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in Block-Wise Constant Matrices

Vincent Brault(B), Julien Chiquet, and Céline Lévy-Leduc

UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
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Abstract. We propose a novel approach for estimating the location of
block boundaries (change-points) in a random matrix consisting of a
block wise constant matrix observed in white noise. Our method consists
in rephrasing this task as a variable selection issue. We use a penalized
least-squares criterion with an �1-type penalty for dealing with this prob-
lem. We first provide some theoretical results ensuring the consistency
of our change-point estimators. Then, we explain how to implement our
method in a very efficient way. Finally, we provide some empirical evi-
dence to support our claims and apply our approach to data coming
from molecular biology which can be used for better understanding the
structure of the chromatin.

Keywords: Change-points · High-dimensional sparse linear model ·
HiC experiments

1 Introduction

Detecting automatically the block boundaries in a block wise constant matrix
corrupted with noise is a very important issue which may have several applica-
tions. One of the main situations in which this problem occurs is the detection
of chromosomal regions having close spatial location in the nucleus. Detecting
such regions will improve our understanding of the influence of the chromo-
somal conformation on the cells functioning. The data provided by the most
recent technology called HiC consist of a list of pairs of locations along the
chromosome which are often summarized as a square matrix such that each
entry corresponds to the number of interactions between two positions along the
chromosome, see [3]. Since this matrix can be modeled as a block wise matrix
corrupted by some additional noise, it is of particular interest to design an effi-
cient and fully automated method to find the block boundaries of large matrices,
which may typically have several thousands of rows and columns, in order to
identify the interacting chromosomal regions.

A large literature is dedicated to the change-point detection issue for one-
dimensional data. This problem can be addressed from a sequential (online) [13]
or from a retrospective (off-line) [2] point of view. Many off-line approaches are
based on the dynamic programming algorithm which retrieves K change-points
c© Springer International Publishing Switzerland 2016
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within n observations of a one-dimensional signal with a complexity of O(Kn2) in
time [7]. Such a complexity is however prohibitive for dealing with very large data
sets. In this situation, [5] proposed to rephrase the change-point estimation issue
as a variable selection problem. This approach has also been extended by [15] to
find shared change-points between several signals. To the best of our knowledge no
method has been proposed for addressing the case of two-dimensional data where
the number of rows and columns may be very large (n × n ≈ 5000 × 5000, namely
2 × 107 observations). The only statistical approach proposed for retrieving the
change-point positions in the two-dimensional framework is the one devised by [8]
but it is limited to the case where the blockwise matrix is assumed to be blockwise
constant on the diagonal and constant outside the diagonal blocks.

It has first to be noticed that the classical dynamic programming algorithm
cannot be applied in such a framework since the Markov property does not
hold anymore. Moreover, the group-lars approach of [15] cannot be used in this
framework since it would only provide change-points in columns and not in rows.
As for the generalized Lasso recently devised by [14] or the two dimensional fused
Lasso of [6], they are very helpful for image denoising but do not give access to
the change-point positions since they are not derived to provide a partitioning
of a matrix in rectangular blocks.

The paper is organized as follows. In Section 2, we first describe how to
rephrase the problem of two-dimensional change-point estimation as a high
dimensional sparse linear model and give some theoretical results which prove
the consistency of our change-point estimators. In Section 3, we describe how
to efficiently implement our method. In Section 4, we provide experimental evi-
dence of the relevance of our approach on synthetic and real data coming from
molecular biology.

2 Statistical Framework

2.1 Statistical Modeling

In this section, we explain how the two-dimensional retrospective change-point
estimation issue can be seen as a variable selection problem. Our goal is to
estimate t�

1 = (t�1,1, . . . , t
�
1,K�

1
) and t�

2 = (t�2,1, . . . , t
�
2,K�

2
) from the random matrix

Y = (Yi,j)1≤i,j≤n defined by
Y = U + E, (1)

where U = (Ui,j) is a blockwise constant matrix such that

Ui,j = μ�
k,� if t�1,k−1 ≤ i ≤ t�1,k − 1

and t�2,�−1 ≤ j ≤ t�2,� − 1,

with the convention t�1,0 = t�2,0 = 1 and t�1,K�
1+1 = t�2,K�

2+1 = n + 1. An example
of such a matrix U is displayed in Figure 1 (left). The entries Ei,j of the matrix
E = (Ei,j)1≤i,j≤n are iid zero-mean random variables. With such a definition the
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Fig. 1. Left: An example of a matrix U with n = 16, K�
1 = 3 and K�

2 = 4. Right: The
matrix B associated to this matrix U.

