
HAL Id: hal-01574475
https://hal.science/hal-01574475

Submitted on 14 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Diagnosability analysis of patterns on bounded labeled
prioritized Petri nets

Houssam Eddine Gougam, Yannick Pencolé, Audine Subias

To cite this version:
Houssam Eddine Gougam, Yannick Pencolé, Audine Subias. Diagnosability analysis of patterns on
bounded labeled prioritized Petri nets. Discrete Event Dynamic Systems, 2017, 27 (1), pp.143-180.
�10.1007/s10626-016-0234-5�. �hal-01574475�

https://hal.science/hal-01574475
https://hal.archives-ouvertes.fr

Diagnosability analysis of patterns on bounded
labeled prioritized Petri nets

Houssam-Eddine Gougam, Yannick Pencolé, Audine Subias
LAAS-CNRS, Université de Toulouse, CNRS,INSA, Toulouse, France.

e-mail: (hegougam@laas.fr, ypencole@laas.fr, subias@laas.fr)

March 2017

Abstract
Checking the diagnosability of a discrete event system aims at determining

whether a fault can always be identified with certainty after the observation of a
bounded number of events. This paper investigates the problem of pattern diagnos-
ability of systems modeled as bounded labeled prioritized Petri nets that extends
the diagnosability problem on single fault events to more complex behaviors. An
effective method to automatically analyze the diagnosability of a pattern is pro-
posed. It relies on a specific Petri net product that turns the pattern diagnosability
problem into a model-checking problem.
Keywords: Fault diagnosis, Diagnosability, Pattern, Petri nets.

1 Introduction
Fault diagnosis of Discrete Event Systems (DES) is a generic problem that is driven by
the needs of many different application domains such as manufacturing, transportation,
communication networks to name a few of them (Zaytoon and Lafortune (2013)). Fault
diagnosis aims at detecting, isolating and identifying the underlying physical phenom-
ena (sensor faults, actuator faults, execution faults,...) that cause the system’s failure,
relying on a model of the system (faulty or not) and a set of observations of the system.
Every fault diagnosis problem is associated with a fault diagnosability analysis that
consists in determining whether the available sources of observations of the system
are sufficient to always be able to assert with certainty which faults have effectively
occurred with a bounded number of observations.

Sampath et al (1995) formally define the Fault Diagnosis problem and the diagnos-
ability analysis of DES based on the classical automaton formalism. From this early
approach several contributions were proposed exploring different modeling formalisms
among them, communicating automata (Rozé and Cordier (2002), Pencolé and Cordier
(2005), Lamperti and Zanella (2006)) or Petri nets (Benveniste et al (2003), Genc and
Lafortune (2007), Lefebvre and Delherm (2007), Basile et al (2012), Cabasino et al
(2014)) leading to various diagnosis and diagnosability methods. The intrinsically dis-
tributed nature of Petri Nets and their analytic capabilities make this tool powerful to

1

address diagnosis and diagnosability problems in different contexts (distributed, time
contexts, probabilistic, ...) (Lai et al (2008)).

Diagnosability analysis was originally described based on a system modeled with
an explicit set of fault events (see Sampath et al (1995)). In this paper, we address a
more generic problem, called pattern diagnosability analysis. Patterns are a way to
extend the notion of fault events by introducing more complex behaviors. Indeed, a
system might be failing due to a specific sequence, i.e. a specific ordering of events
occurring in the system. Any event of the sequence, independently from any other
event, might not be a fault event, but the occurrence ordering of them is the cause of
the failure. Patterns can model faulty behaviors but also any normal behaviors of inter-
est (Jéron et al (2006)) or system’s specifications (Jiang and Kumar (2004)). Patterns
thus allow to tackle a larger spectrum of diagnosis problems: simple faulty event, mul-
tiple faults, fault repetitions....and more generally any behavior of interest (faulty or
not). Another advantage of using patterns is to emphasize on the separation between
the behavioral model of the system and the objectives of the diagnosis tasks defined
as patterns (Zanella and Lamperti (2004)), also reinforcing the pattern reusability to
address other diagnosis problems on other systems.

This paper proposes a formal and effective method to check pattern diagnosability
in a system. We first propose a modeling framework where both patterns and systems
are represented in a similar manner: the L-type Labeled Prioritized Petri nets (LLPPN).
This formalism extends labeled Petri nets with transition priorities that can manage
transition conflicts in the system models. Thanks to this formalism, the patterns are
modeled in a concise way that is independent from the system’s behavior. We then
formally define the pattern diagnosability problem within this framework and propose
an automated method to solve it. To do so, we define a specific operator on Petri nets,
called the system-pattern product, that characterizes how a given pattern is matched
by the system with the help of Petri net priorities. Finally, pattern diagnosability of
LLPPN is translated into a model-checking problem that is efficiently solved by the
Petri analyzer TINA (Berthomieu et al (2007)).

The paper is organized as follows. Section 2 presents a discussion on related work.
Then Section 3 introduces the LLPPN formalism and presents how patterns and sys-
tems are modeled. Section 4 addresses the definition of the pattern diagnosability prob-
lem and Section 5 describes the formal method to solve it. Implementation aspects
based on model checking techniques are given in Section 6. Experimental results on
two case studies are presented in Section 7. Finally, we conclude in Section 8 and give
some perspectives.

2 Related work
The problem of fault diagnosis in DESs was introduced a few decades ago in Lin
(1994), Sampath et al (1995). A recent survey about this problem can be found in
Zaytoon and Lafortune (2013). Diagnosability is the property that asserts whether a
diagnoser can conclude with certainty or not depending on the observability of the un-
derlying system. This property was initially introduced for single faults. The initial
works on fault diagnosis and diagnosability rely on the automaton formalism. In Sam-

2

path et al (1995), diagnosability is checked by detecting fault-indeterminate cycles in a
global diagnoser, the main problem of this approach is that the algorithm is exponential
in the number of states of the global behavioral model. In Jiang et al (2001) and inde-
pendently in Yoo and Lafortune (2002), the authors analyze the diagnosability without
the use of the diagnoser, directly based on the behavioral model. The idea consists in
determining whether there exist at least two infinite behaviors in the system, one faulty
and one non-faulty, that have the same observable projection. The existence of such
a couple proves that the system is not diagnosable, in Jiang et al (2001), the detection
of such behaviors is based on the twin plant construction and in Yoo and Lafortune
(2002) it is based on the construction of verifiers. Both algorithms are polynomial in
the number of states in the behavioral model. Such a couple of behaviors is also called
a critical pair in Cimatti et al (2003): in this work a more restrictive diagnosability
property is defined as a temporal logic property of the twin plant that can be solved by
a symbolic model checker. In Schumann and Pencolé (2007), a diagnosability checker
is also proposed but the main difference here is that the authors use the distributed na-
ture of the component-based DES to avoid the construction of a global twin plant by a
successive set of diagnosability tests on a subset of components as initially introduced
in Pencolé (2004). In Grastien (2009), the same diagnosability problem is proposed to
be solved as a model-checking problem.

More recently, the diagnosis problem was also defined on Petri nets (Benveniste
et al (2003), Genc and Lafortune (2007), Lefebvre and Delherm (2007)). The diagnos-
ability problem on Petri nets was introduced in Haar et al (2003). In Giua and Seatzu
(2005), Cabasino et al (2009), a novel approach to check diagnosability is introduced.
It follows the principle of the diagnoser approach of Sampath et al (1995) but builds a
finite state machine (called the basis reachability graph) that only represents the sub-
part of the states space that is sufficient to conclude about the diagnosability question,
which is achieved by using the structure of the Petri net (in contrast to using its behav-
ior). In Cabasino et al (2014), the authors extend the work of Cabasino et al (2009) to
labeled Petri nets where different transitions can share the same label. In Basile et al
(2012), the authors check the k-diagnosability (a fault is k-diagnosable if it is diagnos-
able within a window of k observations after the occurrence of the fault) using integer
linear programming techniques. Finally, in Liu et al (2014b), the way to solve the di-
agnosability problem is to perform the analysis on-the-fly while the machine is being
built.

Presented works, detailed here above, develop some methods for the same problem
that is the diagnosability of single faults in the system. With the emergence of complex
engineered systems and the need of automated analyzes, some authors extend the initial
problem of fault diagnosis in DESs to the pattern diagnosis in DESs. In Jiang and
Kumar (2004), a pattern is defined as a temporal logic specification over a finite-state
automaton. A fault is then defined as a behavior that does not match the pattern (that
is called a specification in Jiang and Kumar (2004)). To check diagnosability, they
propose an ad hoc algorithm that builds the part of interest of the Kripke structure
of the twin plant by synchronizing faulty and non-faulty behaviors. No experimental
results are provided.

In Jéron et al (2006), the patterns are defined as automata. The diagnosability
question is similar to the one investigated in this paper: is it possible to always assert

3

that the system matched a pattern after a finite sequence of observations. As opposed
to our proposal, the representation of the patterns in Jéron et al (2006) is not succinct:
a pattern must explicitly define the set of behaviors that the system should match based
on the whole event set of the system that makes the pattern totally system-dependent.
As in Jiang and Kumar (2004), the authors propose an ad hoc algorithm that builds
the Kripke structure of the twin plant by successive synchronizations. Here also, no
experimental results are provided. In Ye and Dague (2012), the same problem is solved
in a decentralized manner by aggregating pattern recognizers.

Our contribution is to bring the notion of patterns introduced in Jéron et al (2006)
into the Labeled Prioritized Petri net formalism and then extend previous works on
fault class diagnosability on Petri nets to more sophisticated faulty behaviors. With
the help of this formalism, the patterns that we define are succinct which is more in-
tuitive to model, moreover a pattern can then be analyzed on several systems as soon
as the systems generate at least the set of events defined in the pattern. The complex
interactions between the pattern and the system models are fully handled by the system-
pattern product that we propose. We then update the twin plant method of Jiang et al
(2001) by building a new twin plant LLPPN and apply a model-checking method on it
by updating the methods of Cimatti et al (2003) and Grastien (2009).

3 Modeling
This paper addresses the diagnosability analysis of behavioral patterns. A pattern is
said to be diagnosable in a system if its occurrence can always be diagnosed with cer-
tainty based on a finite set of observations. Patterns aim at modeling complex faulty
behaviors or any normal behavior of interest. This section presents the modeling frame-
work of the pattern diagnosability problem.

To have a complete characterization of the diagnosability problem, we use Labeled
Petri nets with transition priorities (Berthomieu et al (2006)). This formalism extends
the classical Labeled Petri net. The use of priorities is a convenient way to manage
transition conflicts in a model and then to enhance the expressiveness of the model. In
particular, transition priorities will be used here to overcome the problem of modeling
the interactions between the system and a pattern. This section first presents the for-
malism, called L-type Labeled Prioritized Petri Nets, that is used throughout this paper
to solve the pattern diagnosability problem. Then the modeling of the system and the
pattern are presented.

3.1 L-type Labeled Prioritized Petri Nets
Definition 1 (LLPPN) An L-type Labeled Prioritized Petri Net (LLPPN for short) is
a 7-uple N = 〈P,T,A,�, `,Σ,Q〉 where:

• P is a finite set of nodes called places;

• T is a finite set of nodes called transitions and P∩T =∅;

• A ⊆ (P× T)∪ (T × P) is a binary relation that models the arcs between the
places and the transitions;

4

• the priority relation �⊆ T 2 is a binary relation that is:

– transitive (t1 � t2∧ t2 � t3 =⇒ t1 � t3);

– not reflexive (∀t ∈ T, t 6� t);

– and not symmetrical (∀t1, t2 ∈ T, t1 � t2 =⇒ t2 6� t1);

• Σ is a finite set of transition labels (events);

• ` : T → Σ is the transition labeling function;

• Q is the set of final markings.

The state of an LLPPN is defined as a marking. A marking M is a function
M : P→ N which maps any place of the net to a number of tokens contained in this
place. A marking M can also be characterized as a multiset MS(M) of places. For any
place p of P such that M(p) = k, there is exactly k copies of p in MS(M). For the sake
of simplicity, as both representations are equivalent, the notation M denotes either the
function or the corresponding multiset depending on the context. A marked LLPPN is
a couple 〈N,M0〉 also denoted as the 8-tuple 〈P,T,A,�, `,Σ,Q,M0〉. The preset pre(n)
of a node n is the set of nodes pre(n) = {n′ ∈ P∪T : (n′,n)∈ A} and the postset post(n)
of a node n is the set of nodes post(n) = {n′ ∈ P∪T : (n,n′) ∈ A}. By construction the
preset and postset of a transition (respectively a place) are two sets of places (respec-
tively two sets of transitions). An LLPPN is a classical Petri Net formalism with some
additional constraints or pieces of information.

Static priorities between transitions are introduced (relation �) to manage transi-
tion conflicts. Priorities add expressiveness to the Petri net and modify the model’s
semantics. Indeed a transition cannot be fired if a transition with higher priority is
firable at the same time: a net transition t is firable from a given marking M if and only
if (∀p ∈ pre(t),M(p) > 0)∧ (∀t ′ ∈ T, t ′ � t =⇒ ∃p′ ∈ pre(t ′),M(p′) = 0). This firing
rule ensures that any firable transition t is firable in the usual sense (when �= ∅) but
it avoids the choice of firing transitions with a lower priority that are also firable in the
usual sense.

