" PIé; + Z gl PIg

1<i<k-Tk<j<n =

l\.)l'—‘
> ~M>¢-
‘D‘f
)

+
[\

Tl + Zae WGP, VEeR!

4 =1

from which, it follows that (7.1) holds. In fact, setting & = y — z and recalling x” =
x5, 1) = (s + (1 = 9)0)y” + (s(1 — ) + (1 = 5)(1 = 1))z, we have

3 f f 0 COduads(y; - )00~ 2)

i,j=1

k=1
1
2[42”” ail’ + ae“b(t)ZIyz—z, >0

i=1 i=k
with

1 Al
b() = f f ILspe + (1 = )y + [s(1 = ) + (1 = s)(1 = D)1z’ Pduds > 0,
0o Jo

forany 0 < 7 < 1 and y” # 7", this inequality is true because
y y quality

{(s,p) €[0,11%[0,1]; [su+ (1 —=s)]y” +[s(1 —p)+ (1 —s)(1 -0]z" = 0}

lies on a hyperbolic curve in the (s, 1)— plane and then its Lebesgue measure for duds is
zero. So that u is strictly convex on Q.

We prove now (7.2) by the following two lemmas. From the explicit expression of P(y)
in (3.2) together with u(0) = 0 and Vu(0) = 0, we see that w(0) = 0 and Vw(0) = 0.
Moreover, we have

Lemma 7.1. Let u be a solution of equation (2.2) in the form of (3.8) with ||w||cs < 1, then
(7.3) wii(x’,0)=0, i>kor j>k
Proof. By (3.2),
Pij(&*x) lw=o=0 for i# j i>korj>k,
then
rij lermo= £2wii(x',0), i#j, izk or j>k

and

n k-1
Z Z r;,‘(x,70)0'k—2,j(/ll, e i) = O(DE.

ik =1
Pi(e’Xx',0) = 0(1)&® for k<i<n,
thus, fork < j <n,

rii(x,0) = Pi(62xX,0) + 3 w;(x',0) = 8 0(1) + &7 wj;(x’, 0).
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Inserting the above estimates into S(r) = @ + @ + @ in Lemma 3.4 and then multiplying
both sides by e‘%, we obtain

Ok-1(A1, .oy Agmt) Z wji(x',0) = g20(1).
J=k
Letting ¢ — 07, we get
Z Wj_/(-x/s O) =01 (Wkk(-x/v 0)7 Wk+l,k+l(-x/7 0)9 L] Wm’l(-xlv O)) =0.
=k

Using now the identity
205() = [ (D2 = )" A, VA= (A1, Ay) €RT,
i=1

it follows that

20 (rige(x, 0), i1, k+1 (X, 0), . ., Py (X7, 0))

=1L OF = 3 I, 0)F
J=k k

J=

=[80(1) + &7 ) w00 = D [£°0(1) + &2 w;(x, 0)

J=k J=k
=0(1)e'* = Y [0(1)&" + 2w ;(x', ).
=k

Multiplying by £~ on both sides of S(r) = @ + @ + ® in Lemma 3.4, taking x”” = 0 and
letting € — 0, we obtain

n k-1 n n n
W, 0) = ) w0 = YT T wh(x,0)=0
i=k j=1 Jj=k i=k s=k,s#i
and then (7.3) is true. O

Using now (7.3), the Taylor expansion of r;; = P,j(szx) + s%w,j(x) fori>korj>kis
of the following version

n n
9 , | 9
rij(x) = Pi_/(ezx) + &2 Z wijp(x',0)x, + 582 Z Wijpg(X', 0)xpx4 + O(1)e? X",
p=k p.q=k

where [[w]| 1415 < 11s required. Similar to the proof of Lemma 7.1, we can obtain

Z Wiip(x',0) = Z Wipp(x',0) =0, k<p<n.
i=k i=k
And also :