Yi,j are assumed to be independent random variables with a blockwise constant
mean.

Let T be a n × n lower triangular matrix with nonzero elements equal to
one and B a sparse matrix containing null entries except for the Bi,j such that
(i, j) ∈ {t�1,0, . . . , t

�
1,K�

1
}×{t�2,0, . . . , t

�
2,K�

2
}. Then, (1) can be rewritten as follows:

Y = TBT� + E, (2)

where T� denotes the transpose of the matrix T. For an example of a matrix
B, see Figure 1 (right). Let Vec(X) denotes the vectorization of the matrix X
formed by stacking the columns of X into a single column vector then Vec(Y) =
Vec(TBT�) + Vec(E). Hence, by using that Vec(AXC) = (C� ⊗ A)Vec(X),
where ⊗ denotes the Kronecker product, (2) can be rewritten as:

Y = XB + E , (3)

where Y = Vec(Y), X = T ⊗ T, B = Vec(B) and E = Vec(E). Thanks to these
transformations, Model (1) has thus been rephrased as a sparse high dimensional
linear model where Y and E are n2×1 column vectors, X is a n2×n2 matrix and
B is n2 ×1 sparse column vectors. Multiple change-point estimation Problem (1)
can thus be addressed as a variable selection problem:

̂B(λn) = Argmin
B∈Rn2

{‖Y − XB‖22 + λn‖B‖1
}

, (4)

where ‖u‖22 and ‖u‖1 are defined for a vector u in R
N by ‖u‖22 =

∑N
i=1 u2

i

and ‖u‖1 =
∑N

i=1 |ui|. Criterion (4) is related to the popular Least Absolute
Shrinkage and Selection Operator (LASSO) in least-square regression. Thanks
to the sparsity enforcing property of the �1-norm, the estimator ̂B of B is expected
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to be sparse and to have non-zero elements matching with those of B. Hence,
retrieving the positions of the non zero elements of ̂B thus provides estimators
of (t�1,k)1≤k≤K�

1
and of (t�2,k)1≤k≤K�

2
. More precisely, let us define by ̂A(λn) the

set of active variables:

̂A(λn) =
{

j ∈ {1, . . . , n2} : ̂Bj(λn) �= 0
}

.

For each j in ̂A(λn), consider the Euclidean division of (j − 1) by n, namely
(j − 1) = nqj + rj then

̂t1 = (̂t1,k)1≤k≤| ̂A1(λn)| ∈ {rj + 1 : j ∈ ̂A(λn)},

̂t2 = (̂t2,�)1≤�≤| ̂A2(λn)| ∈ {qj + 1 : j ∈ ̂A(λn)}
where ̂t1,1 < ̂t1,2 < · · · < ̂t1,| ̂A1(λn)|,̂t2,1 < ̂t2,2 < · · · < ̂t2,| ̂A2(λn)|. (5)

In (5), | ̂A1(λn)| and | ̂A2(λn)| correspond to the number of distinct elements in
{rj : j ∈ ̂A(λn)} and {qj : j ∈ ̂A(λn)}, respectively.

As far as we know, neither thorough practical implementation nor theoretical
grounding have been given so far to support such an approach for change-point
estimation in the two-dimensional case. In the following section, we give theoret-
ical results supporting the use of such an approach.

2.2 Theoretical Results

In order to establish the consistency of the estimators ̂t1 and ̂t2 defined in (5),
we shall use assumptions (A1–A4). These assumptions involve the two following
quantities

I�
min = min

0≤k≤K�
1

|t�1,k+1 − t�1,k| ∧ min
0≤k≤K�

2

|t�2,k+1 − t�2,k|,

J�
min = min

1≤k≤K�
1 ,1≤�≤K�

2+1
|μ�

k+1,� − μ�
k,�| ∧ min

1≤k≤K�
1+1,1≤�≤K�

2

|μ�
k,�+1 − μ�

k,�|,

which corresponds to the smallest length between two consecutive change-points
and to the smallest jump size between two consecutive blocks, respectively.

(A1) The random variables (Ei,j)1≤i,j≤n are iid zero mean random variables
such that there exists a positive constant β such that for all ν in R,
E[exp(νE1,1)] ≤ exp(βν2).