Firing a transition t consumes a token from any place in the preset and adds a token
in any place of the postset. From a marking M, the fire of a transition t leads to the
new marking M′ such that M′ = M \ pre(t)∪ post(t), which is denoted M t−→ M′. A
marking M is reachable in a marked LLPPN if it exists a sequence of firable transitions
M0

t1−→M1
t2−→ . . .

tk−→M, also denoted M0
r−→M where r is the sequence t1t2 . . . tk,

the sequence r is called a run of the net. For a given LLPPN N and a given marking M,
the set of reachable markings from M is denoted: R(N,M).

An LLPPN also contains a transition labeling function ` that maps any transition to
a label of a set Σ, this is the way to associate physical events with transitions. Last but
not least, an LLPPN has a set of final markings Q. The set Q is the way to define the
language that is associated with an LLPPN (L-type language of Peterson (1977)).

Let r = t1 . . . tk ∈ T ∗ and let `(r) denote the sequence `(t1) . . . `(tk) ∈ Σ∗, the lan-
guage generated by a given LLPPN is defined as follows:

5

Definition 2 (Language of an LLPPN) The language generated by an LLPPN N =
〈P,T,A,�, `,Σ,Q,M0〉 is:

L (N) = {`(r) : r ∈ T ∗∧M0
r−→M∧M ∈ Q}.

3.2 System model
We propose in this paper to model a system over the set of events Σ as an LLPPN
Θ = 〈P,T,A,�, `,Σ,Q,M0〉. As introduced in Sampath et al (1995), systems generate
prefix-closed regular languages: for any run r of the system, any of its prefix r′ : r = r′r′′

is indeed a run. It follows that such a system can be represented by a bounded LLPPN
(regular language) and with a set of final markings corresponding to the set of reachable
markings Q = R(Θ,M0) (prefix-closed language). The set of events Σ generated by the
system is partitioned into two subsets: Σo is the set of observable events and Σu the set
of unobservable ones.

Definition 3 (System model) The model of a system is an LLPPN Θ = 〈P,T,A,�
, `,Σo∪Σu,Q,M0〉 such that:

• Q is the set of reachable markings R(Θ,M0);

• the Petri net is bounded (∃n ∈ N+ : ∀M ∈ R(Θ,M0),∀p ∈ P,M(p)≤ n).

In this paper, we also set two classical assumptions about the system model.

1. The system has no deadlock. From any reachable marking of the system there is
always at least one firable transition.

2. The reachability graph of the system has no cycle of unobservable events. In
other words, from any reachable marking of the system, an observable event will
always occur after a finite sequence of unobservable events, the observability of
the system is live.

Figure 1 presents an example of such a model Θ1. Bold events c and d are the ob-
servable events of the system whereas the events {a,b,e, f}= Σu are the unobservable
events. The dashed line represents the priority between the transitions of event b and
a. It ensures that the transition labeled with b is always fired before the one labeled
with a in a marking M such that M(p0)≥ 1∧M(p1)≥ 1 (as the initial marking of the
system).

3.3 Pattern model
The problem of detecting and diagnosing faults in a DES was originally described
based on a system modeled with an explicit set of fault events (see Sampath et al
(1995)). Patterns are a way to extend the notion of fault events by introducing more
complex faulty behaviors or any normal behaviors of interest (Jéron et al (2006)). This
notion of pattern requires the definition of a general and flexible framework allowing to
design a large spectrum of diagnosis problems including simple faulty event, multiple

6

p0

p1

p2

p3

p4

p5

p8

p6

p7

a
b

e e

d

d

c d

f

d

Figure 1: System example Θ1 with Σo = {c,d}.

pp1

pp2

pp3

a

e

pp′1

pp′2

pp′3

a

b

Figure 2: Two sequence patterns Ωa→e and Ωa→b with QΩa→e = {M : M(pp3) = 1}
and QΩa→b = {M : M(pp′3) = 1}.

7

faults, fault repetitions....and more generally any behavior of interest (faulty or not).
The use of fault pattern helps to clearly separate the system and the diagnosis objec-
tives (see Zanella and Lamperti (2004)). The reusability is then reinforced to tackle
new problems. For complex patterns this separation principle improves the applica-
bility. Indeed, a modification of the system model in order to merge with the pattern
is a tricky task that might even be impracticable in real cases. This would suppose
to search in the system model for all the traces where the pattern has occurred and to
modify them accordingly to the pattern model. Moreover, the system model would
have to be modified each time a new pattern has to be analyzed.

Definition 4 (Pattern) A pattern Ω is an LLPPN

Ω = 〈P,T,A,�, `,Σ,Q,M0〉

such that

1. (initialization) M0 6∈ Q i.e. the language of the pattern does not contain ε;

2. (well-formed) from any reachable marking M of R(Ω,M0) there exists a sequence
of transitions r ∈ T ∗ such that M r−→M′ and M′ ∈ Q;

3. (event determinism) from any reachable marking M of R(Ω,M0) there is no event
e ∈ Σ that labels more than one firable transition;

4. (stability) ∀M ∈ Q,∀M′ : (∃t ∈ T,M t−→M′)⇒M′ ∈ Q;

5. (no priority) �=∅.

Firstly, Figure 2 presents two similar patterns that will be used as running examples.
The set of final markings of Ωa→e only contains one reachable marking, the one with
pp3 = 1. The language associated to Ωa→e is L (Ωa→e) = {ae} that is the sequence of
event a followed by e.

p1 t1

e

p2

k•

Figure 3: Pattern (Ω1) about k occurrences of an event e with the final markings QΩ1 =
{M : M(p2) = k}.

Figure 3 shows a pattern Ω1 representing k occurrences of the event e (k ∈ N+).
Figure 4 presents the LLPPN model of a pattern Ω2 representing the occurrence of n
events {e1,e2, . . . ,en} in no fixed order. The language L (Ω1) generated by pattern Ω1
is L (Ω1) = {ek} that is the sequence of exactly k events e. The language L (Ω2) gath-
ers any possible interleavings of the events {e1, . . . ,en}, the cardinality of the language
is |L (Ω2)|= n!.

In this way, a pattern can easily be modeled directly disregarding any notion of
system language contrarily to Jéron et al (2006) and to our previous work (Gougam

8

p11 p12 · · · p1n

t1 e1 t2 e2 · · · tn en

p21 p22 · · · p2n

Figure 4: Pattern (Ω2) about the occurrence of n events in no fixed order with the final
markings QΩ2 = {{p21, p22, . . . , p2n}}.

et al (2013)). In Jéron et al (2006) a pattern is modeled as an automaton that must
describe the full event set of the system and must be complete (from any automaton’s
state, any event of the system must be associated with exactly one output transition of
the state). In Gougam et al (2013), the presented patterns require completeness so they
are also more dependent from the system. Definition 4 proposes a more concise way to
model pattern that also reinforces the separation between the system and the diagnosis
objectives. The way to handle the complex interactions between a system and a pattern
is then not part of the modeling phase. It is managed by a specific product operator that
is defined in Section 5.2.

4 Pattern diagnosability: problem statement
Intuitively speaking, pattern diagnosis is the problem of determining the set of patterns
that have effectively occurred and that could explain a sequence of observations. As-
sociated with this problem is the diagnosability problem. Checking whether a pattern
is diagnosable over a system consists in checking whether it is always possible for a
diagnostic function to assert with certainty that a run of a pattern effectively occurred
during one run of the system based on the produced observations. The formal definition
of the diagnosis and the diagnosability problem then depend on the notion of pattern
occurrence that is defined below.

A pattern Ω has occurred in a run r of the system if it is possible to extract from the
event sequence ρ = `(r)∈L (Θ) an ordered set of events that is a word of the language
L (Ω) generated by the pattern, in this case we say that the sequence ρ matches the
pattern Ω and is denoted ρ c Ω (we also say for convenience that the run r matches
the pattern Ω if `(r)cΩ).

Definition 5 (Matching of a pattern) A sequence ρ ∈ Σ∗ matches a pattern Ω (ρ c
Ω) if there exists at least a sequence σ of L (Ω) that is matched by ρ (ρ c σ).

Definition 5 relies on the definition of sequence matching.

Definition 6 (Sequence matching) A sequence ρ ∈ Σ∗ matches another sequence σ ∈
Σ∗, denoted ρ c σ , if:

• σ is empty (σ = ε); or

9

• σ = s.σ1,s ∈ Σ,σ1 ∈ Σ∗ and there exist two sequences ρ0,ρ1 ∈ Σ∗ such that:

1. ρ = ρ0sρ1;

2. ρ1 c σ1.

A sequence ρ matches a sequence σ if ρ contains any event of the sequence σ

and these events occur in the same order as in σ . Obviously ρ can contain several
collections of events that gather the events of σ in the same order; in this case σ

occurs several times in ρ . The pattern ρ matches σ if σ occurs at least once. Figure 5
illustrates how the sequence ρ = bcaabcac matches the sequence σ = acc. Definition
6 is recursively applied three times till σ3 = ε . In this example, σ occurs twice in ρ .
Back to the example of Figure 1, the system Θ1 matches both the patterns Ωa→e and

ρ
b c a a b c a c

σ
a c c

ρ0 s0 ρ1

s0 σ1

ρ
b c a a b c a c

σ
a c c

ρ10 s1 ρ2

s1 σ2

ρ
b c a a b c a c

σ
a c c

ρ20 s2

s2 σ3 = ε

Figure 5: How ρ = bcaabcac matches σ = acc: ρ c σ .

Ωa→b of Figure 2. The sequence bade is a possible run of Θ1 and badec ae. Θ1 also
matches Ωa→b as the sequence badeebd is a possible run of Θ1 and badeebdc ab.

10

Based on the notion of pattern, the classical fault diagnosis problem on DESs can
be generalized as proposed in Jéron et al (2006). Let PΣ1→Σ2 : Σ∗1 → Σ∗2 denote the
projection function of any sequence of Σ∗1 to a sequence of Σ∗2 defined by:

PΣ1→Σ2(ε) = ε,

PΣ1→Σ2(ρ.s) = PΣ1→Σ2(ρ) if ρ ∈ Σ∗1,s 6∈ Σ2,

PΣ1→Σ2(ρ.s) = PΣ1→Σ2(ρ).s if ρ ∈ Σ∗1,s ∈ Σ2.

For a given pattern Ω, the diagnosis problem consists in defining an Ω-diagnoser
function that takes as input a sequence of observable events and that produces one of
the three symbols {Ω−faulty,Ω−safe,Ω−ambiguous} (Pencolé et al (2006)).

Definition 7 (Ω-diagnoser) Let Θ be the model of a system based on the set of events
Σ = Σu∪Σo, an Ω-diagnoser is a function

∆Ω : Σ
∗
o→{Ω−faulty,Ω−safe,Ω−ambiguous}

such that:

• ∆Ω(σ) = Ω−faulty if for any run ρ ∈ L (Θ) that is consistent with σ (i.e.
PΣ→Σo(ρ) = σ), ρ cΩ;

• ∆Ω(σ) = Ω−safe if for any run ρ ∈L (Θ) that is consistent with σ , ρ 6cΩ;

• ∆Ω(σ) = Ω−ambiguous otherwise.

Considering now a set of patterns Ω1, . . . ,Ωn, the diagnoser function of a sys-
tem can be defined as ∆ : Σ∗o → ∏

n
i=1{Ωi−faulty,Ωi−safe,Ωi−ambiguous} such that

∆(σ) = (∆Ω1(σ), . . . ,∆Ωn(σ)).
As an example, consider first the following observable sequence σ1 = dd from the

system Θ1 (Figure 1) then ∆Ωa→e(σ1)=Ωa→e−ambiguous and ∆Ωa→b(σ1)=Ωa→b−ambiguous.
In both cases, it is possible to find in Θ1 two runs which are consistent with σ1 (their
observable projection on Σo is exactly σ1), one run matches the pattern but not the other
one. For instance consider the run badeebd of Θ1 that matches both the pattern Ωa→e
and the pattern Ωa→b and the run bad f d that does not match any of the two patterns.

Consider now the observable sequence σ2 = cddc, then ∆Ωa→e(σ2) = Ωa→e−safe
and ∆Ωa→b(σ1) = Ωa→b−faulty. There is no run in Θ1 consistent with σ2 that contains
an event e so none of them can match Ωa→e. On the other hand, any run consistent
with σ2 starts with ba and must contain one more b so any of them matches Ωa→b.

The definition of the pattern diagnosability also relies on the notion of pattern
matching by a system sequence. Let L be a language, let ρ ∈ L , we denote by
L /ρ the set of continuations of ρ in L :

L /ρ = {ρ ′ : ρ.ρ ′ ∈L }.

