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On the Syracuse conjecture over the binary tree

We investigate recurrent behaviors of the 1 2 (3x + 1) action ("Syr") over the binary tree. The original composition of otherwise simple algebraic behaviors (eg: if a = 4b + 1, then Syr(a) = 4(Syr(b))) allows us to identify the existence of a relation merging orbits over alternate pairs of any odd branch of the tree. We prove that it is possible to compress any Syracuse orbits to critical positions in the tree and give new hints as to how to predict those positions. This allows us to establish a novel research program for the resolution of the Collatz conjecture, of which we also introduce original, and simpler conjectures. This article proves that for any even number e, the orbits of V ert(e) := 4e + 1 and S(V ert(e)) := 2(4e + 1) + 1 merge, but also that for any k that is even, S k (V ert(e)) and S k+1 (V ert(e)) can be proven to merge. For any odd number o, S(V ert(o)) and S 2 (V ert(o)) also merge, and so do any S k (V ert(o)) and S k+1 (V ert(o)) for any odd number k. Another significant result is that for any odd number o, either 8o + 1 and 16o + 1 merge or 8o + 1 merges with 16(V ert(o)) + 1 and 16o + 1 merges with 2o -1. The main result of this paper is that for any odd number o, proving that the orbits of 4o + 1 and 2(4o + 1) + 1 merge will also prove the Collatz conjecture. That such orbits could be systematically proven to merge we call the Golden Gate Conjecture and outline some aspects of a research program attacking this conjecture.

Introduction

In this paper we study the 3x + 1 problem, also known as the Collatz problem, the Syracuse conjecture, Kakutani's problem and several other names.

The 3x + 1 problem concerns the iteration of the following function

T (x) = 3x+1 2 , if x ≡ 1(mod2); x 2 , if x ≡ 0(mod2).
The Syracuse conjecture asserts, that for all x ≥ 1 exist a number k ∈ N such that T k (x) = 1. Iterations of the T function are however known to produce complicated -albeit strictly deterministicorbits when recurrently applied to natural numbers. As these orbits are still very poorly understood, the Syracuse conjecture is currently unsolved, and considered a textbook example of wild deterministic chaos, so much so that Paul Erdos famously declared "mathematics may not be ready for such problems". [START_REF] Lagarias | The Ultimate Challenge: The 3x+1 Problem[END_REF] (p.57). A good start to attack Syracuse then, would consist of making the problem -and the tools -ready for further enquiry. In this paper we attempt to identify, predict and compose some of the behaviors of the Syracuse orbits in the binary tree. The interest of this approach is twofold. Firstly, successful predictions could more thoroughly open the problem to artificial intelligence. Secondly, it could expose otherwise unknown algebraic vulnerabilities, as well as a more general strategy to attack problems in discrete mathematics. As we will prove, our attack of the Syracuse problem already yields the significant result that demonstrating that, for any odd integer o, the orbits of 4o + 1 and 2(4o + 1) + 1 merge proves the conjecture.

We begin by representing all numbers in the form of the following tree, in which all numbers x ∈ N are vertices. The lowest level of the tree consists of numbers 1 and 2 with number 0 (not represented here) at level 0. Every level n > 1 of this tree consists of all numbers from 2 n-1 + 1 up to 2 n .

Any vertex a is connected with two vertices 2a and 2a + 1. In the figure we will show the following connections. If a > 1 and a = 2 k the vertex 2a will be connected with 2 2 a. And for any a > 1 the vertex 2a + 1 will be connected with 2 • (2a + 1) and 2 • (2a + 1) + 1.

We will call a number x red if it is odd, and if x is even we will call it blue.

The Figure 1 thus shows the first five levels of the tree, with red numbers marked with one circle and blue numbers with two circles. We now wish to find regular behaviors of the Syracuse orbits of any numbers within this tree.

Decreasing of the rank

Let us consider an action ρ(x) = (x-1) 2 . The rank of odd number x, denoted by rank(x), is defined to be the number of times we will need apply ρ to the element x until we get an even number. The rank is defined as positive non-zero only for odd numbers ; even numbers are of rank zero by definition. A number x = 2 n+1 • t + (2 n -1) has a rank n. (This is a general formula for a n-rank number.)

We call an element y an image of x if y = Syr(x), this action is defined by the following expression

Syr(x) = (3x + 1) 2 = 3 2 (x + 1) -1.
Denote Syr(. . . Syr n (x)) = Syr n (x).

We will call the sequences generated by 3x+1 and /2 the orbit of element x and denote this sequence by Orb(x).

Theorem 1. Let rank(x) = n, where n > 1. Then rank(Syr(x)) = n -1.