Lemma 7.2. Let u be a solution of equation (2.2) in the form of (3.8), and |Wll 1314 < 1,
then

wijp(x',0)=0, izkor jzk k<p<n.
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8. APPENDIX

In this section, we will estimate the eigenvalues and eigenvectors of the following Hes-
sian matrix

k-1
” )
r = (ripi<ij<n = {Z O SWij(X)]
I=1 1<i,j<n

which is a small perturbation of diagonal matrix (Z]Z:]] 617 6’].7',) . For any function

1<i,j<n
W € C?, we can find out an orthogonal matrix T'(x, &) satisfying

T(x,&)r 'T(x, &) = diag [ (x, &), 1a(x, &), ..., Lu(x, 8)],
Let

T,

T,
T(x,e)=| .|, T(x,&)le=0=1d

T,

with T; = (Ty1,Tp, ..., Tiy) the corresponding unit eigenvectors of A;,i = 1,2,...,n. In
[13], there also exists such an orthogonal matrix 7'(x, €), the estimates of good regularity
for all of its entries can be easily obtained because all of its eigenvalues are different from
each other. Now we can only give the estimates of 7; for 1 <i < k— 1, because in our case
Aj(x, &) (k < j < n) are around zero and there is no distinct gap among them, they are not
necessarily smooth in x and &, so are the corresponding eigenvectors T;(x, &) (k < i < n).
But the following estimates are enough for us.

Proposition 8.1. Suppose that w is smooth and ||W||cz < 1. Then, Ti(x,&), 1 <i<k-1,
is smooth in (x, &) € Q X [0, &y] for some positive 0 < gy < 1, and

k-1 n n n
8.1) D—wl<Ce Y 1wl DIl < Cal (] wy()?
i=1 i=k

i1 i.j=1

k-1 k—1 n n
(8.2) D Tawe) =11+ ) > [Tixe)l < Ce ) 1wy,

i=1 j=1j#i ij=1

>~ o~
—_ =

n n

(8.3) IDT;j(x, &)l < Ce Z Wi ()l

i=

=1 iji=1
with C independent of € and W.

Moreover, if W(x) is periodic in x; (1 <1<k~ 1), then so is each of T;j, while T;; has
the same regularity as D*W and is C*® inefor1 <i<k-1,1<j<n.

Proof. Noting
F(t) = det(r — t1).

Now we denote R(x, €), R;(x, €) and R;;(x, &) as the different functions, which are smooth
in x , € and W, with the properties

(8.4) IR(x, &) + [Ri(x, &)| + [Rij(x, £)| < Ce Z Wi (x)]

ij=1
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and C being independent of x and &. Firstly, using the condition |[W||cz= < 1 and 0 < gy < 1,

we have
k-1

F() = ]_[(Ti — 0" 4 R(x, 8).

i=1
Noticing 11 > 75 > ... > 14— > 0, we take § = m1n]<,<k 2(1 = T‘;' , TT" D>0ifk>2
and¢ = 1ifk=2. Forﬁxedzo with 1 < i sk— 1, we have

l()l

F((1 - 6)r,0)—]_[<n—<1 8)7i))oT, ]_[<r,—<1 OTi)(1 = 6)1,)" ! + Ry(x, )

i=ip+1

and

101

F((1+0)m;) = ]_[(r, ~ (1 +6)7;)67, ]_[ (T = (1+ 8T (1 + )Ty + Ra(x, &),

i=ip+1

By the choice of ¢, we have
T,‘—(1+6)T,‘0>5T[0,1, 1Sl§l0—1

and
Ti— (1 =0T, < =0Tip+1, o+ 1<i<k-1,
therefore, when 0 < £ < d1y_;, we obtain
F((1-9)1,)F((1+0)T;,) <0
and, by virtue of intermediate value theorem, there exists an eigenvalue, denoted by A;,,
such that
(1-01, <A, <A +001,, Fy)=0
which yields
Ay 21— +0)T, > 0181, 1<i<ip—1
and
- <
From 0 = F(41,,)) = H’° i - Ai)(Tiy — Aiy) ]_[, lO+1(Tg — ;)i 5 + R3(x, &), it follows
that

T,'—(l—&)T,'O<—5Tk,1, h+1<i<k-1.