Definition 8 (Pattern-diagnosability) A pattern Ω is diagnosable over a system Θ if:

∃n ∈ N,∀ρ ∈L (Θ),ρ cΩ =⇒

(∀ζ ∈L (Θ)/ρ,‖PΣ→Σo(ζ)‖ ≥ n =⇒
(∀ρ ′ ∈ {ρ ′′ : ρ

′′ ∈L (Θ)∧PΣ→Σo(ρ
′′) = PΣ→Σo(ρ.ζ)},ρ ′ cΩ)).

11

As soon as the current run r of the system matches a pattern (ρ = `(r) c Ω), it is
sufficient to wait for a finite observable sequence σ to ensure that any possible run r′ of
the system that generates the same observable sequence PΣ→Σo(`(r

′)) = PΣ→Σo(ρ)σ
also matches Ω. In other words, as soon as the current run r of the system matches a
pattern Ω, the Ω-diagnoser returns either Ω−faulty or Ω−ambiguous. If the result is
Ω−ambiguous, pattern diagnosability then guarantees that waiting for a supplementary
finite set of observable events will lead the Ω-diagnoser to definitely return Ω−faulty.

Definition 9 (System diagnosability) Given a set of patterns, a system is diagnosable
if each pattern is diagnosable over the system.

Back to the patterns of Figure 2, the pattern Ωa→e is not diagnosable in the system
Θ1. Consider for instance the run ρ = bade that matches Ωa→e (ρ cΩa→e). From this
run ρ , there exists a continuation ζ that is arbitrarily long (for instance ζ = (edbade)k

for any given k ∈N), so that ρζ ∈L (Θ1) is an arbitrarily long run of Θ1. The observ-
able projection of ζ is arbitrarily long as well: PΣ→Σo(ζ) = d2k. Now consider the
sequence ρ ′ = bad.(f ddbad)k′ for any given k′ ∈ N, ρ ′ is also a run of Θ1. Consider
now any couple (k,k′) such that 2k = 3k′ (there is an infinite number of such couples),
then PΣ→Σo(ρ

′) = d.(d)3k′ = d.(d)2k = PΣ→Σo(ρ.ζ). Therefore, there is at least a
continuation ζ of ρ that is arbitrarily long for which there always exists in Θ1 a run
ρ ′ 6c Ωa→e that has the same observable projection as ρ.ζ . As opposed to Ωa→e, the
second pattern Ωa→b is diagnosable. In Θ1, it can be noticed that any run ρ such that
|ρ| ≥ 8 matches Ωa→b. Therefore, for any run ρ that matches Ωa→b, for any continua-
tion ζ with |PΣ→Σo(ζ)| ≥ 8, any ρ ′ such that PΣ→Σo(ρ

′) = PΣ→Σo(ρζ) is such that
|ρ ′| ≥ 8 so ρ ′ cΩa→b, hence the diagnosability of Ωa→b in Θ1.

Analyzing the diagnosability of a system relatively to a set of patterns consists in
analyzing the diagnosability of each pattern. Next section presents how to analyze the
diagnosability of a pattern over a system.

5 Pattern diagnosability analysis

5.1 Method overview
Let us start with a brief overview of the proposed method. The pattern diagnosability
method relies on four main steps.

1. Searching for the system’s sequences matching the pattern. These sequences
can be obtained by combining the system and pattern models into a new model
where:

• any evolution of the pattern is always synchronized with an evolution of
the system;

• the system might evolve while the pattern does not.

This combined model relies on a specific operator called system-pattern product.
This product is asymmetric.

12

System model Θ Pattern model	Ω

System sequences
matching the pattern:

building the
system-pattern product

Pattern negation
model	Ω$

①

Generation of ambiguous sequences:
computation of the twin-plant

System sequences
that do not match the pattern:

building the
system-pattern negation product

②

③

Diagnosability checking:
ambiguous transition cycle in the

twin-plant

④

Figure 6: General principle of the diagnosability analysis of a pattern Ω over a system
Θ.

2. Searching for the system’s sequences that do not match the pattern. This step is
similar to the previous one but based on the negation of the pattern. The negation
of the pattern is simply given by the pattern with a different set of final markings.

3. Comparing the sets of sequences obtained in steps 1 and 2 to obtain the set
of ambiguous sequences. Two sequences are ambiguous if they have the same
observable projection and only one of them matches the pattern. This step is an
adaptation of the classical method to analyze the diagnosability of single faults in
a system, independently introduced in Yoo and Lafortune (2002) and Jiang et al
(2001). It is based on the computation of a twin plant that compares system’s
sequences matching the pattern and its negation that have the same observable
projection. Here, the construction of the twin plant relies on the classical syn-
chronized product of Petri nets where synchronizations are applied on observable
events only.

4. Searching for ambiguous sequences with an infinite number of observable events.
If such sequences exist then the pattern is not diagnosable over the system. In
our framework, looking for such ambiguous sequences means to look for a tran-
sition cycle in the twin plant. Looking for transition cycles in the twin plant is
performed by a model-checking technique (Section 6).

Figure 6 summarizes the overall principle to analyze the diagnosability of a pattern
Ω over a system Θ. Next section presents formally each step of the method in details.

13

5.2 Searching for the system’s sequences matching the pattern
This stage aims to determine system’s runs where a given pattern has occurred i.e.
system’s sequences matching the pattern. For this, we introduce a specific product
operator to combine the system Θ and the pattern Ω in order to retain in the system
any run that effectively matches the pattern: this product is called the system-pattern
product and is denoted: ΘnΩ. Informally speaking, ΘnΩ consists of the union of
the places of Θ and Ω. The set of transitions is composed of the set of transitions of Θ

and a set of synchronized and prioritized transitions replacing the transitions from Ω.

Definition 10 (system-pattern product) Let Θ = 〈PΘ,TΘ,AΘ,�Θ, `Θ,ΣΘ,QΘ,MΘ0〉,
Ω = 〈PΩ,TΩ,AΩ,∅, `Ω,ΣΩ,QΩ,MΩ0〉 be respectively a system and a pattern such that
PΘ ∩PΩ = ∅, TΘ ∩ TΩ = ∅ and ΣΩ ⊆ ΣΘ, the system-pattern product ΘnΩ is the
LLPPN 〈P,T,A,�, `,Σ,Q,M0〉 defined as follows.

• P = PΘ∪PΩ.

• T = TΘ∪Ts such that

– Ts =
⋃

l∈ΣΩ
{tΘ‖tΩ : ∃tΘ ∈ TΘ ∧∃tΩ ∈ TΩ ∧ `Θ(tΘ) = `Ω(tΩ) = l} is the set

of synchronized transitions, the transition denoted tΘ‖tΩ resulting from the
synchronization of tΘ ∈ TΘ and tΩ ∈ TΩ.

• A = AΘ∪As such that

As = {(p, t) : p ∈ PΘ, t = tΘ‖tΩ,(p, tΘ) ∈ AΘ}
∪{(p, t) : p ∈ PΩ, t = tΘ‖tΩ,(p, tΩ) ∈ AΩ}
∪{(t, p) : p ∈ PΘ, t = tΘ‖tΩ,(tΘ, p) ∈ AΘ}
∪{(t, p) : p ∈ PΩ, t = tΘ‖tΩ,(tΩ, p) ∈ AΩ}.

• �=�Θ ∪ �s, with:

�s = {(ts, tΘ) : ts = tΘ‖tΩ ∈ Ts}∪⋃
ts=tΘ‖tΩ∈Ts

({(ts, t) : (tΘ, t) ∈�Θ}∪{(t, ts) : (t, tΘ) ∈�Θ})

∪{(t1
Θ ‖ t1

Ω, t
2
Θ ‖ t2

Ω) : t1
Θ ‖ t1

Ω ∈ Ts, t2
Θ ‖ t2

Ω ∈ Ts,(t1
Θ, t

2
Θ) ∈�Θ}.

• ∀t = tΘ||tΩ ∈ Ts, `(t) = `Θ(tΘ),∀t ∈ T ∩TΘ, `(t) = `Θ(t).

• Σ = ΣΘ.

• Q = {MΘ∪MΩ : MΘ ∈ QΘ∧MΩ ∈ QΩ}.

• M0 = MΘ0∪MΩ0.

14

pp1

pp2

pp3

a

e

p0

p1

p2

p3

p4

p5

p8

p6

p7

pp1 pp2 pp3
a e

e

a
b

e e

d

d

c d

f

d

Figure 7: On the left, the sequence pattern Ωa→e. On the right the system-pattern
product between the system of Figure 1 and Ωa→e.

Intuitively, the pattern Ω is applied as a filter on the system Θ by using the product
ΘnΩ. Any transition of label e in the system is synchronized with a transition of the
pattern Ω labeled with the same event e. The product is asymmetric in the sense that
ΘnΩ contains all the transitions of Θ whereas the transitions of Ω with such an event
e have been replaced by a set of synchronized transitions with Θ. Given the current
marking of ΘnΩ and the occurrence of a new event e, two cases can happen. If the
current marking of ΘnΩ enables a synchronized transition labeled with e, as it is
prioritized, it will be triggered (the event e is therefore part of the pattern), otherwise
only a transition from the system Θ can be triggered in ΘnΩ (the system keeps running
by producing the event e but e is not part of the pattern).

Figure 7 illustrates the system-pattern product Θ1 nΩa→e modeled in Figure 1.
Events a and e are parts of the system and the pattern. For each of the three transitions
of the system labeled with an event a or e, a synchronized and prioritized transition is
created in Θ1 nΩa→e. The sequence bade is generated by a possible run of the system
Θ1 of Figure 1 that obviously matches the pattern Ωa→e. In Θ1 nΩa→e, the sequence
bade is associated with the run {p0, p1, pp1}

b−→ {p0, p3, pp1}
a−→ {p2, p3, pp2}

d−→
{p4, p5, pp2}

e−→ {p4, p7, pp3} that leads to one of its final markings (the reachable
markings M such that M(pp3)= 1). By construction of the product, the first occurrence
of a and the first occurrence of e are part of the pattern. The use of priorities here forbid
the transition {p0, p3, pp1}

a−→ {p2, p3, pp1} to be a run of the product Θ1 nΩa→e.
With the help of this product, it is possible to identify in the system Θ the set of

15

runs where the pattern Ω has occurred. The following results assert this intuition.
Let ΘΩ = ΘnΩ and MΘΩ0 be the initial marking of ΘΩ. Let MΘ0 (resp. MΩ0) be

the initial marking of Θ (resp. Ω).

Lemma 1 For any reachable marking M ∈ R(ΘΩ,MΘΩ0) of ΘΩ, there exists a reach-
able marking M1 ∈ R(Θ,MΘ0) and a reachable marking M2 ∈ R(Ω,MΩ0) such that
M = M1∪M2.

Proof: see Appendix.
Lemma 1 simply states that any run of the LLPPN ΘΩ represents a run of Θ and

a run of the pattern Ω. Based on this first result, we can now present the fundamental
result about the system-pattern product n.

Theorem 1 Let Θ be the LLPPN of a system over the alphabet Σ and Ω be the LLPPN
of a pattern:

L (ΘnΩ) = {ρ ∈L (Θ) : ρ cΩ}.

Proof: see Appendix.
Theorem 1 is the fundamental property of the operator n. The set of runs that are

characterized by the language L (ΘnΩ) are exactly the set of runs that match the
pattern Ω. Theorem 1 asserts, for example, that the language of the product between
the system Θ1 and the pattern Ωa→e is such that:

L (Θ1 nΩa→e) = L (Θ1)∩ ((Σ\{a})∗.a.(Σ\{e})∗.e.Σ∗),

where Σ = {a,b,c,d,e, f} is the set of events of Θ1.

5.3 Searching for the system’s sequences that do not match the pat-
tern

By considering the negation of the pattern, the objective is to determine in the system
any run that does not match the pattern. Basically speaking, the negation of Ω is the
LLPPN Ω associated with the complementary set of the final markings of Ω.

Definition 11 The negation Ω of the pattern Ω = 〈P,T,A,�, `,Σ,Q,M0〉 is the LLPPN
Ω = 〈P,T,A,�, `,Σ,Q,M0〉 where:

Q = R(Ω,M0)\Q.

For example, back to the pattern Ωa→e, the set of reachable markings of Ωa→e is
R(Ωa→e,{pp1})= {{pp1},{pp2},{pp3}} so the final markings of Ωa→e are QΩa→e =
{{pp1},{pp2}}.

This set of final markings leads to the language

L (Ωa→e) = {ε,a}.

In the pattern of Figure 3, QΩ1 = {M ∈ R(Ω1,{kp1}) : M(p2)< k} expresses that any
run generating a sequence of L (Ω1) contains less than k occurrences of event e. Con-
sidering now the pattern of Figure 4, the pattern Ω2 has only one final marking QΩ2 =

16

{{p21, . . . , p2n}} and the corresponding language L (Ω2) gathers the set of permuta-
tions of the sequence e1 . . .en. Now, the negation Ω2 has exactly the same net structure
but QΩ2 is any possible reachable marking of R(Ω2,M0) except {{p21, . . . , p2n}}. By
construction, any word σ ∈L (Ω2) is a prefix of a permutation of the sequence e1 . . .en
whose length is strictly lower than n.