(A2) The sequence (λn) appearing in (4) is such that (nδnJ�
min)

−1λn → 0, as n
tends to infinity.

(A3) The sequence (δn) is a non increasing and positive sequence tending to
zero such that nδnJ�

min
2/ log(n) → ∞, as n tends to infinity.

(A4) I�
min ≥ nδn.
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Proposition 1. Let (Yi,j)1≤i,j≤n be defined by (1) and ̂t1,k, ̂t2,k be defined by
(5). Assume that | ̂A1(λn)| = K�

1 and that | ̂A2(λn)| = K�
2 , with probabilty tending

to one, then,

P

({

max
1≤k≤K�

1

∣

∣̂t1,k − t�1,k

∣

∣ ≤ nδn

}

∩
{

max
1≤k≤K�

2

∣

∣̂t2,k − t�2,k

∣

∣ ≤ nδn

})

−→
n→∞ 1. (6)

The proof of Proposition 1 is based on the two following lemmas. The first
one comes from the Karush-Kuhn-Tucker conditions of the optimization problem
stated in (4). The second one allows us to control the supremum of the empirical
mean of the noise.

Lemma 1. Let (Yi,j)1≤i,j≤n be defined by (1). Then, ̂U = X ̂B, where X and ̂B
are defined in (3) and (4) respectively, is such that

n
∑

k=rj+1

n
∑

�=qj+1

Yk,� −
n

∑

k=rj+1

n
∑

�=qj+1

̂Uk,� =
λn

2
sign( ̂Bj), if ̂Bj �= 0, (7)

∣

∣

∣

∣

∣

∣

n
∑

k=rj+1

n
∑

�=qj+1

Yk,� −
n

∑

k=rj+1

n
∑

�=qj+1

̂Uk,�

∣

∣

∣

∣

∣

∣

≤ λn

2
, if ̂Bj = 0, (8)

where qj and rj are the quotient and the remainder of the euclidean division of
(j − 1) by n, respectively, that is (j − 1) = nqj + rj. In (7), sign denotes the
function which is defined by sign(x) = 1, if x > 0, −1, if x < 0 and 0 if x = 0.
Moreover, the matrix ̂U, which is such that ̂U = Vec(̂U), is blockwise constant
and satisfies ̂Ui,j = μ̂k,�, if ̂t1,k−1 ≤ i ≤ ̂t1,k − 1 and ̂t2,�−1 ≤ j ≤ ̂t2,� − 1,
k ∈ {1, . . . , | ̂A1(λn)|}, � ∈ {1, . . . , | ̂A2(λn)|}, where the ̂t1,k, ̂t2,k, ̂A1(λn) and
̂A2(λn) are defined in (5).

Lemma 2. Let (Ei,j)1≤i,j≤n be random variables satisfying (A1). Let also (vn)
and (xn) be two positive sequences such that vnx2

n/ log(n) → ∞, then

P

⎛

⎝ max
1≤rn<sn≤n

|rn−sn|≥vn

∣

∣

∣

∣

∣

∣

(sn − rn)−1
sn−1
∑

j=rn

En,j

∣

∣

∣

∣

∣

∣

≥ xn

⎞

⎠ −→
n→∞ 0,

the result remaining valid if En,j is replaced by Ej,n.

The proofs of Proposition 1, Lemmas 1 and 2 can be seen as a natural exten-
sion of the results of [5].

3 Implementation

In order to identify a series of change-points we look for the whole path of
solutions in (4), i.e., {B̂(λ), λmin < λ < λmax} such that |Â(λmax)| = 0 and
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|Â(λmin)| = s with s a predefined maximal number of activated variables. To
this end it is natural to adopt the famous homotopy/LARS strategy [4,10]. Such
an algorithm identifies in Problem (4) the successive values of λ that correspond
to the activation of a new variable, or the deletion of one that became irrelevant.
However, the existing implementations do not apply here since the size of the
design matrix X – even for reasonable n – is challenging both in terms of memory
requirement and computational burden. To overcome these limitations, we need
to take advantage of the particular structure of the problem. In the following
lemmas, we show that the most involving computations in the LARS can be
made extremely efficiently thanks to the particular structure of X .

Lemma 3. For any vector v ∈ R
n2
, computing Xv and X �v requires at worse

2n2 operations.