Proof. The number x = 2 n+1 • t + (2 n -1) is odd and rank(x) = n. We first find a successor of x Syr

(x) = 1 2 (3x + 1) = 1 2 3 • 2 n+1 • t + (2 n -1) + 1 = 1 2 2 n+1 • 3 • t + 2 n • 3 -3 + 1 = = 1 2 2 n+1 • 3 • t + 2 n • 3 -2 = 2 n • 3 • t + 2 (n-1) • 3 -1.
Further we perform a few algebraic transformations

Syr(x) = 2 n • (3 • t) + 2 (n-1) • (2 + 1) -1 = 2 n • (3 • t) + 2 (n) + 2 (n-1) -1 = 2 n • (3t + 1) + (2 (n-1) -1)
.

By the formula of a n-rank number we find that rank(Syr(x)) = n -1. This finishes the proof.

Further definitions and statements

For the next two definitions let the number x have a rank(x) = 1.

Definition 1. We call a number x vertical blue if 1 4 (x -1) is even. Definition 2. We call a number x vertical red if 1 4 (x -1) is odd. The set of integers is closed under the action (4x + 1) but not closed under the action 1 4 (x -1).

Let V ert + (x) = V ert(x) = 4x + 1 and V ert -(x) = 1 4 (x -1). Note that V ert + (V ert -(x)) = x and V ert -(V ert + (x)) = x.
Definition 3. The orbits of two numbers are said to merge if they have at least one common number. Definition 4. Let x be odd and y = V ert + (x) then x is v-related to y. Proposition 1. Let x and y be v-related. Then the orbits of x and y merge.

Proof. Since x is v-related to y, we have Definition 5. Let a be an odd number of rank 1. The infinite set of numbers {a, S(a), S(S(a)), . . .} is called a red branch of root a. Definition 6. Let x be an odd number. If there is such a number y that Syr(y) = x, then x is called an odd number of type A and a remainder of dividing x by 3 is 2. If there is such a number y that Syr(y) = 2x, then x is called an odd number of type C, and a remainder of dividing x by 3 is 1. If x is divisible by 3 it is not of type A or type C and we call it of type B. Also note that if x is a type B number then 4x+1 is of type C and therefore there is such a y that Syr(y) = 2(V ert + (x)). In any case then, the orbits of x and y merge. Proposition 2. For any odd number x, there are infinitely many Syracuse orbits either leading to it or to Syr(x).

y = V ert + (x) = 4x + 1. Then 1 4 Syr(y) = 1 8 (3(4x + 1) + 1) = = 1 8 (12x + 4) = 1 2 (3x + 1) = Syr(x). Since
Proof. Let x be an odd number. If x is divisible by 3, then it is of type B and there is a number y so that Syr(y) is the double of V ert + (x). If x + 1 is divisible by 3 then it is of type A and there is a number y so that Syr(y) = x. If x + 2 is divisible by 3 then it is of type C and there is a number y so that Syr(y) = 2x.

As for any y so defined there are infinitely many V ert + (y) numbers merging to its orbit, and for any x so defined, also infinitely many positive numbers k defining V ert k (x) with each of them having at least one z of which the orbit will merge with either itself, its double, or the double of its vertical, there are indeed infinitely many orbits leading to the forward orbit of any odd number.

It is therefore possible, for any odd number x, to define a certain Syr -function.

Definition 7. We call a r-related to S(a) if Syr (rank(a)-1) (a) is vertical blue.

Theorem 2. Let a be vertical blue, then Syr(S(a)) is v-related to 1 2 Syr(a). Proof. Let a be vertical blue,

then b = V ert -(a) is even. Hence b = 2k, then a = V ert + (b) = 8k + 1. Then 1 2 Syr(a) = 1 2 1 2 3(8k + 1) + 1 = 1 4 (24k + 4) = 6k + 1, and 
Syr(S(a)) = Syr(2(8k + 1) + 1) = Syr(16k + 3) = 1 2 3(16k + 3) + 1 = 24k + 5.

Since (6k + 1) is odd and V ert + ( 1 2 Syr(a)) = V ert + (6k + 1) = 4(6k + 1) + 1 = 24k + 5, number Syr(S(a)) is v-related to 1 2 Syr(a).

Let us remark that Syr(S(a)) = 24k + 5 is vertical red because V ert -(24k + 5) = 6k + 1 is odd. From the proof we also have that V ert -(Syr(S(a))) = 1 2 Syr(a). Proposition 3. For any number a ∈ N and natural number n ≤ rank(a) we have the following identity S(Syr n (a)) = Syr n (S(a)).

Proof. We will consider only n ≤ rank(a) because for any greater n the Syr n (a) is not defined in a sufficiently monotonous manner (see "Avalanche" later in this article), as Syr rank(a) (a) will be an even number.

We will use a mathematical induction to prove the statement.