The only difference between a pattern Ω and its negation Ω is the definition of its
final markings, so it is possible to apply straightforwardly the system-pattern product
on Ω. We can then introduce the language L (ΘnΩ) that actually corresponds to the
sequences of the system that do not match the pattern.

Corollary 1 Let Θ be the LLPPN of a system over an alphabet Σ and Ω be the LLPPN
of a pattern:

L (ΘnΩ) = {ρ ∈L (Θ) : ∀σ ∈L (Ω) : ρ 6c σ}.

Proof: see Appendix.

Corollary 1 asserts, for example, that the language of the product between the sys-
tem Θ1 and the pattern negation Ωa→e is such that:

L (Θ1 nΩa→e) = L (Θ1)∩ (Σ∗ \ ((Σ\{a})∗.a.(Σ\{e})∗.e.Σ∗))
= L (Θ1)\L (Θ1 nΩa→e),

where Σ = {a,b,c,d,e, f} is the set of events of Θ1.

5.4 Generation of the ambiguous sequences by a twin plant
The comparison of system’s sequences matching the pattern and its negation that have
the same observable projection is based on the so-called twin plant technique. In the
original contributions (Jiang et al (2001),Yoo and Lafortune (2002)) the twin machine
results from the composition of the system model with itself based on the synchroniza-
tion of transitions that share the same observable event. Checking whether diagnos-
ability holds or not in the system then consists in finding in the twin machine a cycle of
critical pairs (x,x′) where x is the target state of a faulty sequence in the system model
and x′ is the target state of a non-faulty sequence in the system model. Such a cycle
represents a pair of sequences of the system that are infinite with the same infinite ob-
servable behaviors, but only one is faulty. In the current framework, we apply the same
principle and define a twin plant as the composition of the system-pattern product and
the system-pattern-negation product.

5.4.1 Synchronized product of LLPPNs

The composition is the classical synchronized product || of Petri Nets, also called tran-
sition fusions or concurrent composition (Hack (1975)), that is updated for its use with
LLPPNs.

Definition 12 (synchronized product) Let N1 = 〈P1,T1,A1,�1, `1,Σ1,Q1,M10〉 and N2 =
〈P2,T2,A2,�2, `2,Σ2,Q2,M20〉 be two LLPPNs. The synchronized product N1‖N2 is the
LLPPN N = 〈P,T,A,�, `,Σ,Q,M0〉 such that:

17

• P = P1∪P2;

• T = T̂1∪ T̂2∪Ts, with:

T̂i = {t ∈ Ti : `i(t) 6∈ Σ1∩Σ2}, for i = 1,2

Ts =
⋃

l∈Σ1∩Σ2

{t1 ‖ t2 : ∃(t1, t2) ∈ (T1×T2)

∧ `1(t1) = `2(t2) = l};

• A = Â1∪ Â2∪As, with:

Â1 = A1 \ [(P1× (T1 \ T̂1))∪ ((T1 \ T̂1)×P1)]

Â2 = A2 \ [(P2× (T2 \ T̂2))∪ ((T2 \ T̂2)×P2)]

As = {(p, t) : p ∈ P1, t = t1 ‖ t2 ∈ Ts,(p, t1) ∈ A1}
∪{(p, t) : p ∈ P2, t = t1 ‖ t2 ∈ Ts,(p, t2) ∈ A2}
∪{(t, p) : p ∈ P1, t = t1 ‖ t2 ∈ Ts,(t1, p) ∈ A1}
∪{(t, p) : p ∈ P2, t = t1 ‖ t2 ∈ Ts,(t2, p) ∈ A2};

• �=
⋃2

i=1{(t1, t2) ∈�i: t1 ∈ T̂i, t2 ∈ T̂i}∪ �s with:

�s=

2⋃
i=1

{(t1 ‖ t2, t3) : t1 ‖ t2 ∈ Ts,(ti, t3) ∈�i}

∪
2⋃

i=1

{(t3, t1 ‖ t2) : t1 ‖ t2 ∈ Ts,(t3, ti) ∈�i}

∪
2⋃

i=1

{(t1
1 ‖ t2

1 , t
1
2 ‖ t2

2) : t1
1 ‖ t2

1 ∈ Ts, t1
2 ‖ t2

2 ∈ Ts,(t i
1, t

i
2) ∈�i};

• `(t) = `1(t1) if t = t1 ‖ t2 ∈ Ts, `(t) = `1(t) if t ∈ T̂1, `(t) = `2(t) if t ∈ T̂2;

• Σ = Σ1∪Σ2;

• Q = {M1∪M2 : M1 ∈ Q1∧M2 ∈ Q2};

• M0 = M10∪M20.

Any run r of N1||N2 corresponds to a run r1 of N1 synchronized with a run r2 of N2
such that their projection on the set of events Σ1∩Σ2 is similar:

PΣ1→Σ1∩Σ2(`1(r1)) = PΣ2→Σ1∩Σ2(`2(r2)) = PΣ1∪Σ2→Σ1∩Σ2(`(r)).

As any final marking of the LLPPN N1||N2 is the union of a final marking of N1 and a
final marking of N2, the next result follows.

18

Theorem 2 L (N1‖N2)= {ρ ∈ (Σ1∪Σ2)
∗ : PΣ1∪Σ2→Σ1(ρ)∈L (N1)∧PΣ1∪Σ2→Σ2(ρ)∈

L (N2)}.

Proof: see Appendix.

5.4.2 Computation of the twin plant

Now let us apply the synchronized product to compute the twin plant. Firstly, the
system Θ is duplicated as the new LLPPN Θ′ where:

1. any place p of Θ is renamed p′ in Θ′;

2. any transition t of Θ is renamed t ′ in Θ′;

3. any unobservable label e of transitions in Θ is renamed e′ in Θ′, any observable
label e of transitions in Θ remains unchanged in Θ′.

More formally, recalling that Σ is the set of events of the system and among Σ, Σo
is the set of observable events, we introduce the set Σ′ = Σo∪{e′ : e ∈ Σu}.

Let RΣ→Σ′ (resp. RΣ′→Σ) denote the renaming function such that for any e ∈ Σ\Σo
RΣ→Σ′(e) = e′ ∈ Σ′ (resp. for any e′ ∈ Σ′ \Σo RΣ′→Σ(e′) = e ∈ Σ) and RΣ→Σ′(e) = e ∈
Σ′ (resp. RΣ′→Σ(e) = e ∈ Σ) if e ∈ Σo.

The second step is then to consider the pattern negation Ω (see Definition 11) that
is also duplicated in the same manner as Θ to obtain Ω

′. We then compute the system-
pattern products ΘΩ = ΘnΩ and Θ′

Ω
′ = Θ′nΩ

′. The so called twin plant Γ finally
results from the synchronized product of ΘΩ and Θ′

Ω
′ ,

Γ = ΘΩ ‖Θ
′
Ω
′ .

Let ΣΓ denote Σ∪Σ′, the following result formally asserts the relationship between
the language generated by the twin plant Γ and how the system Θ matches a pattern Ω.

Theorem 3 L (Γ)= {ρ ∈Σ∗
Γ
,∃ρ1,ρ2 ∈L (Θ),ρ1cΩ∧ρ2 6cΩ,PΣ→Σo(ρ1)=PΣ→Σo(ρ2)∧

ρ1 = PΣΓ→Σ(ρ)∧ρ2 = RΣ′→Σ(PΣΓ→Σ′(ρ))}.

Proof: see Appendix.

5.5 Diagnosability checking
Let QΓ denote the set of final markings of Γ. Theorem 3 asserts that any transition
sequence of the twin plant Γ that leads to a final marking M ∈ QΓ of Γ represents two
runs r1 and r2, r1 from ΘΩ and r2 from Θ′

Ω
′ , that produce the same observable sequence

but, on one hand, the run of ΘΩ matches the pattern Ω and on the other, the run of Θ′
Ω
′

does not match the pattern Ω. Any final marking of Γ therefore represents an ambiguity
about the detection of the pattern.

Definition 13 A marking M of Γ is ambiguous if M is a final marking of Γ (M ∈ QΓ).

19

Definition 8 states that a pattern Ω is not diagnosable over a system iff we can find
an infinite set of arbitrarily long sequences ρ1, . . . ,ρn, . . . in L (Γ) such that ρi is a
strict prefix of ρi+1 for any i ∈ N. So looking for such an infinite sequence in Γ means
to look for a transition cycle involving an ambiguous marking.

Definition 14 A sequence of transitions c ∈ T ∗
Γ

of Γ is a firable cycle if there exist
two transition sequences s, t ∈ T ∗

Γ
such that t is not empty and, for any n ∈ N, stn is

a transition sequence of Γ and c = stn. A firable cycle is ambiguous if t leads to an
ambiguous marking.

The proposed analysis method relies then on the following theorem that is a direct
consequence of Definition 8, Theorem 3 and Definition 14 as explained here above:

Theorem 4 A pattern Ω is diagnosable in a system Θ iff the corresponding twin plant
Γ does not contain any firable cycle that is ambiguous.

6 Implementation of the diagnosability analysis method
by model checking

6.1 Model checking problem
The previous section shows that solving the pattern diagnosability problem is equiv-
alent to searching ambiguous cycles in the product Γ = ΘΩ||Θ′

Ω
′ . If such a cycle ex-

ists then the pattern is not diagnosable. Searching for such a cycle can be defined as
a model-checking problem. The definition of a model-checking problem relies on a
Kripke structure as presented in Clarke et al (1999).

Definition 15 (Kripke structure) A Kripke structure over a set of atomic propositions
P is a four tuple M = (S,S0,R,L) where

1. S is a finite set of states;

2. S0 ⊆ S is the set of initial states;

3. R⊆ S×S is a transition relation that must be total, that is, for every state s ∈ S,
there is a state s′ ∈ S such that R(s,s′) holds;

4. L : S→ 2P is a function that labels each state with the set of atomic propositions
true in that state.

A Kripke structure is a representation of a finite-state concurrent system in which
each state is labeled with the set of atomic propositions that hold in the state. A model-
checking problem can then be described as follows. Given a temporal logic formula ϕ

(written in Linear Temporal Logic (LTL), Computation Tree Logic (CTL),...), find the
set of all states in S that satisfy ϕ:

{s ∈ S : M,s |= ϕ},

20

where M,s |= ϕ means that ϕ holds at state s in the Kripke structure M (Clarke et al
(1999)).

We propose here to implement the pattern diagnosability test of a system Θ by using
the TINA toolkit of Berthomieu et al (2004) and Berthomieu et al (2007) that provides
all the necessary tools to directly generate the Kripke structure of the net Γ and to check
LTL properties over it. The TINA toolkit specifically aims at analyzing (timed) Petri
nets by using state-of-the-art model-checking techniques. TINA actually generates
enriched labeled Kripke structures from the analyzed Petri nets. In an enriched Labeled
Kripke structure, L is a multiset function L : S→ 22P

which means that any state of this
structure is associated with a set of sets of atomic propositions. For instance, with such
an enrichment, it is possible to associate to a state S the multiset {{p= 2},{p= 3}, . . .}
which can be implicitly expressed as p≥ 2. With this enrichment it is possible to write
formulas like ϕ = p1+ p2 ≤ 4 which is a succinct representation of the explicit formula
ϕexp = (p1 = 0∧ p2 = 0)∨ (p1 = 0∧ p2 = 1)∨ Moreover, this structure maps any
transition of the net with a label (called event) so that it is possible to also define and
check properties about them.

Based on enriched labeled Kripke structures, TINA is able to check properties writ-
ten in SE-LTL (State/Event Linear Temporal Logic) which extends LTL in the way
presented here above. A formula ψ is a SE-LTL formula if it is a universally quantified
formula

ψ ::= ∀ϕ

such that

ϕ ::= cst | r | ¬ϕ | ϕ ∨ϕ || ϕ ∧ϕ | ©ϕ | �ϕ | ♦ϕ | ϕUϕ

r ::= e | e4 e

e ::= p | a | c | e5 e

cst ::= dead | div | sub

with p a place symbol, a a transition symbol, c ∈ N, 4 ∈ {=,<,>,≤,≥} and
5 ∈ {+,−,∗,/}. The operators © (next), � (always), ♦ (eventually) and U (until)
have their usual LTL semantics. The constants dead, div, sub, respectively stand for:

• deadlock (blocking state);

• temporal divergence;

• partially known state.

6.2 Diagnosability as a model-checking problem with TINA
SE-LTL is a temporal logic that aims at expressing properties about the runs (sequence
of states (markings)/events (transitions)) of the system which is exactly the type of
properties to check on the twin net Γ to solve the pattern diagnosability problem. A

21

system is diagnosable if and only if Γ does not contain any cycle of ambiguous mark-
ings (Theorem 4). Our objective is to determine a way to write this property as a
SE-LTL formula.

As the system is supposed to have no deadlock and as it does not contain any cycle
of unobservable events, it follows that from any reachable marking of Θ, any sequence
of unobservable transitions has a finite length and will always lead to the enabling of
an observable transition of Θ. This property has some consequences on the twin Γ. For
any sequence r of transitions from the initial marking of Γ that leads to an ambiguous
reachable marking, two cases hold.