R3(x, &)
19 (i = i) TIS o (7 = i) (g, !

T,‘O—/lio = -

and then
/lio =T+ Ry(x, €).
Now we have proved that there are eigenvalues (A4; )k ! such that
Ai=1i+R(xe), 1<i<k-1.

Let us express all the eigenvalues as (4;)!_,. Then, since ||W]|cs < 1,

k-1
S1(r) =Y T+ R(x,8), S2() = 0a(T1,..., Ti1) + R(x, 8).

i=1
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Since S(7) is invariant under orthogonal transformation, then
k-1

D T+ R(x,8) = 81(r) = 01() = §4i+iai

i=1 i=1 i=k
and

O'Q(T],...,Tk_])+R(x,8) ZSQ(I') = o(A).

from which, using
202() = o () = Y AL
i=1
we see that

1 n
2D = 0arhs . Ti) = 5 ) A+ Rx.6)
i=k

and then
n

Z /11»2 = R(x, &),

i=k

which implies

(8.5) il < Ce2 (Y (), k<i<n.
i,j=1

This completes the proof of (8.1).

Now we pass to prove (8.2). Let T be the eigenvector corresponding to A, then T
satisfies the linear equation r7; — 4171 = 0 and rank(r — ;1) < n— 1. To solve T, we will
use the Gaussian elimination procedure. Noticing 4; = 7; + R(x,e) for 1 <i < k-1, we
can write the matrix r — 4;1 as

R Ri> Ry k-1 Rk R,
Ry Rp+1m-1 Ra k-1 R Ry,
Ri11 Ri-12 Riyj1+7kc1—71 Reig Ri-1,
Ry Ri» Ry i1 Ry — 1 Ry
Rn,l Rn,2 Rn,k—l Rn,k Rn,n —T1.

Since each R;;,2 < j < k—1, is dominated by 7; — 7; and each R;;, k < i < n, is dominated
by 7, then rank(r — 4;I) = n — 1. Taking the (row) elementary operations repeatedly, we
can transform r — 441 and still denote it as

Ry 0 0 0 0
R21 R22 +T,— 171 0 0 0
Ri_11 0 Ri_tj-1 + T — 71 0 0
Rk,l 0 O Rk,k —T1 0
Rn,l 0 0 0 Rn,n —-T1.
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Since rank(r — 41I) = n — 1, we see that Ry; = 0 and the solutions of the equation
rT, — 2, T, = 0 is in the form

T 1
Ry (x,8)

T T1-T2—Rn(x.6)

' Ri 11 (56) .

(8.6) Tie1 | =T | nmaRaaee |» With Ty #0,

T Ri1(x,8)

Lk T1=Ri—1 f-1(x,€)
T Ry1(x,8)

n T1=Ryn(x,8)

and each R;;(x, €) has the property (8.4). Because we need T';(x, €) |.—0= (1,0,...,0), we
can choose suitable Ty; > O such that ||T;|| = 1,then T} = (T, T12, ..., T1,) satisfies (8.2).
The vectors T; (2 < i < k— 1) can be obtained by the same way as 7. Also it follows from
(8.6) that (8.2) and (8.3) hold.

Because each entry of the matrix r = (r;;) is periodic in xi, . .., x;,—; and the elementary
operations above do not change the periodicity, then each 7;(1 < i < k—1) is also periodic.
Also by (8.6), when 1 < i < k- 1, T;; has the same regularity as D*vandisC®ine. O

Remark 8.2. Since A;, kK < i < n, are all around 0, then (8.5) shows that they are not

necessarily smooth in x and &, so are the corresponding eigenvectors 7.
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