Let n = 1 then

S(Syr(a)) = S( 1 2 (3a + 1)) = 2 • 1 2 (3a + 1) + 1 = 3a + 2 = 1 2 (3(2a + 1) + 1) = Syr(S(a)).
Then let us assume that for any number less than k the identity S(Syr k (a)) = Syr k (S(a)) holds. Then we will show that it holds for k + 1 Let a be vertical red, then Syr(S(a)) is vertical blue

S(Syr

Proof. Let a be vertical blue with

V ert + (b) = a then V ert -(Syr(S(a))) = V ert -1 2 3(2a + 1) + 1 = V ert -1 2 6a + 3 + 1 = V ert -(3a + 2) = = 1 4 (3a + 2) -1 = 1 4 (3a + 1) = 1 4 3(4b + 1) + 1 = 1 4 (12b + 4) = 3b + 1.
Then if b is an even number, 3b + 1 has to be odd, and if b was an odd number, 3b + 1 would be even.

Proposition 5. Let a be r-related to S(a). Then a and S(a) merge.

Proof. Let a be r-related to S(a) then Syr (rank(a)-1) (a) is vertical blue by definition and rank Syr (rank(a)-1) (a) = 1.

By Proposition 3

Syr S Syr (rank(a)-1) (a) = Syr Syr rank(a)-1 S(a) = Syr rank(a) (S(a)).

Since Syr (rank(a)-1) (a) is vertical blue, by Theorem 2 number Syr(S(Syr (rank(a)-1) (a))) is v-related to 1 2 Syr(Syr (rank(a)-1) (a)).

Hence by the Proposition 1 numbers Syr rank(a) (S(a)) and 1 2 Syr rank(a) (a) merge. Then we get that a and S(a) merge.

Definition 8. The rank of pair {a, S(a)} is equal to rank(a).

Remark 1. Note that Proposition 3 actually explains the alternative distribution of r-relations along red branches:

(i) let the root a of an red branch be vertical red then for any k that is odd we have S k (a) and S k+1 (a) r-related;

(ii) if for some odd k numbers S k (a) and S k+1 (a) r-related, then the root a of an red branch is vertical red;

(iii) let the root a of an red branch be vertical blue then for any k that is even we have S k (a) and S k+1 (a) r-related;

(iv) if for some even k numbers S k (a) and S k+1 (a) r-related, then the root a of an red branch is vertical blue.

Proof. (i) Let a be the root of an red branch, and vertical red. Then V ert -(a) = 2k + 1 is an red number, then 1 4 (a -1) = 2k + 1 and a = 8k + 5. Then S(a) = 16k + 11 and S 2 (a) = 32k + 1. The pair (S(a), S 2 (a) ) is the first pair of even rank. To check if S(a) is r-related to S 2 (a) we should check if V ert -(Syr rank(S(a))-1 (S(a))) is red or blue. We have that

V ert -(Syr rank(S(a))-1 (S(a))) = V ert -(Syr(16k + 11)) = V ert -(24k + 17) = 6k + 4.
Since 6k + 4 is an even number Syr rank(S(a))-1 (S(a)) is vertical blue and S(a) is r-related to S 2 (a).

Let us then find the rank of pair (S(a) 2t-1 , S 2t (a))

rank( (S 2t-1 (a), S 2t (a)) ) = rank(S 2t-1 (a)) = 2t.
Then we can find that

S 2t-1 (a) = 2 2t-1 a + 2 2t-1 -1 and Syr 2t-1 (S 2t-1 (a)) = 3 2t-1 a + 3 2t-1 -1. Hence V ert -( Syr 2t-1 (S 2t-1 (a)) ) = 1 4 (3 2t-1 a + 3 2t-1 -2) = a = 8k + 5 = 1 4 (3 2t-1 (8k + 5) + 3 2t-1 -2) = = 1 4 (3 2t-1 8k + 5 • 3 2t-1 + 3 2t-1 -2) = 1 4 (3 2t-1 8k + 6 • 3 2t-1 -2) = 1 4 (3 2t-1 • 2 • 4 • k + 2 • 3 • 3 2t-1 -2) = = 3 2t-1 • 2 • k + 1 4 (2(3 • 3 2t-1 -1) = 3 2t-1 • 2 • k + 2 1 4 (3 2t -1) = 3 2t-1 • 2 • k + 1 2 (3 2t -1) = = 3 2t-1 • 2 • k + 1 2 (3 t -1) • (3 t + 1).
Since (3 t -1) and

(3 t + 1) are even, 1 2 • (3 t -1) • (3 t + 1
) is even and the whole expression

V ert -( Syr 2t-1 (S 2t-1 (a)) ) = 3 2t-1 • 2 • k + 1 2 • (3 t -1) • (3 t + 1) is even. Hence Syr 2t-1 (S 2t-1 (a)) is vertical blue then S 2t-1 (a) is r-related to S 2t (a).
(ii) Let k = 2h -1 be an odd number and S k (a) is r-related to S k+1 (a).