1. There is a finite maximal continuation r′ of r in Γ, it means that the twin Γ

reaches a blocking marking Mdead after the trigger of rr′. If the blocking marking
is not ambiguous, there is obviously no diagnosability problems. If Mdead is
ambiguous, the sequence rr′ then represents two runs r1 and r2 of Θ, one of
them is matching Ω but not the other. There is no unbounded continuation of r1
that has the same observable projection than an unbounded continuation of r2.
No diagnosability problems can result from this case.

2. There is an unbounded continuation of r in Γ, it means that the twin Γ reaches a
cycle of markings. If the cycle contains ambiguous markings, the system is not
diagnosable.

To summarize both cases, checking in Γ that there is no cycle of ambiguous mark-
ings is equivalent to checking, for any sequence of Γ leading to an ambiguous mark-
ing, whether any of its continuations either leads to a deadlock or eventually leads to a
marking that is not ambiguous (so that it will finally lead to a cycle of non-ambiguous
markings). This is exactly this property that we propose to check on Γ with the help of
TINA, formally:

ϕDIAG = ∀�((M ∈ QΓ)⇒ (♦(M′ 6∈ QΓ∨dead)))

where QΓ is the set of final markings of Γ. The constraints M ∈ QΓ, M′ 6∈ QΓ of
ϕDIAG are implicitly described as constraints on the places of Γ as described in Section
6.1 (see also examples in Section 7). Intuitively speaking ϕDIAG asserts that in any trace
of Γ (∀), it is always true (�) that as soon as a marking M of the trace is ambiguous
((M ∈ QΓ) ⇒), the continuation of the trace after M will eventually (♦) lead to a
deadlock (dead) or to a marking M′ that is not ambiguous (M′ 6∈ QΓ).

To end this section, we describe the complete and automated implementation of the
method to solve the pattern diagnosability problem on a system Θ:

1. Compute Γ = ΘΩ||Θ′
Ω
′ .

2. Compute ϕDIAG from Γ.

3. Call TINA to compute the enriched labeled Kripke structure K(Γ) of Γ (sift
tool),

4. Call TINA to check ϕDIAG on K(Γ) (selt tool).

22

6.3 Complexity analysis
This section analyzes the complexity of the method to check the diagnosability of a
pattern Ω in a system Θ. Let pΩ (resp. tΩ) be the number of places (resp. transitions)
in the pattern Ω. Let pΘ (resp. tΘ) be the number of places (resp. transitions) in the
system Θ. By construction of the system-pattern product, the net ΘnΩ has pΩ + pΘ

places and, in the worst case, contains tΘ + tΩ× tΘ transitions so the complexity of the
construction of ΘnΩ is linear with the number of transitions of tΩ and the number
of transitions of tΘ. This is explained by the fact that ΘnΩ implicitly describes how
the system behaves with respect to the recognition of the pattern. Any transition of the
system with the same label as a transition of the pattern might be actually involved in
the recognition of the pattern or not. The twin-plant is based on a duplication of ΘnΩ

so it consists of 2× (pΩ + pΘ) places and in the worst case, (tΘ + tΩ× tΘ)2 transitions.
Therefore the computation of the twin plant Γ is linear in the number of places in
the pattern Ω (O(pΩ)) and, in the worst case, quadratic in the number of transitions
of the pattern O(t2

Ω
) and the system O(t2

Θ
). The quadratic complexity with respect

to the number of transitions of the system is as in any twin-plant method, required
to compare any couple of observable transitions of the system to check whether they
share the same label of not. The quadratic complexity with respect to the number of
transitions in the pattern comes from the linear complexity of the construction of ΘnΩ.
The computation of ϕDIAG only depends on the pattern Ω and is, in the worst case, in
O((k+1)|pΩ|) if Ω is k-bounded.

The last two parts of the algorithm solve a model-checking problem based on the
net Γ. For a k-bounded net Γ the size of the explicit representation of the Kripke struc-
ture, equivalent to the reachability graph of Γ, is in O((k+ 1)2(pΩ+pΘ)) and the time
complexity of its construction is O((k+ 1)4(pΩ+pΘ)). Finally, the time complexity of
the model-checking problem for SE-LTL is in 2O(|ϕ|).O((k+1)2(pΩ+pΘ)) where |ϕ| is
the number of symbols in the explicit formula ϕ (Schnoebelen (2003)). The model-
checker TINA is in charge of this part of the algorithm. It internally builds an opti-
mized representation of the Kripke structure and the formula ϕ to solve the problem in
practice.

7 Case studies
This section presents two case studies. The first one comes from the special Benchmark
Session at WODES’08, it is a non-prioritized Petri net that was used for testing fault
diagnosability in Liu et al (2014a). Based on this benchmark, this section proposes
some results about the single fault pattern diagnosability that show that the results of
Liu et al (2014a) and the ones of the proposed approach are equivalent. Then, the
analyses of other patterns extending the single fault pattern are detailed. The second
case study that is described in this section models a system with some priorities. The
purpose of this second example is to illustrate the full expressiveness of the models and
the patterns that can be handled by the proposed method.

23

p0

ts

p1,1 p2,1 pn,1

e1,1 e2,1 en,1

p1,2 p2,2 pn,2

e1,2 e2,2 en,2

e1,k e2,k en,k

p1,k+1

p2,k+1 pn,k+1

e1,k+1 t2,k+1 tn,k+1

p1,k+2 p2,k+2 pn,k+2

te

pw1 pw2 pwn−1

w w w

f1 f2 fn−1

...
...

...

. . .

. . .

. . .

m

Figure 8: Case study 1: the modified WODES diagnosis benchmark of Giua (2007).

7.1 Case study 1
7.1.1 Model of the studied system

Figure 8 describes the LLPPN of a modified version of the system introduced in Giua
(2007) as a benchmark at the special Benchmark Session at WODES’08. Observable
events are in bold. The benchmark describes a family of manufacturing systems char-
acterized by three parameters n, m and k where:

• n is the number of production lines;

• m is the number of units of the final product that can be simultaneously produced,
each unit of product is composed of n parts;

• k is the number of operations that each part must undergo in each line.

To obtain one unit of final product, n orders are sent, one to each line; this is represented
by the observable event ts (transition start). Each line will produce a part (all parts are
identical) and put it in its final buffer. An assembly station will take one part from
each buffer to produce the final product, this is modeled by the observable event te
(transition end). The part in line i ∈ {1, . . . ,n} undergoes a series of k operations,
represented by unobservable events ei,1,ei,2, . . . ,ei,k. After this series of operations two
events are possible: either the part is regularly put in the final buffer of the line, or a fault

24

may occur. Putting the part in the final buffer of line 1 corresponds to unobservable
event e1,k+1, while putting the part in the final buffer of line i, i∈ {2, . . . ,n} corresponds
to observable event ti,k+1. There are n− 1 faults, represented by unobservable events
fi, i ∈ {1, . . . ,n− 1}. Fault fi moves a part from line i to line i+ 1. Note that on line
i ∈ {1, . . . ,n−1} the fault may only occur when the part has finished processing and is
ready to be put in its final buffer; the part goes to the same processing stage in line i+1.
Finally, if a fault fi occurs, it may cause delays on a line that may generate alarms (w),
the alarm w is observable but does not identify the source of the delays (n−1 transitions
are labeled with event w). This is a slight modification of the WODES’08 benchmark.
In the initial version, the system has some deadlocks (for instance, as soon as m faults
f1 occur, the system blocks). The proposed modification will replace this blocking
behavior by the indefinite generation of w watchdog alarms. With this modification,
the system’s observability is live as requested by the assumptions about the model of
the system (see Section 3.2).

7.1.2 Experimental results

We present here a set of experimental results about the diagnosability of several patterns
that the system of Figure 8 can match. These results were all obtained with a PC linux
i5-4670 CPU 3.40GHz with 16GB memory. The results that are retained in these tables
are the ones that do not require more than 20GB memory to avoid as much as possible
the use of memory swap that requires disk access and slow down the time performance
(98% of the presented results actually need less than 16GB).

Single class fault pattern

Firstly, in order to show that our diagnosability method extends methods that deal
with single event fault, we present the diagnosability results about the single class fault
F = { f1, . . . , fn}. Previous results about this diagnosability problem can be found in
Liu et al (2014a). In this problem, any fault event fi belongs to the same class as any
other fault event f j. In other words, the system is considered to be faulty as soon as
one of the fault fi has occurred. With our method, we propose to model this fault class
with the pattern Ω3(n) presented in Figure 9.

pp1,1 pp2,1 ppn,1

f1 f2 fn

pp1,2 pp2,2 ppn,2

. . .

Figure 9: Single class fault pattern Ω3(n) with Q3 = {M : ∃i ∈ {1, . . . ,n},M(ppi,2) =
1}. Multiple fault pattern Ω4(n), with Q4 = {M : ∀i ∈ {1, . . . ,n},M(ppi,2) = 1}.

The pattern Ω3(n) describes the parallel behavior of any of the n faults that could
occur in a system of n+ 1 production lines. The pattern Ω3(n) is associated with the
set of final markings Q3 = {M : ∃i ∈ {1, . . . ,n},M(ppi,2) = 1}. Therefore, as soon as

25

a fault fi occurs, the pattern Ω3(n) is recognized. This is exactly the expected behavior
also represented by the single fault class F = { f1, . . . , fn} in Liu et al (2014a). Results
are presented in Table 1.

1 2 3 4 5 6 7 8 9 10 11
m n k nS(Θ) nT (Θ) nS(K(Γ3)) nT (K(Γ3)) t. (s) Res. t. (s) Res.

Ω3 Ω3 Ω4 Ω4
1 2 1 15 27 91 237 0.004 Yes 0.004 Yes
1 2 2 24 45 276 815 0.004 Yes 0.004 Yes
1 2 3 35 67 659 2085 0.004 Yes 0.004 Yes
1 2 4 48 93 1348 4455 0.012 Yes 0.008 Yes
1 3 1 80 250 1434 6640 0.020 Yes 0.008 No
1 3 2 159 512 7071 35087 0.092 Yes 0.048 No
1 3 3 274 892 24550 126348 0.280 Yes 0.164 No
1 3 4 431 1408 68391 360235 0.752 Yes 0.476 No
1 4 1 495 2286 28703 222808 0.44 Yes 0.312 No
1 4 2 1200 5670 225792 1787416 3.864 Yes 2.552 No
1 4 3 2415 11486 1123695 8922268 21.276 Yes 13.172 No
1 4 4 4320 20550 4207640 33358840 76.076 Yes 48.336 No
1 5 1 3295 20382 659323 8108532 18.136 Yes 11.956 No
1 5 2 9691 61187 8234185 99990516 218.668 Yes 150.468 No
2 2 1 96 278 2140 8926 0.016 No 0.016 No
2 2 2 237 746 17405 85966 0.144 No 0.148 No
2 3 1 1484 7006 232508 1756465 3.136 No 2.964 No
2 3 2 5949 30612 5645449 48717944 82.756 No 87.816 No
2 4 1 28203 190144 35331057 444379980 1393.796 No 1031.936 No
3 2 1 377 1371 21171 110757 0.196 No 0.196 No
3 3 1 12048 69302 8118900 76016894 166.492 No 154.576 No

Table 1: Diagnosability of the pattern Ω3(n− 1) (at least one single fault out of the
n−1 faults on a system with n production lines) and pattern Ω4(n−1) (occurrence of
the n−1 faults on a system with n production lines).

This table represents a set of experiments for different (m,n,k) configurations (Columns 1–
3) of the system presented in Figure 8. The set of presented configurations is the one
of Liu (2014) (that is a superset of the one of Liu et al (2014a)) and has been selected
here for comparison purposes. First, it must be noticed that in Liu (2014), the studied
system is the one of Figure 8 without the watchdog alarms w. Adding these alarms
do not actually affect the diagnosability of the system (they just add non-discriminant
but live observable behaviors to the previous version of the system). This is confirmed
by the result of Table 1 where the diagnosability results for Ω3 in Column 9 are iden-
tical to the one of Liu (2014). Columns 4 and 5 present the number of states nS(Θ)
and transitions nT (Θ) in the reachable marking graph of the system Θ. Here also, it
can be noticed that the number of states nS(Θ) of each configuration is identical to the
one of Liu (2014) by construction of the watchdog alarm extensions. The computation

26

times (Column 8) gather the four computational steps described in Section 6.2. Steps 1
and 2, that are the computations of ΘΩ3 ||Θ′Ω3

′ and ϕDIAG3, have always a negligible
computation time compared to the computation times of Steps 3 and 4. Step 3 builds
the corresponding Kripke structure of Γ3 = ΘΩ3 ||Θ′Ω3

′ , Columns 6 and 7 present the

number of states nS(K(Γ3)) and transitions nT (K(Γ3)) of the Kripke structure of Γ3
computed by TINA (sift tool). Step 4 checks with the help of the TINA tool selt
whether ϕDIAG3 holds in K(Γ3). For instance, in the configuration m = 1,n = 3,k = 1
(gray row in Table 1), we analyze the diagnosability of the pattern Ω3(2) (at least one
fault among the set { f1, f2}), and the formula ϕDIAG3 is:

∀�(((pp1,2 ≥ 1∨ pp2,2 ≥ 1)∧ (pp1,2 = 0∧ pp2,2 = 0))
⇒ (♦(pp1,2 ≥ 1∨ pp2,2 ≥ 1∨dead)))

where pp1,2 (resp. pp2,2) is the place of Ω3(2) corresponding to the place pp1,2
(resp. pp2,2) in the pattern Ω3(2) (see Figure 9).

