K-Nearest Neighbours Estimator in a HMM-Based System
Résumé
For many years, the K-Nearest Neighbours method (K-NN) has been known as one of the best probability density function (pdf) estimator [2]. The development of fast K-NN algorithms allows to reconsider its use in applications with large sample sets. In this outlook, the K-NN decision principle has been assessed on a frame by frame phonetic identification on the TIMIT database. Thereafter, a method to integrate the K-NN pdf estimator in a HMM-based system is proposed and tested on an acoustic-phonetic decoding task.
Origine | Fichiers produits par l'(les) auteur(s) |
---|