Hence

Syr (rank(S k (a))-1) (S k (a)) is vertical blue that is V ert -(Syr (rank(S k (a))-1) (S k (a)
)) ia blue. We already have the next chain of equalities

V ert -(Syr (rank(S k (a))-1) (S k (a))) = V ert -(Syr (rank(S 2h-1 (a))-1) (S 2t-1 (a))) = V ert -( Syr 2h-1 (S 2h-1 (a)) ) = = 1 4 (3 2h-1 (8k + 5) + 3 2h-1 -2). Hence 1 4 (3 2h-1 a + 3 2h-1 -2) is even. Let us transform last expression 3 2h-1 a -3 2h-1 4 + 2 • 3 2h-1 4 - 2 4 = 3 2h-1 • a -1 4 + 2 4 (3 2h-1 -1) = 3 2h-1 • a -1 4 + 1 2 (3 • (3 2h-2 -1) + 2) = = 3 2h-1 • a -1 4 + 3 • (3 h-1 -1)(3 h-1 + 1) 2 + 1.
We know that 3

•(3 h-1 -1)(3 h-1 +1) 2 + 1 is odd. Since 3 2h-1 • a-1 4 + 3•(3 h-1 -1)(3 h-1 +1) 2 + 1 is even we get that 3 2h-1 • a-1
4 is odd. Hence a-1 4 is odd and a is vertical red. The proof of the case (iii) and (iv) can be obtained analogously.

Definition 9. Let a be an odd number. The Glacis of bottom a is an infinite set of odd numbers

{2a + 1, 4a + 1, 8a + 1, . . . , 2 n a + 1, . . .}.
Note that numbers 2 n + 1, where n ∈ N are glacis numbers from the glacis of bottom 1.

Definition 10. For each number 2 n a+1 in a glacis we define its glacis coordinates as the pair (a; n-2), where the first coordinate is the unique glacis bottom and the second coordinate is called the glacis order of the element.

By this definition the glacis coordinates of number 2a + 1 are (a; -1), for number 4a + 1 they are (a; 0) and number 8a + 1 has coordinates (a; 1).

We will call glacis numbers (a; 2k) with an even glacis order Type Vert numbers and the others shall be Type Succ numbers.

We will later explain the logic of this naming.

Main results

We shall now study the behavior of glacis numbers and establish the importance of studying the transformation of glacis under Syracuse.

Lemma 1. Let g1 and g2 be glacis elements of glacis coordinates (x; 1) and (x; 2) respectively, and 3x be either vertical blue or r-related to S(3x). Then g1 and g2 merge.

Proof. Let elements g1 and g2 belong to the glacis of bottom x, then these elements are respectively of the form g1 = 8x + 1 and g2 = 16x + 1.

Let us study their orbits further. Firstly, we consider the elements of Orb(g2). We have that

Syr(g2) = 3 2 (16x + 1 + 1) -1 = 3(8x + 1) -1 = 24x + 2
is an even number, then, the next number in Orb(g2) is

1 2 Syr(g2) = 12x + 1.
The number 1 2 Syr(g2) = 12x + 1 belongs to the glacis of bottom 3x and 3x is odd because x is odd. Then (12x + 1) is vertical red because V ert -(12x + 1) = 1 4 ((12x + 1) -1) = 3x is an odd number. Hence (12x + 1) and 3x are v-related therefore by Proposition 1 they merge. Hence (16x + 1) and 3x merge. Now we consider some consecutive elements of Orb(g1).

1 2 Syr(g1) = 1 2 ( 3 2 (8x + 1 + 1) -1) = 6x + 1.
The number 6x + 1 also belongs to the glacis of bottom 3x. Since 3x is vertical blue or r-related to S(3x), by Remark 1 numbers 3x and (6x + 1) merge. Thus (8x + 1) and 3x merge. Since (16x + 1) and (8x + 1) merge with the same number 3x, these numbers also merge, which finishes the proof.

Definition 11. When Lemma 1 holds for glacis numbers g1 and g2, namely, when Syr(g1) and Syr(g2) belong to a glacis of which the bottom is either vertical blue or r-related to its successor, we will call these numbers vanilla-related.

Figure 2 shows how vanilla can be represented on the binary tree. Let us also define g 2 = Ban -(g2), g 1 = Ban + (g1), and 3x be vertical red or r-related to 1 2 (3x -1). Then g1 and g 1 merge, and so do g2 and g 2 Proof. Let us find how numbers g1, g 1, g2, g 2 depend from the glacis bottom x. We already have g1 = 8x + 1, g2 = 16x + 1. Also g 1 = 8 • (8x + 1) + 9 = 16 (4x + 1) + 1 = 16 • V ert(x) + 1 and has glacis coordinates (V ert + (x); 2). And

g 2 = 1 8 (16x + 1 -9) = 2x -1. Since 1 2 Syr(g2) = 1 2 ( 1 2 (3(16x + 1) + 1)) = 4 • 3x + 1 = V ert(3x)
, it follows that g2 and V ert(3x) merge. Since by Proposition 1 numbers V ert(3x) and 3x merge, we have that g2 and 3x merge. We have 1 2 Syr(g