Multiple fault pattern

The next diagnosability analysis that we present here is the multiple fault diag-
nosability analysis. In this case, the objective is to determine whether any run of the
system where every fault type has occurred at least once can be diagnosed with cer-
tainty. To perform this analysis, pattern Ω3(n) is updated to pattern Ω4(n) (see Fig-
ure 9). Basically Ω3(n) and Ω4(n) have the same structure, only the definition of the
final markings is different. In Q4, any marking contains at least one token in any place
ppi,2, i∈{1, . . . ,n}. This difference obviously has consequences on the formula ϕDIAG4
that is:

∀�(((pp1,2 ≥ 1∧ pp2,2 ≥ 1)∧ (pp1,2 = 0∨ pp2,2 = 0))
⇒ (♦((pp1,2 ≥ 1∧ pp2,2 ≥ 1)∨dead))).

Results of this analysis are also presented in Table 1 in columns 10 and 11. For the
cases where n = 2, this analysis is equivalent to the first one (if n = 2 there is only one
fault f1) which explains why for m = 1,n = 2 cases (the first four lines of Table 1), both
analyses have the same result. As soon as n≥ 3, the multiple fault is not diagnosable.

Pattern of one normal event over n

The next analysis that we present in this section relies on the pattern Ω5(n). The
purpose of this analysis is simple. The pattern Ω5(n) just represents the set of behaviors
on the system Θ where one of the events {e1,1, . . . ,en,1} occurs at least once. This
pattern is obviously diagnosable in any configuration, which is confirmed by the results
in Table 2.

This pattern illustrates the fact that we might not necessarily expect to only monitor
faulty behaviors. It might be also interesting to monitor normal behaviors of interest.

27

pp1,1 pp2,1 ppn,1

e1,1 e2,1 en,1

pp1,2 pp2,2 ppn,2

. . .

Figure 10: Pattern Ω5(n) that is always diagnosable in the benchmark with its final
markings Q5 = {M : ∃i ∈ {1, . . . ,n},M(ppi,2) = 1}.

Back to pattern Ω5(n) for instance, if it is modified to represent the occurrence of
two normal events over n,n ≥ 2 the related diagnosability question would be: is the
occurrence of two distinct events among {e1,1, . . . ,en,1} diagnosable or not. The answer
is surprisingly negative.

m n k nS(K(Γ5)) nT (K(Γ5)) Time(s) Result
1 2 1 129 339 0.004 Yes
1 2 2 371 1105 0.004 Yes
1 2 3 853 2719 0.004 Yes
1 2 4 1695 5637 0.008 Yes
1 3 1 2430 11289 0.02 Yes
1 3 2 11238 55858 0.104 Yes
1 3 3 37142 191409 0.376 Yes
1 3 4 99486 524706 1.032 Yes
1 4 1 52901 410215 0.796 Yes
1 4 2 393198 3103031 6.834 Yes
1 4 3 1865237 14754887 31.576 Yes
1 4 4 6708482 52988035 116.572 Yes
1 5 1 1265621 15542016 32.364 Yes
1 5 2 15124090 182988624 683.392 Yes
2 2 1 2470 10156 0.02 Yes
2 2 2 18950 92732 0.2 Yes
2 3 1 311440 2320207 5.4 Yes
2 3 2 6552732 55877578 141.884 Yes
3 2 1 22817 117993 0.26 Yes
3 3 1 10032272 92786651 251.288 Yes

Table 2: Diagnosability of the diagnosable pattern Ω5(n): at least one among the n
events {ek,1}k∈{1,...,n} has occurred.

7.2 Case study 2
The aim of the previous example was to compare the results of the proposed method
with the ones of Liu et al (2014b) by choosing a single fault pattern and then to extend

28

the diagnosability analysis to other patterns. The purpose of this second example is
to provide experimental results on a system model with priorities and more complex
patterns of interest in this system.

7.2.1 Description of the system

This second example is a product transportation system. It is a two-level system com-
posed of two product sites (namely sites 1 and 2) at level 2 where a set of products is
stored and two assembly stations at level 1 that request products from level 2. A lift
is used between the two levels. Each site has a conveyor belt to move a product from
the site to the lift and each station also has a conveyor belt to get the products from the
lift. Figure 11 presents the system model. Once a product is detected on the site 1, a
Product1 signal (noted Pr1) is emitted. The product is then put in a box and becomes
available. The box is then pushed and sent into the lift (action Push1 that starts with
event P1 and ends with event EP1). Site 2 behaves in a similar manner. A product from
site 1 has a priority access to the lift. In the Petri net model of Figure 11, this priority
relation is indicated by a dashed edge between the transitions labeled by P1 and P2.
After a product has been pushed into the lift, the lift goes down (action Down) to reach
level 1 (signal D detects the end of the Down action). At this level the box is directed
to the station that makes the request (either request Req1 or request Req2). If it is re-
quest Req1, then the box is pushed on the conveyor belt of station 1 (action PushReq1
that starts with event Req1 and ends with event EPReq1). Then the conveyor belt per-
forms a move-left action (LeftReq1, ELReq1) to deliver the box with the product and a
move-right action to go back to initial position (RightReq1, ERReq1). The behaviour of
station 2 is similar except that its conveyor belt moves right first (RightReq2, ERReq2)
and then moves left (LeftReq2, ELReq2). Once the box has been pushed on a conveyor
belt, the lift goes up (action Up ending with the emission of signal U) to level 2.

For this product transportation system, bold events on Figure 11 are the observable
events of the system: Pr1,Pr2,U,D,ERReq1,ERReq1,ELReq1,ELReq2. The events
{P1,P2,EP1,EP2,Req1,Req2,EPReq1,EPReq2} = Σu are the unobservable events. It
must be noticed that in this model, there is no fault event as opposed to the first case
study. The faulty behaviours of the system are represented by abnormal combinations
of events described as patterns. Next section presents two classes of such patterns

7.2.2 Experimental results

For this transportation system to work well, we can imagine that if only one station
keeps requesting products and the other one does not make any request, the system is
not properly working as only one station is running. It then would be interesting to
know whether the set of observations is sufficient to always assert with certainty that
the two stations regularly perform requests. The following classes of patterns Ω6(n)
and Ω7(n,k) (see Figure 12) have been designed for this purpose. The results have
been obtained under similar conditions to the ones of Section 7.1.2.

Multiple consecutive occurrences of an event

29

Prod1

Prod1Avail1

Push1

Pr1

P1

EP1

Prod2

Prod2Avail2

Push2

Pr2

P2

EP2

WaitUp

Up

Down

WaitDown

U

DWait1

PushReq1

LeftReq1

RightReq1

Req1

EPReq1

ELReq1

ERReq1

Wait2

PushReq2

RightReq2

LeftReq2

Req2

EPReq2

ERReq2

ELReq2

Figure 11: Case study 2 : the product transportation system

30

In this first diagnosability analysis, the objective is to determine whether any run
where n requests of type 1 have occurred consecutively (i.e. with no interleaved request
of type 2) can be diagnosed with certainty. The pattern Ω6(n),n = 4 associated to this
behavior is given on the left of Figure 12. Results are presented in Table 3. This table
represents a set of experiments for different configurations with respect to the number
of consecutive occurrences (n) considered in the pattern. The second line shows results
for Ω6(4) whereas lines 3 to 5 involve higher values for n. The diagnosability result
is indicated in Column 7. Columns 2 and 3 give the number of places nP(Γ6) and
transitions nT (Γ6) of the associated twin Petri net Γ6. Columns 4 and 5 present the
number of states nS(K(Γ6)) and transitions nT (K(Γ6)) of the Kripke structure of Γ6
computed by TINA. Column 6 gives the computation times (for all the steps described
in Section 6.2).

As an example, we present the formula ϕDIAG6 for the diagnosability analysis of
the pattern Ω6(4):

∀�((p4 ≥ 1∧ p4 ≤ 0)⇒ (♦(p4 ≥ 1∨dead)))

where p4 is the place of Ω6(4) corresponding to the place p4 in the pattern Ω6(4)
(see Figure 12 on the left).

p0

p1

p2

p3

p4

Req1

Req1

Req1

Req1

Req2 Req2 Req2 p0

p1

p2p3

p4

Req1

Req1

Req1

Req2 Req2

Figure 12: On the left, the multiple consecutive occurrences pattern Ω6(4). On the
right the pattern Ω7(2,3) (2 repetitions of 3 consecutive occurrences of Req1).

For any n, pattern Ω6(n) is not diagnosable which looks counterintuitive. Indeed,
as the Req1 event is followed by two observable events (ELReq1 and ERReq1) we
could imagine to conclude that the pattern is diagnosable. However, after the Req1
event, there are possible interleaved behaviors involving Req2 that can happen (due to
the fact that EPReq1 event is not observable, the station 1 can silently stay in LeftReq1)
that lead to the non-diagnosability of the pattern.

It is possible to ensure the diagnosability of the pattern by adding events EPReq1
and EPReq2 to the set of observable events:

31

n nP(Γ6) nT (Γ6) nS(K(Γ6)) nT (K(Γ6)) Time(s) Result
2 42 46 8248 24296 0.048 No
4 46 54 21884 65020 0.132 No
6 50 62 41888 125088 0.216 No
8 54 70 68260 204500 0.380 No

10 58 78 101000 303256 0.600 No

Table 3: Diagnosability of the pattern Ω6(n): at least n consecutive requests Req1 have
occurred before an occurrence of Req2.

Σo = {Pr1,Pr2,U,D,ERReq1,ERReq1,ELReq1,ELReq2,EPReq1,EPReq2}

and {P1,P2,EP1,EP2,Req1,Req2}= Σu. Results are shown in Table 4.

n nP(Γ6) nT (Γ6) nS(K(Γ6)) nT (K(Γ6)) Time(s) Result
2 42 48 2052 6312 0.012 Yes
4 46 56 3408 10492 0.024 Yes
6 50 64 4764 14672 0.032 Yes
8 54 72 6120 18852 0.048 Yes

10 58 80 7476 23032 0.060 Yes

Table 4: Diagnosability of the pattern Ω6(n) on the diagnosable version of the system.

Repetition of multiple consecutive occurrences of an event

The next diagnosability analysis extends the previous one to the repetition of mul-
tiple consecutive occurrences of an event. In this case, the objective is to determine
whether any run of the system where n consecutive occurrences of Req1 have occurred
k times, can be diagnosed with certainty. To perform this analysis pattern Ω6(n) is up-
dated to pattern Ω7(n,k) (see Figure 12 on the right for n = 3 and k = 2). The formula
for the pattern Ω7(3,2) is ϕDIAG7:

∀�((p4 ≥ 2∧ p4 ≤ 1)⇒ (♦(p4 ≥ 2∨dead)))

where p4 is the place of Ω7(3,2) corresponding to the place p4 in the pattern
Ω7(3,2) (see Figure 12 on the right).

Table 5 shows the experimental results of this diagnosability analysis. Several con-
figurations have been tested according to n, the number of consecutive occurrences of
the event Req1, and k, the number of repetitions.

In light of the previous results obtained for the Ω6(n) pattern, the results of Table 5
about Ω7(n,k) are foreseeable. A modification of the system observability similar to
the previous one leads to the diagnosability of the pattern Ω7(n,k) as presented in
Table 6.

32

n k nP(Γ7) nT (Γ7) nS(K(Γ7)) nT (K(Γ7)) Time(s) Result
2 2 44 46 33108 97424 0.200 No
3 2 46 50 72870 214972 0.502 No
4 3 48 54 229718 677484 1.484 No

10 4 60 78 2208716 6521248 16.416 No

Table 5: Diagnosability of the pattern Ω7(n,k): at least for k times, n consecutive
requests Req1 have occurred before an occurrence of Req2.

n k nP(Γ7) nT (Γ7) nS(K(Γ7)) nT (K(Γ7)) Time(s) Result
2 2 44 48 4092 12616 0.032 Yes
3 2 46 52 6126 18886 0.052 Yes
4 3 48 56 10890 33558 0.088 Yes

10 4 60 80 33960 104660 0.296 Yes

Table 6: Diagnosability of the pattern Ω7(n,k) on the diagnosable version of the sys-
tem.

8 Conclusions and perspectives
The problem of checking pattern diagnosability on systems modeled as LLPPN is in-
vestigated and an effective method to solve the problem is proposed. Genericness is
a core strength of the proposed method since it does not impose specific patterns but
rather defines a generic framework for pattern modeling. The success of the approach
relies firstly on the way a pattern and a system are combined with the system-pattern
product and secondly on the fact that the pattern diagnosability problem is translated
to a model-checking problem on a Petri Net that can be effectively solved by the Petri
net analyzer TINA.

Patterns investigated in this paper are regular, in the sense that they generate reg-
ular languages. One interesting problem that we are planning to address is to extend
the diagnosability analysis to patterns that generate context-free languages. Another
research perspective is to extend this work to timed systems by using Time Petri Nets
that would lead to monitor more complex and interesting behaviors where time can be
observed and that cannot be modeled otherwise. It would especially improve the results
by analyzing the impact of the observation of time on the system’s diagnosability. To
avoid the combinatorial explosion associated with marking graphs, another interesting
research topic would be to adapt our proposal to use Petri nets unfoldings. Finally,
another challenging issue is the analysis of other properties related to the diagnosis
problem, such as discriminability. The discriminability of patterns ensures that one
can detect the exclusive occurrence of a particular pattern from another set of patterns.
Discriminability is a useful property that is weaker than diagnosability.

33

A Proofs

A.1 Proof of Lemma 1
Lemma 1 For any reachable marking M ∈ R(ΘΩ,MΘΩ0) of ΘΩ, there exists a reach-
able marking M1 ∈ R(Θ,MΘ0) and a reachable marking M2 ∈ R(Ω,MΩ0) such that
M = M1∪M2.

Proof. We respectively denote by PΘ,TΘ, PΩ,TΩ, PΘΩ
,TΘΩ

the set of places and transi-
tions of Θ, Ω, ΘΩ. MΘ0, MΩ0 and MΘΩ0 are also their respective initial marking. We
proceed by induction on the set of reachable markings of R(ΘΩ,MΘΩ0) starting from
the initial marking MΘΩ0. The property obviously holds for MΘΩ0 by definition of the
system-pattern product (Definition 10).

Now suppose the existence in R(ΘΩ,MΘΩ0) of a marking M′ such that the property
holds: there exist a reachable marking M′1 ∈ R(Θ,MΘ0) and a reachable marking M′2 ∈
R(Ω,MΩ0) such that M′ = M′1∪M′2. Consider a marking M that is reachable from M′:
∃t ∈ TΘΩ

: M′ t−→M, it follows that M ∈ R(ΘΩ,MΘΩ0) and preΘΩ
(t)⊆M′. Let KΘ, KΩ

respectively denote the transition mask of Θ over ΘΩ and the transition mask of Ω over
ΘΩ formally defined as follows: let ε denote here the empty sequence of transitions,

KΘ(t) =


t if t ∈ TΘ

ε if t ∈ TΩ

t1 if t = t1‖t2
KΩ(t) =


ε if t ∈ TΘ

t if t ∈ TΩ

t2 if t = t1‖t2
The transition masks can be easily extended to any sequence of transitions of ΘΩ, let
s = t0 . . . tn be such a sequence, KΘ(s) = KΘ(t0).KΘ(t1) . . .KΘ(tn) (similar for KΩ(s)).
From Definition 10, we get:

preΘΩ
(t) = preΘ(KΘ(t))∪preΩ(KΩ(t)),

with the following definition extension of pre: preΘΩ
(ε) = preΘ(ε) = preΩ(ε) = ∅.

However any place of preΘ(KΘ(t)) is in PΘ and any place of preΩ(KΩ(t)) is in PΩ. As
PΘ and PΩ are disjoint preΘ(KΘ(t))⊆M′1 and preΩ(KΩ(t))⊆M′2. From this, two cases
hold.

1. Transition t = t1‖t2 is synchronized. This transition results from the synchro-
nization of transition t1 in Θ and transition t2 in Ω therefore, as preΘ(KΘ(t)) =
preΘ(t1)⊆M′1, t1 is firable from M′1 in Θ and, as preΩ(KΩ(t)) = preΩ(t2)⊆M′2,
t2 is firable from M′2 in Ω. By Definition 10, postΘΩ

(t) = postΘ(t1)∪postΩ(t2).

2. Transition t belongs to TΘ, so t is firable from M′1 in Θ and postΘΩ
(t) = postΘ(t).

Based on the extended definition of post: postΘΩ
(ε) = postΘ(ε) = postΩ(ε) = ∅, the

three previous cases can be synthesized as follows:

postΘΩ
(t) = postΘ(KΘ(t))∪postΩ(KΩ(t)).

34

We have supposed that M′ t−→ M so M = M′ \ preΘΩ
(t)∪ postΘΩ

(t) which leads to
M = M′ \ (preΘ(KΘ(t))∪preΩ(KΩ(t)))∪ (postΘ(KΘ(t))∪postΩ(KΩ(t))) to finally ob-
tain M = M1 ∪M2 with M1 = (M′1 \ preΘ(KΘ(t)))∪ postΘ(KΘ(t)) and M2 = (M′2 \
preΩ(KΩ(t)))∪postΩ(KΩ(t)).

A.2 Proof of Theorem 1
Theorem 1 Let Θ be the LLPPN of a system over the alphabet Σ and Ω be the LLPPN
of a pattern:

L (ΘnΩ) = {ρ ∈L (Θ) : ρ cΩ}.

Proof. By Definition 5, we have to prove that L (ΘnΩ)⊆ {ρ ∈L (Θ) : ∃σ ∈L (Ω) :
ρ c σ}.

1. Let us prove first that L (ΘnΩ)⊆{ρ ∈L (Θ) : ∃σ ∈L (Ω) : ρ c σ}. The first
step is to prove that any word of L (ΘnΩ) is indeed in L (Θ). By Lemma 1,
recalling the transition masks KΘ and KΩ defined in the proof of this lemma, we
get: ∀r ∈ T ∗

ΘΩ
: M0

r−→ M,∃r1 ∈ T ∗
Θ
= KΘ(r) : M01

r1−→ M1,∃r2 ∈ T ∗
Ω
= KΩ(r) :

M02
r2−→ M2 ∧M = M1 ∪M2. Moreover, by Definition 10, `ΘΩ

(r) = `Θ(KΘ(r)).
For any firable sequence of ΘΩ, there exists a firable sequence in Θ with the same
sequence of labels. As L (Θ) is a prefix-closed language (QΘ = R(Θ,MΘ0), see
Definition 3) any sequence of labels resulting from a firable sequence of Θ is in
L (Θ), so L (ΘnΩ)⊆L (Θ).

Consider now such a firable sequence r : M0
r−→ M of Θ n Ω such that ρ =

`ΘnΩ(r) ∈L (ΘnΩ)⊆L (Θ). It means that there exists M02
KΩ(r)−−−→M2 (M2 ∈

QΩ). Let σ = `Ω(KΩ(r)) it follows that σ ∈L (Ω). We now prove that ρ c σ .
Let Ts denote the set of synchronized transitions of ΘnΩ (see Definition 10).
As ρ ∈ L (ΘnΩ),ρ 6= ε and r contains at least one transition ts of Ts. Se-
quence r can then be decomposed as r = r′tsr′′ : ∀t ∈ r′, t 6∈ Ts. Therefore,
ρ can be written as `Θ(KΘ(r′))`Θ(KΘ(ts))`Θ(KΘ(r′′)) and σ can be written as
`Ω(KΩ(r′))`Ω(KΩ(ts))`Ω(KΩ(r′′)). As ts is the first synchronized transition in
r, `Ω(KΩ(r′)) = ε . Moreover, `Ω(KΩ(ts)) = `Θ(KΘ(ts)), which leads to σ =
`Θ(KΘ(ts))`Ω(KΩ(r′′)). Let ρ ′′ = `ΘnΩ(r′′) and σ ′′ = `Ω(KΩ(r′′)), it follows
that ρ c σ iff ρ ′′ c σ ′′. Two cases hold:

(a) If r′′ does not contain some transitions of Ts, it means that KΩ(r′′) is an
empty sequence: `Ω(KΩ(r′′))= ε , so σ ′′= ε and, by Definition 6, ρ ′′cσ ′′.

(b) If r′′ contains some transitions of Ts, the previous reasoning recursively
applies on r′′ and its first synchronized transition (by replacing r by r′′,
ρ by ρ ′′, σ by σ ′′) to finally lead to prove that ρend c σend with ρend =
`ΘnΩ(rend) and σend = `Ω(KΩ(rend)) with rend a sequence without any syn-
chronized transition left. This is exactly the previous case a): ρend c σend
so finally ρ ′′ c σ ′′.

35

2. Let us prove that L (ΘnΩ) ⊇ {ρ ∈L (Θ) : ∃σ ∈L (Ω) : ρ c σ}. ρ belongs
to L (Θ) so there exists a sequence of transitions r from Θ such that MΘ0

r−→
Mr ∧ `Θ(r) = ρ . σ belongs to L (Ω) so σ 6= ε and there exists a sequence of

transitions r′ from Ω such that MΩ0
r′−→Mr′ : `Ω(r′) = σ and Mr′ is a final marking

of Ω. As ρ c σ , there exists σ0 ∈ Σ such that σ = σ0σ ′ and ρ can be written
as ρ = ρ0σ0ρ1,σ0 6∈ ρ0 and ρ1 c σ ′. It implies firstly that r can be written as
MΘ0

r0−→Mr0
t1−→Mt1

r1−→Mr with `Θ(t1) = σ0 and secondly that r′ can be written

as MΩ0
t2−→Mt2

r′1−→Mr′ with `Ω(t2) = σ0. σ0 not being a label of a transition in
r0, (MΘ0 ∪MΩ0)

r0−→ (Mr0 ∪MΩ0) is a sequence of transitions of the reachable
marking graph of ΘnΩ. By Definition 10, the transition t1 is in ΘnΩ and
there exists a transition t1‖t2. Both transitions are firable in the marking (Mr0∪
MΩ0) but t1‖t2 � t1 so only t1‖t2 can be fired: the reachable marking graph of

ΘnΩ thus contains a sequence (MΘ0 ∪MΩ0)
r0.t1‖t2−−−−→ (Mt1 ∪Mt2) and ρ0σ0 =

`ΘnΩ(r0.t1‖t2). Suppose now that σ = σ0 . . .σk ∈ Σ∗, as ρ1 c σ ′, we can reapply
k times the previous reasoning starting from Mt1 in Θ and from Mt2 in Ω and then
show the existence of reachable markings Mσ1 , . . .Mσk so that we prove there
exists a sequence of transitions (MΘ0 ∪MΩ0)

s−→ Mσk = (MΘ
σk
∪MΩ

σk
) such that

`ΘnΩ(s) = ρkσk in ΘnΩ, MΘ
σk

being a marking of Θ and MΩ
σk

being a marking

of Ω. As ρ ∈L (Θ), there must finally exist a firable sequence MΘ
σk

s′−→Mr in Θ

such that `Θ(s.s′) = `Θ(r) = ρ . On the other side, as σ ∈L (Ω), it follows that

(MΘ
σk
∪MΩ

σk
)

s′−→ (Mr ∪MΩ
σk
) belongs to the reachable marking graph of ΘnΩ.

Therefore, there exists a firable sequence of transitions (MΘ0 ∪MΩ0)
s′′−→ (Mr ∪

Mr′) in ΘnΩ such that `ΘnΩ(s′′) = ρ . Finally as Mr is a final marking of Θ and
Mr′ is a final marking of Ω, (Mr ∪Mr′) is a final marking of ΘnΩ, hence the
result: ρ ∈L (ΘnΩ).

A.3 Proof of Corollary 1
Corollary 1 Let Θ be the LLPPN of a system over an alphabet Σ and Ω be the LLPPN
of a pattern:

L (ΘnΩ) = {ρ ∈L (Θ) : ∀σ ∈L (Ω) : ρ 6c σ}.

Proof. Let ρ ∈L (Θ), so there exists in Θ a transition sequence MΘ0
t1−→ . . .

tn−→M
such that `Θ(t1 . . . tn) = ρ . Then, by Definition 10, there exists in ΘnΩ a transition

sequence MΘΩ0
t ′1−→ . . .

t ′m−→M′ such that `ΘnΩ(t ′1 . . . t
′
m) = ρ . Let M′1∪M′2 = M′ with

M′1 in R(Θ,MΘ0) and M′2 in R(Ω,MΩ0) (Lemma 1), if M′2 ∈ QΩ then ρ ∈L (ΘnΩ),
otherwise M′2 ∈ QΩ and ρ ∈ L (ΘnΩ). From this it follows that L (Θ) = L (Θn
Ω)∪L (ΘnΩ). The result then follows from Theorem 1.

36

A.4 Proof of Theorem 2
Theorem 2 L (N1‖N2)= {ρ ∈ (Σ1∪Σ2)

∗ : PΣ1∪Σ2→Σ1(ρ)∈L (N1)∧PΣ1∪Σ2→Σ2(ρ)∈
L (N2)}.

Proof. First, let us prove that L (N1‖N2)⊆{ρ ∈ (Σ1∪Σ2)
∗ : PΣ1∪Σ2→Σ1(ρ)∈L (N1)∧

PΣ1∪Σ2→Σ2(ρ) ∈L (N2)}. Let ρ ∈L (N1‖N2), so there exists in N1‖N2 a transition
sequence M0

r−→M with M ∈ Q and `(r) = ρ . Recalling the definition of masks KN1
and KN2 (see the proof of Lemma 1).