2) = 1 2 ( 1 2 (3(2x -1) + 1)) = 1 2 (3x -1) from this g 2 and 1 2 (3x -1) merge. Since 1 2 Syr(g1) = 1 2 ( 1 2 (3(8x + 1) + 1)) = 2 • 3x + 1 = S(3x)
we have that g1 and S(3x) merge. The equality 1 2 Syr(g

1) = 1 2 ( 1 2 (3(64x + 17) + 1)) = 1 4 (192x + 52) = 48x + 13 = 4 • (2 • (2 • 3x + 1) + 1) + 1 = V ert(S 2 (3x)) implies that g 1 and S 2 (3x) merge. If 3x is vertical red then V ert -(3x) exists and 1 2 Syr(g 2) = 2 • 1 4 (3x -1) = 2V ert -(3x). Hence 1 4 Syr(g 2) = V ert -(3x) and V ert + (V ert -(3x)) = 3x
then numbers g 2 and 3x merge. Since 1 2 Syr(g2) = V ert(3x) numbers g2 and 3x merge and we have that g2 and g 2 merge.

Let 3x be vertical red then by Remark 1 number S(3x) is r-related to S 2 (3x). Then S(3x) and S 2 (3x) merge. Hence g 1 and g1 merge.

Let 3x be r-related to 1 2 (3x -1) then by Proposition 5 numbers 3x and 1 2 (3x -1) merge. Hence g2 and g 2 merge. Since by the Remark 1 S(3x) and S 2 (3x) merge it follows that g 1 and g1 merge Definition 12. If Lemma 2 holds for glacis numbers g 1, g1 and g 2 and g2 we will say that g 1, g1 are banana-related and that so are g 2 and g2

Figure 3 shows how banana can be represented on the binary tree. The algebraic phenomenon behind the Banana and Vanilla relations is the following: for any two consecutive first glacis numbers g1 and g2 where g1 is of order 1 and g2 of order 2, and the glacis is of bottom a 1 2 Syr(g2) = V ert(3a),

1 2 Syr(g1) = Succ(3a).
Then only two cases are possible: either 3a is r-related to S(3a) or it is not. If 3a is r-related to S(3a) then it means g2 and g1 merge. If 3a is not r-related to S(3a) it means S(3a) is r-related to S 2 (3a) and that either 3a is vertical red or is r-related to S -(3a) = 1 2 (3a -1). Now 3a is necessarily a type B number, therefore V ert -(3a), if it exists, is a type A number, so 3a -1 = 4 • V ert -(3a) has a number y such that Syr(y) = 3a -1 this number y is the number we have called g 2.

When 3a is r-related to 1 2 (3a -1), this latter number is of type C, therefore there exists a number y such that 1 2 Syr(y) = 3a -1 which is number g 2 again. Since S 2 (3x) is r-related to S(3x) and 3x is of type B, S 2 (3x) is of type C, therefore there is a number z such that Syr(z) = 2 • S 2 (3x) and this number is the one we have called g 1.

Therefore we have the following :

Theorem 3. (Banana-Split Theorem) For numbers g2 with glacis coordinates (x; 2) and g1 with glacis coordinates (x; 1), only one of the two following statements holds: (i) g2 and g1 merge;

(ii) g2 and g 2 = Ban -(g2) = 1 8 (g2 -9) merge and g1 and g 1 = Ban + (g1) = 8 • g1 + 9 merge.

For the record, the author, having to find a name for the banana-relation on his handwritten notes, and being used to noting them as three black lines from one number to the other in the binary tree, with the three lines being curved, found it evoked a banana, hence the name.

Any Syracuse orbit is a correspondence mapping red branches to glacis and vice versa. By correspondence we mean that any Syracuse orbit is a sequence of odd numbers of which the rank is either greater than one, and they are therefore red branch numbers, or equal to one, in which case they are red branch roots and therefore glacis numbers.

Since any odd number of rank n greater than one will be reduced to an odd number of rank 1 in a finite number of Syr action, and that any odd number of rank 1 is in a glacis, any element of a red branch will finitely orbit to a glacis.

Glacis numbers, in turn, all finitely orbit to a red branch (get to a red branch in a finite number of steps), with only two possible patterns (ie. cases): either they are of T ypeV ert and their glacis reduction to order 0 under a finite amount of 1 2 Syr actions will be the V ert + of a power of three of the bottom of their initial glacis.

Or they are T ypeSucc and their glacis reduction to order -1 under a finite amount of 1 2 Syr actions will be the Successor of a power of three of the bottom of their initial glacis.

Therefore, an important observation is that the forward orbit of any odd number (i) If it is a red branch number of rank above 1, can only occupy red branches of type A until it reaches a glacis.

(ii) If it is a glacis number of order above 0, Can only occupy glacis of type B bottom (let us call it b) and therefore of type C glacis numbers until it reaches a red branch in either a typeB number

(3 k • b) or a type C number S(3 k • b)).
Definition 13. A bud is any pair (a; S(a)), where a is vertical red.