KN1(t) =


t if t ∈ TN1

ε if t ∈ TN2

t1 if t = t1‖t2
KN2(t) =


t if t ∈ TN2

ε if t ∈ TN1

t2 if t = t1‖t2
,

by construction of N1‖N2, the transition sequence r can be associated to a transition
sequence r1 : M01

r1−→M1 of N1 and a transition sequence r2 : M02
r2−→ N2 of N2 such

that r1 = KN1(r) and r2 = KN2(r). Moreover, as M belongs to Q, M1 ∈Q1 and M2 ∈Q2,
therefore `1(r1) ∈ L (N1) and `2(r2) ∈ L (N2). Now, remark that PΣ1∪Σ2→Σ1(ρ) =
`1(r1) as any transition of N1‖N2 labeled with a label of Σ1 comes from N1, therefore
PΣ1∪Σ2→Σ1(ρ) ∈L (N1). Similarly PΣ1∪Σ2→Σ2(ρ) ∈L (N2).

Now we prove L (N1‖N2)⊇{ρ ∈ (Σ1∪Σ2)
∗ : PΣ1∪Σ2→Σ1(ρ)∈L (N1)∧PΣ1∪Σ2→Σ2(ρ)∈

L (N2)}. Let ρ defined as above, suppose that ρ contains a set of n,n ≥ 0 events
from Σ1 ∩Σ2 then ρ can be written as ρ = ρ0σ1ρ1 . . .σnρn with ∀i ∈ {1, . . . ,n},σi ∈
Σ1∩Σ2 and ∀i ∈ {0, . . . ,n},ρi ∈ ((Σ1∪Σ2)\ (Σ1∩Σ2))

∗. As PΣ1∪Σ2→Σ1(ρ) ∈L (N1),
PΣ1∪Σ2→Σ1(ρ0)σ1 . . .σnPΣ1∪Σ2→Σ1(ρn) ∈L (N1). Then there must exist in N1 a se-

quence of transitions M01
r1−→M1

n+1 = M01
r1
0−→M1

1
t1
1−→M1′

1 . . .
r1
n−1−→M1

n
t1
n−→M1′

n
r1
n−→

M1
n+1 with r1

j ∈ T ∗1 , j ∈ {0, . . . ,n}, `1(t1
i) = σi, i ∈ {1, . . . ,n} and M1

n+1 ∈ Q1 such that
`1(r1) = PΣ1∪Σ2→Σ1(ρ). Similarly, there must exist in N2 a sequence of transitions

M02
r2−→M2

n+1 = M02
r2
0−→M2

1
t2
1−→M2′

1 . . .
r2
n−1−→M2

n
t2
n−→M2′

n
r2
n−→M2

n+1 with r2
j ∈ T ∗2 , j ∈

{0, . . . ,n}, `2(t2
i) = σi, i∈ {0, . . . ,n} and M2

n+1 ∈Q2 such that `2(r2) =PΣ1∪Σ2→Σ2(ρ).
Now, let us prove by induction that for any k from 0 to n, M1

k+1∪M2
k+1 is a reachable

marking of N1||N2.

• Case k= 0. By construction M01∪M02 is a reachable marking of N1||N2. M01
r1
0−→

M1
1 and M02

r2
0−→ M2

1 do not share any common label and might even be empty
(i.e. r1

0 = ε and M1
1 = M01 or r2

0 = ε and M2
1 = M02). If both are empty then

M01 ∪M02 = M1
1 ∪M2

1 so M1
1 ∪M2

1 is reachable. If now at least one of the run
is not empty, by construction of N1||N2 any sequence of transitions s of N1||N2

such that KN1(s) = M01
r1
0−→ M1

1 and KN2(s) = M02
r2
0−→ M2

1 is actually a run of
N1||N2 from M01∪M02, M1

1 ∪M2
1 is thus reachable.

• General case. Assume M1
k ∪M2

k is a reachable marking of N1||N2 and consider

the part of the runs Mi
k

t i
k−→Mi′

k
ri
k−→Mi

k+1, i ∈ {1,2}. t i
k is firable from Mi

k in Ni

37

for i ∈ {1,2}. By construction of N1||N2, there must exist a transition t1
k ||t2

k such
that `(t1

k ||t2
k) = σk firable from M1

k ∪M2
k and that leads to the marking M1′

k ∪M2′
k

that is thus reachable. Considering now the run parts Mi′
k

ri
k−→Mi

k+1, i∈ {1,2}, as
M1′

k ∪M2′
k is reachable, this is similar reasoning as in the case k = 0: it follows

that M1
k+1∪M2

k+1 is also reachable in N1||N2.

Consequently, M1
n+1∪M2

n+1 is a reachable marking of N1||N2. Finally, remark that
M1

n+1 ∈ Q1 and M2
n+1 ∈ Q2 so M1

n+1∪M2
n+1 ∈ Q, therefore ρ ∈L (N1||N2).

A.5 Proof of Theorem 3
Theorem 3 L (Γ)= {ρ ∈Σ∗

Γ
,∃ρ1,ρ2 ∈L (Θ),ρ1cΩ∧ρ2 6cΩ,PΣ→Σo(ρ1)=PΣ→Σo(ρ2)∧

ρ1 = PΣΓ→Σ(ρ)∧ρ2 = RΣ′→Σ(PΣΓ→Σ′(ρ))}.

Proof. The synchronized product Γ ensures by Theorem 2 that L (Γ)= {ρ ∈Σ∗
Γ
,PΣΓ→Σ(ρ)∈

L (ΘnΩ)∧PΣΓ→Σ′(ρ) ∈L (Θ′nΩ
′
)}. Theorem 1 states that PΣΓ→Σ(ρ) c Ω and

Corollary 1 states that RΣ′→Σ(PΣΓ→Σ′(ρ)) 6c Ω. Finally, as Σ ∩ Σ′ = Σo, we get
PΣ→Σo(PΣΓ→Σ(ρ)) = PΣ′→Σo(PΣΓ→Σ′(ρ)) = PΣΓ→Σo(ρ).

References
Basile F, Chiacchio P, De Tommasi G (2012) On K-diagnosability of Petri nets via

integer linear programming. Automatica 48(9):2047–2058

Benveniste A, Fabre E, Haar S, Jard C (2003) Diagnosis of asynchronous discrete-event
systems: a net unfolding approach. Transactions on Automatic Control 48(5):714–
727

Berthomieu B, Ribet PO, Vernadat F (2004) The tool tina – construction of abstract
state spaces for Petri nets and time Petri nets. International Journal of Production
Research 42(14):2741–2756

Berthomieu B, Peres F, Vernadat F (2006) Bridging the gap between timed automata
and bounded time Petri nets. In: 4th International Conference Formal Modeling and
Analysis of Timed Systems, Paris, France, pp 82–97

Berthomieu B, Peres F, Vernadat F (2007) Model-checking bounded prioriterized time
Petri nets. In: Automated Technology for Verification and Analysis, Springer Verlag,
LNCS, vol 4762, pp 523–532

Cabasino MP, Giua A, Seatzu C (2009) Diagnosability of bounded Petri nets. In: Deci-
sion and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, IEEE, pp 1254–1260

Cabasino MP, Giua A, Seatzu C (2014) Diagnosability of discrete-event systems us-
ing labeled Petri nets. Automation Science and Engineering, IEEE Transactions on
11(1):144–153

38

Cimatti A, Pecheur C, Cavada R (2003) Formal verification of diagnosability via sym-
bolic model checking. In: 18th International Joint Conference on Artificial Intelli-
gence, Acapulco, Mexico, pp 363–369

Clarke EM, Grumberg O, Peled DA (1999) Model Checking. MIT press

Genc S, Lafortune S (2007) Distributed diagnosis of place-bordered Petri nets. IEEE
Transactions on Automation Science and Engineering 4(2):206–219

Giua A (2007) A benchmark for diagnosis. URL http://www.diee.unica.it/
giua/WODES/WODES08/media/benchmark diagnosis.pdf

Giua A, Seatzu C (2005) Fault detection for discrete event systems using Petri nets
with unobservable transitions. In: 44th IEEE Conference on Decision and Control,
2005 and 2005 European Control Conference, Seville, Spain, pp 6323–6328

Gougam HE, Subias A, Pencolé Y (2013) Supervision patterns: Formal diagnosability
checking by Petri net unfolding. In: 4th IFAC Workshop on Dependable Control of
Discrete Systems, York, United Kingdom, pp 73–78

Grastien A (2009) Symbolic testing of diagnosability. In: International Workshop on
Principles of Diagnosis (DX-09), pp 131–138

Haar S, Benveniste A, Fabre E, Jard C (2003) Partial order diagnosability of discrete
event systems using Petri net unfoldings. In: 42nd IEEE Conference on Decision
and Control, Maui, HI, United States, pp 3748–3753

Hack M (1975) Petri net languages. Tech. Rep. 124, M.I.T. Project MAC, Computation
Structures Group, Massachusetts Institute of Technology

Jéron T, Marchand H, Pinchinat S, Cordier MO (2006) Supervision patterns in discrete
event systems diagnosis. In: 8th International Workshop on Discrete Event Systems,
Ann Arbor, MI, United States, pp 262–268

Jiang S, Kumar R (2004) Failure diagnosis of discrete-event systems with linear-time
temporal logic specifications. Transactions on Automatic Control 49(6):934–945

Jiang S, Huang Z, Chandra V, Kumar R (2001) A polynomial algorithm for test-
ing diagnosability of discrete-event systems. Transactions on Automatic Control
46(8):1318–1321

Lai S, Nessi D, Cabasino MP, Giua A, Seatzu C (2008) A comparison between two
diagnostic tools based on automata and Petri nets. In: 9th International Workshop on
Discrete Event Systems, Göteborg, Sweden, pp 144–149

Lamperti G, Zanella M (2006) Flexible diagnosis of discrete-event systems by
similarity-based reasoning techniques. Artificial Intelligence 170(3):232–297

Lefebvre D, Delherm C (2007) Diagnosis of DES with Petri net models. IEEE Trans-
action Automation Science and Engineering 4(1):114–118

39

Lin F (1994) Diagnosability of discrete event systems and its applications. Journal of
Discrete Event Dynamic Systems: Theory and Applications 4(2):197–212

Liu B (2014) An efficient approach for diagnosability and diagnosis of des based on
labeled Petri nets - untimed and timed contexts. PhD thesis, Univ. Lille Nord

Liu B, Ghazel M, Toguyéni A (2014a) OF-PENDA: A software tool for fault diagnosis
of discrete event systems modeled by labeled Petri nets. In: Proceedings of the 1st
International Workshop on Petri Nets for Adaptive Discrete-Event Control Systems
(ADECS 2014), no. 1161 in CEUR Workshop Proceedings, pp 20–35

Liu B, Ghazel M, Toguyéni A (2014b) Toward an efficient approach for diagnosability
analysis of DES modeled by labeled Petri nets. In: 13th European Control Confer-
ence, Strasbourg, France, pp 1293–1298

Pencolé Y (2004) Diagnosability analysis of distributed discrete event systems. In: 16th
European Conference on Artificial Intelligence, Valencia, Spain, pp 43–47

Pencolé Y, Cordier MO (2005) A formal framework for the decentralised diagnosis of
large scale discrete event systems and its application to telecommunication networks.
Artificial Intelligence 164(2):121–170

Pencolé Y, Schumann A, Kamenetsky D (2006) Towards low-cost fault diagnosis in
large component-based systems. In: 6th IFAC Symposium on Fault Detection, Su-
pervision and Safety of Technical Processes, Beijing, China, pp 1473–1478

Peterson JL (1977) Petri nets. ACM Computing Surveys 9(3):223–252

Rozé L, Cordier MO (2002) Diagnosing discrete-event systems : extending the diag-
noser approach to deal with telecommunication networks. Journal on Discrete-Event
Dynamic Systems : Theory and Applications (JDEDS) 12(1):43–81

Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D (1995)
Diagnosability of discrete-event systems. Transactions on Automatic Control
40(9):1555–1575

Schnoebelen P (2003) The complexity of temporal logic model checking. Advances in
Modal Logic 4:393–436

Schumann A, Pencolé Y (2007) Scalable diagnosability checking of event-driven sys-
tems. In: 20th International Joint Conference on Artificial Intelligence, Hyderabad,
India, pp 575–580

Ye L, Dague P (2012) A general algorithm for pattern diagnosability of distributed
discrete event systems. In: Proceedings of the 24th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2012), pp 130–137

Yoo TS, Lafortune S (2002) Polynomial-time verification of diagnosability of partially
observed discrete-event systems. Transactions on Automatic Control 47(9):1491–
1495

40

Zanella M, Lamperti G (2004) Diagnosis of discrete-event systems by separation of
concerns, knowledge compilation, and reuse. In: Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI04), pp 838–842

Zaytoon J, Lafortune S (2013) Overview of fault diagnosis methods for discrete event
systems. Annual Reviews in Control 37:308–320

41