Definition 14. Let a be a number for which V ert -(a) is not an integer. If a is even, the cob of base a is the infinite set of buds {(V ert + (a); S(V ert + (a)), (V ert +2 (a); S(V ert +2 a)), . . .}.

If a is odd, the cob of base a is the infinite set of buds {(a; S(a)), (V ert + (a); S(V ert + (a)), (V ert +2 (a); S(V ert +2 a)), . . .}

and it has the base a.

Since any number, either odd or even, has a V ert + number, there are indeed two kinds of cobs: those of blue base (blue cob), and those of red base (red cob).

Definition 15. Let a be a vertical red number. The verticality of number a are the coordinates (b, m) such that b is the smallest number and m the highest number satisfying the equation a = V ert m (b).

Definition 16. The verticality of a bud (V ert +n (a); S(V ert +n a)) is equal to the verticality of its smallest element V ert +n (a). Proposition 7. Let (a, S(a)) be a bud, and of verticality (b, m). (Nota Bene: that (a, S(a)) be defined as a bud implies that if b is even, m is greater than 1) Then if b is even, Syr(S(a)) will have the glacis coordinates ( 12 Syr(V ert(b)); 2(m -1)) and will therefore be of type V ert. If b is odd, Syr(S(a)) will have the glacis coordinates ( 12 Syr(b); 2m -1) and will therefore be of type Succ. Therefore note that the image of any cob of base b under one Syr action is either, if the cob is of an even base, all the typeV ert glacis numbers of the glacis of bottom Also note that in the same way that for x a number of rank n > 0 Syr n (a) may be calculated as

(x + 1) • ( 3 2 ) n -1.
For a glacis number of order 2k + 1 or 2k T yr k+1 (a) may be calculated as (a -1) • ( 3 4 ) k+1 + 1. Proof. This is a re-stating of propositions that were already proven in the Banana-Split Theorem Also, the latter two propositions implies that Proposition 9. Let S(a) be the largest bud number of bud (a, S(a)), with vertical coordinates (b, m).

Then if b is odd T yr m (Syr(S(a))) = S(Syr(b) • 3 m ), if b is even then T yr m (Syr(S(a))) = V ert(Syr(b) • 3 m ).
Proof. This is also a re-stating of propositions that we proved earlier.

Therefore, if we consider any red branch, and take a number a of this branch, with rank n > 1 that is r-related to 1 2 (a -1) we know that Syr n (a) will be vertical red of a certain verticality, and therefore Syr n (a) and S(Syr n (a)) will be forming a bud. If we could predict exactly the verticality (b, m) of the pair (Syr Meaning for any red branch number, we could predict the next red branch its orbit will intersect, namely the next time it will have a rank above 1, after it has been reduced to rank 1 for the first time by a finite number of Syr actions.

In a further work, we shall outline a method to achieve such a prediction.

Definition 17. Let (a, S(a)) be a bud. Under one Syr, a is transformed into a power of 4 of the bottom of the glacis of which Syr(S(a)) will be an element. This critical separation of two adjacent red branch numbers of the binary tree into a non-adjacent pair composed of a glacis bottom and a glacis number we call an avalanche.

The avalanche phenomenons accounts for a decisive part of the chaotic behavior of Syracuse orbits. In fact, the only two sources of the wild behavior of all Syracuse orbits are Definition 18. The consequence of the Syr n on the vertical coordinates of buds, namely, for a bud (a, S(a)) of vertical coordinates (b, m) what will be the vertical coordinates of (Syr n (S n (a)), Syr n (S n+1 (a)))?

We call this problem the B2G problem, standing for "Branch to Glacis". Definition 19. The consequence of the 3x action on the red branch coordinates of a number a, namely, given a number a that has a certain rank and of which the root of its branch has certain vertical coordinates, what will be the vertical coordinates and the rank of 3 n a? We call this problem the G2B problem, standing for "Glacis to Branch".

The next conjectures, which are in fact equivalent, would be helpful in searching for the solution of the Syracuse Problem.

Conjecture 1. (Golden Gate Conjecture) Any bud is solvable, namely for any odd number a, the orbits of V ert(a) and S(V ert(a)), either backward or forward, can be proven to have at least one common number.

Conjecture 2. (Golden Avalanche Conjecture) Any glacis number can be proven to merge with its glacis bottom.

Proposition 10. Proving the Golden Gate Conjecture proves the Collatz Conjecture Proof. Along any red branch, we know that if a is not r-related to S(a) it means that Syr rank(a)-1 (a) is vertical red and Syr rank(a)-1 (S(a)) = S(Syr rank(a)-1 (a)). Suppose we had a demonstration that for any odd number b, V ert(b) and S(V ert(b)) can be proven to merge, it would imply that a and S(a) will merge as well. Therefore, such a demonstration would mean that, besides the r-relation which we have exposed in this paper, there is a -evidently much more complex -w-relation between any two r-related pairs along any red branch. This in turn would demonstrate that all the elements of the binary tree will merge.

For the record, the author of this article established the Golden Gate conjecture at the Lange Special Collection Reading Room of the University of California, San Francisco, with a view of the Golden Gate Bridge, a name altogether fitting for the definition of a "bridge" connecting two "red numbers" as they were colored in his personal notes. Obviously, proving the Golden Gate Conjecture will be no trivial work, but we may already make a few simple observations: Proposition 11. The solving of some buds implies the solving of some other buds Proof. Suppose bud (13, 27) is solved. Number 13 belong to the orbit of number 45, and number 91 belong to the orbit of number 27. Indeed ) is a bud. Proposition 12. It is possible for a bud to solve itself by having each two orbits of its elements cross an composition of r-relation demonstrating they merge, and this without having to bruteforce compute the orbits of the two elements until they reach number 1.

Proof. Let us consider the bud (157, 315). and its forward orbit. Syr(315) = 473 and Syr(157) = 236 = 4 • 59. Then Syr(59) = 89 and 1 2 Syr(473) = 355 = S(177) and 177 is vertical blue therefore 355 and 177 are r-related. Numbers 89 and 177 are two consecutive glacis numbers with coordinates (11, 1) and (11, 2) respectively. If 3 • 11 = 33 was r-related to S(33) = 67, then 89 and 177 would be proven to merge by a vanilla relation. It so happens that 33 is vertical blue, and is therefore r-related to 67, implying a vanilla-relation between 89 and 177, because 1 2 Syr(89) = 67 and 1 2 Syr(177) = 133 = V ert(33) Therefore 157 and 315 are proven to merge.

From a purely epistemological perspective, the chaotician that is experienced in theoretical biology may not fail to notice a certain intellectual similarity between the way bud (157, 315) is solved and that in which new covalent bonds are made between different atoms by the active sites of enzymes in biochemistry. With bud (157, 315) we have two unrelated "atoms" so to speak, and their manipulation in a few critical steps, similar to that between the few active sites of enzymes, "catalyzes" a relation, thus "bonding" them.

Conclusion

It seems possible to "make mathematics ready" to expose critical vulnerabilities in the Syracuse problem. In this paper, we have already proven that the simple algebraic relation Syr(4a + 1) = 4(Syr(a)) produces non-trivial emerging behaviors in the Binary Tree. Firstly, it establishes the existence of a relation merging the orbits of alternate pairs of odd numbers along any odd branches of the tree. The existence of this relation implies that whoever can prove that for any odd number a, the orbits of 4a + 1 and S(4a + 1) merge solves Syracuse and that this be feasible we have called the Golden Gate conjecture. Secondly, we have demonstrated that a special, inevitable relation also merging their orbits exists between precisely defined pairs of odd numbers of rank 1, and the proof of this relation we have called the Banana-Split Theorem. Since any odd number of rank greater than 1 will be finitely transformed into an odd number of rank 1 under the Syr action, this result has some significance as it will manifest in the orbit of absolutely any odd number. We have also remarked that the forward orbit of any odd number of rank above 1 may only occupy red branches of type A, and that the forward orbit of any glacis number of order above 0 may only intersect a red branch number of either type B or C, and fly only through glacis of type B bottom.

Moreover, as whoever can successfully attack buds will successfully crack Syracuse, we may now outline a research program to expose vulnerabilities -whether decisive or not -in the buds of the Binary Tree; let us call it the "GoldenP rogram", and split it in two scientific tasks that may be endeavored in parallel of each other, one regarding automatic theorem proving and deep learning, for example, in the vein of [START_REF] Bowling | Heads-up limit hold'em poker is solved[END_REF], and the other regarding a more analytic approach. Let us call the first program that of the "GoldenAutomaton", and the second one, the "GoldenF ormula".

The first approach would consist of coding any family of "Golden Automata", able to solve any buds, namely, to demonstrate that for any two numbers forming a bud in the Binary Tree, their orbit can be proven to merge. Such automata could be assembled by mobilizing the current techniques of artificial evolution and deep learning and -which is an innovation per se -considering the Binary Tree as a self-calculating, infinite dataset.

The second approach may be defined more precisely, and will consist of solving and composing what we have called, in this paper, the B2G and G2B problems. Each of the solutions to these problems will imply the existence of a precise formula mapping branches to glacis, and glacis to branches respectively, the composition of which will provide us with a completely new understanding of the Syracuse orbits.

We shall contribute to the advancement of these two programs in a next paper.

Acknowledgments

The Finally, the author fully acknowledges the remarkably thorough work of a reviewer under the alias of Krystal Désirée Okanda for improvement, correction and cleaner demonstration especially that of theorem 1. The author unambiguously acknowledges that her contribution in sharpness and clarity is so good that, in his opinion, Krystal D. Okanda may be acknowledged as an official contributor of this

Figure 1 .

 1 Figure 1. Binary tree

( 1 4

 1 Syr(y)) ∈ Orb(y) and 1 4 Syr(y) = Syr(x) the orbits of x and y merge. Denote S(a) = 2 • a + 1 and S(. . . S n (a)) = S n (a) = 2 n a + 2 n -1, we call S(a) a successor of a.

  k+1 

  (a)) = S(Syr k (Syr(a))) = Syr k (S(Syr(a))) = Syr k (Syr(S(a))) = Syr k+1 (S(a)). Hence S(Syr n (a)) = Syr n (S(a)) holds for any number a ∈ N and natural number n ≤ rank(a).

Proposition 4 .

 4 Let a be vertical blue, then Syr(S(a)) is vertical red.

1 vanillaFigure 2 .Lemma 2 .

 122 Figure 2. Vanilla Let us define an action Ban + (a) = 8a + 9 and Ban -(a) = 1 8 (a -9). By default, just as we use the notation V ert(a) for the exact V ert + (a) we will also use Ban(a) for Ban + (a). Lemma 2. Let g2 have glacis coordinates (x; 2), g1 have glacis coordinates (x; 1)Let us also define g 2 = Ban -(g2), g 1 = Ban + (g1), and 3x be vertical red or r-related to 1 2 (3x -1). Then g1 and g 1 merge, and so do g2 and g 2

  Figure 3. Banana

1 2

 1 Syr(V ert(b)), or if the cob is of odd base, all the typeSucc numbers of the glacis of bottom Syr(b) Proof. If b is odd, then we know that Syr(V ert m (b)) = 4 m Syr(b) and Syr(S(a)) = S(4 m Syr(b)) = 2(4 m Syr(b)+1) By definition of the glacis coordinates, Syr(S(a)) is therefore of coordinates ( 1 2 Syr(b); 2m -1). If b is even, for any m greater than 1, Syr(V ert m (b)) = 4 m-Syr(V ert(b)) And Syr(S(a)) = S(4 m-Syr(V ert(b))) = 2(4 m-1 Syr(V ert(b)) + 1) By definition of the glacis coordinates Syr(S(a)) is therefore of coordinates ( 1 2 Syr(V ert(b)); 2m -1) Proposition 8. Let a be a glacis number of coordinates (b, 2k + 1) where k is greater or equal to 0 Then defining T yr(a) := 1 2 Syr(a) T yr k+1 (a) = S(3 k+1 Syr(b)) if a is a glacis number of coordinates (b, 2k) then T yr k+1 (a) = V ert(3 k+1 Syr(b))

  n (a), S(Syr n (a))), we could know that either T yr m (Syr(S(Syr n (a)))) = S(Syr(b) • 3 m ) or T yr m (Syr(S(Syr n (a)))) = V ert(Syr(b) • 3 m )

  author acknowledges this work could not have been accomplished without the decisive support of the late Stanford University Professors Alan Tower Waterman Junior and Solomon Feferman who respectively hosted and invited him to conduct preliminary research in concept theory and metamathematics as a Visiting Scholar of Stanford University in 2006-2007.This work could not have existed without the latter invitation, and also without the Summer School of the Kozmetsky Global Collaboratory of Stanford University of 2008. The author wishes to thank Prof. Yakov Eliashberg who was head of the Department of Mathematics at the time of his first invitation, and Dr. Syed Shariq -most especiallyco-Chair of the Kozmetsky Global Collaboratory. The author also wishes to thank Prof. Paul Bourgine, founding President of the Unesco-Unitwin Complex Systems Digital Campus, and Prof. Pierre Collet, co-chair. The institutional merit of this research is equally shared by the CS-DC, Stanford University and 42 Silicon Valley.

work and even a second author, a title to which nobody else may pretend.

In Memoriam

Solomon Feferman Alan Tower Waterman Jr.

Proposition 6. Let the glacis coordinates of x be (a; n), where n > 0. Then the glacis coordinates of 1 2 Syr(x) are (3a; n -2). Proof. By the statement of the proposition x = 2 n+2 a + 1. Then 1 2 (Syr(x)) = 1 4 (3(2 n+2 a + 1) + 1) = = 2 n • (3a) + 1. Hence glacis the coordinates of 1 2 Syr(x) are (3a; n -2).

and number y is of glacis order m = 2 in the same glacis then 1 2 Syr(x) = S(V ert -( 1 2 Syr(y))) This explains why we have called glacis numbers with an odd order "type Vert" and the ones with an even order "type Succ".

We may now generalize the formula to calculate the progression of glacis numbers. Let a be any odd number. All type Succ numbers of its glacis are written

and all type Vert numbers are written

Any glacis number g of order 2k or 2k-1 may be reduced to rank 0 or -1 by the following transformation

then on we have (i) for type Succ numbers :

(ii) for type Vert numbers :

As these equalities will fit any number a, we have indeed that any glacis number of order 2k will be finitely mapped to 4a • 3 k + 1 = V ert(a • 3 k ) and that any glacis number of order 2k -1 will be mapped to 2a • 3 k + 1 = S(a • 3 k ).