Lemma 4. Let A = {a1, . . . , aK} and for each j in A let us consider the
Euclidean division of j − 1 by n given by j − 1 = nqj + rj, then

(

(X �X )

A,A
)

1≤k,�≤K

= ((n − (qak
∨ qa�

)) × (n − (rak
∨ ra�

)))1≤k,�≤K . (9)

Moreover, for any non empty subset A of distinct indices in
{

1, . . . , n2
}

, the
matrix X �

A XA is invertible.

Lemma 5. Assume that we have at our disposal the Cholesky factorization of
X �

A XA. The updated factorization on the extended set A ∪ {j} only requires
solving an |A|-size triangular system, with complexity O(|A|2). Moreover, the
downdated factorization on the restricted set A\{j} requires a rotation with
negligible cost to preserve the triangular form of the Cholesky factorization after
a column deletion.

Remark 1. We were able to obtain a closed-form expression of the inverse
(X �

A XA)−1 for some special cases of the subset A, namely, when the quo-
tients/ratios associated with the Euclidean divisions of the elements of A are
endowed with a particular ordering. For addressing any general problem though,
we rather solve system involving X �

A XA by means of a Cholesky factorization
which is updated along the homotopy algorithm. These updates correspond to
adding or removing an element at a time in A and are performed efficiently as
stated in Lemma 5.

These lemmas are the building blocks for our LARS implementation given
in Algorithm 1, where we detail the leading complexity associated with each
part. The global complexity is in O(mn2 + ms2) where m is the final number
of steps in the while loop. These steps include all the successive additions and
deletions needed to reach s, the final targeted number of active variables. At the
end of day, we have m block-wise prediction Ŷ associated with the series of m
estimations of B̂(λ).
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Algorithm 1. Fast LARS for two-dimensional change-point detection
Input: data matrix Y, maximal number of active variables s.

// Initialization

Start with no change-point A ← ∅, B̂ = 0;

Compute current correlations ĉ = X �Y with Lemma 3 ; // O(n2)
while λ > 0 or |A| < s do

// Update the set of active variables
Determine next change-point(s) by setting λ ← ‖ĉ‖∞ and A ← {j : ĉj = λ};
Update the Cholesky factorization of X �

A XA with Lemma 4; // O(|A|2)
// Compute the direction of descent

Get the unormalized direction w̃A ←
(

X �
·AX·A

)−1
sign(ĉA) ; // O(|A|2)

Normalize wA ← αw̃A with α ← 1/
√

w̃�
Asign(ĉA);

Compute the equiangular vector uA = XAwA and a = X �uA with Lemma 3; // O(n2)

// Compute the direction step

Find the maximal step preserving equicorrelation γin ← min+
j∈Ac

{

λ−cj
α−aj

,
λ+cj
α+aj

}

;

Find the maximal step preserving the signs γout ← min+
j∈A

{

−B̂A/wA
}

;

The direction step that preserves both is γ̂ ← min(γin, γout);

Update the correlations ĉ ← ĉ − γ̂a and B̂A ← B̂A + γ̂wA accordingly ; // O(n)

// Drop variable crossing the zero line
if γout < γin then

Remove existing change-point(s) A ← A\
{

j ∈ A : B̂j = 0
}

;

Downdate the Cholesky factorization of X �
A XA; // O(|A|)

Output: Sequence of triplet (A, λ, B̂) recorded at each iteration.

Concerning the memory requirements, we only need to store the n × n data
matrix Y once. Indeed, since we have at our disposal the analytic form of any sub
matrix extracted from X �X , we never need to compute neither store this large
n2 × n2 matrix. This paves the way for quickly processing data with thousands
of rows and columns.

4 Numerical Experiments

4.1 Synthetic Data

The goal of this section is to assess the statistical and numerical performances
of our methodology. We generated observations according to Model (1) where U
is a symmetric blockwise constant matrix defined by

(

μ�
k,�

)

k∈{1,...K�
1+1},�∈{1,...K�

2+1} =

⎛

⎜

⎜

⎜

⎜

⎝

1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎠

, (10)

and the Ei,j are zero mean i.i.d. Gaussian random variables of variance σ2 where
σ is in {1, 2, 5}. Some examples of data generated from this model with n = 500,
K�

1 = K�
2 = 4 can be found in Figure 2 (Top).
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Statistical Performances. For each value of σ in {1, 2, 5}, we generated 1000
matrices following the model described in Section 4.1 with (t�1,k)1≤k≤K�

1
=

([nk/(K�
1 +1)]+1)1≤k≤K�

1
and (t�2,k)1≤k≤K�

2
= ([nk/(K�

2 +1)]+1)1≤k≤K�
2
, where

[x] denotes the integer part of x and K�
1 = K�

2 = 4 and n = 500. Figure 2 (mid-
dle) displays the mean square error n−2‖B − ̂B‖22 for the different samples (in
gray) and the median of the mean square errors in thick as a function of the
number of active variables s defined in Algorithm 1. We can see from this figure
that even in the high noise level case, the mean square error is small. Moreover,
the ROC curves displayed in the bottom part of Figure 2 ensure that the change-
points in rows: (t�1,k)1≤k≤K�

1
are properly retrieved with a very small error rate

even in high noise level frameworks. The same results hold for the change-points
in columns: (t�2,k)1≤k≤K�

2
but are not displayed in order to save space.

Since, to the best of our knowledge, no two-dimensional method are available,
we propose to compare our approach to an adaptation of the CART procedure
of [1] and to an adaptation of [5] (HL) dedicated to univariate observations. We
adapt the CART methodology by using the successive boundaries provided by
CART as change-points for the two-dimensional data. The associated ROC curve
is displayed with ‘•’ in Figure 3. For adapting the HL methodology, we apply
it to each row of the data matrix and for each λ, we obtain the change-points
of each row. The change-points appearing in the different rows are claimed to
be change-points for the two-dimensional data either if they appear at least in
one row (the associated ROC curve for this approach called HL1 is displayed
with ‘+’ in Figure 3) or if they appear in ([n/2] + 1) rows (the associated ROC
curve for this approach called HL2 is displayed with ‘�’ in Figure 3). Since
the procedures HL1 and HL2 are much slower than ours, the ROC curves are
displayed for matrices of size 250 × 250. We can see from Figure 3 that our
method outperforms the other ones.

Numerical Performances. We implemented Algorithm 1 in C++ using the library
armadillo for linear algebra [12] and also provide an interface to the R platform
[11] through the R package blockseg which is available from the Comprehensive
R Archive Network (CRAN). All experiments were conducted on Linux worksta-
tion with Intel Xeon 2.4 GHz processor and 8 GB of memory.

We generated data as in Model (10) for different values of n:
n ∈ {100, 250, 500, 1000, 2500, 5000} and different values of the maximal num-
ber of activated variables: s ∈ {50, 100, 250, 500, 750}. The median runtimes
obtained from 4 replications (+ 2 for warm-up) are reported in Figures 4. Left
of Figure 4 (resp. right) gives the runtimes in seconds as a function of s (resp.
of n). These results give experimental evidence for the theoretical complexity
O(mn2 + ms2) that we established in Section 3 and thus for the computational
efficiency of our approach: applying blockseg to matrices containing 107 entries
takes less than 2 minutes.

Model Selection. In practice, we take s = K2
max where Kmax is an upper bound

for K�
1 and K�

2 . For choosing the final change-points we shall adapt the well-
known stability selection approach devised by [9]. More precisely, we randomly
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Fig. 2. Top: Examples of 500 × 500 matrices Y generated from the model described
in Section 4.1. Middle: Mean square errors n−2‖B− ̂B‖2

2 for the different realizations in
gray and the median of the mean square errors in thick line as a function of the number
of nonzero elements in ̂B for each scenario. Bottom: ROC curves for the estimated
change-points in rows.

choose M times n/2 columns and n/2 rows of the matrix Y and for each set of
observations thus generated we select s = K2

max active variables. Finally, after
the M data resamplings, we keep the change-points which appear a number
of times larger than a given threshold. By the definition of the change-points
given in (5), a change-point ̂t1,k or ̂t2,� may appear several times in a given set
of resampled observations. Hence, the score associated with each change-point
corresponds to the sum of the number of times it appears in each of the M
resamplings.
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Fig. 3. ROC curves for the estimated change-points in rows for our method (‘�’), HL1
(‘+’), HL2 (‘�’) and CART (‘•’).
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Fig. 4. Left: Computation time (in seconds) for various value of n as a function of
the sparsity level s = |A| reached at the end of the algorithm. The cuvres for n = 100
to 5000 are displayed from bottom to top. Right: Computation time (in seconds) as a
function of sample size n. The curves for s = 50 to 750 are displayed from bottom to
top.

To evaluate the performances of this methodology, we generated observations
according to the model defined in Section 4.1 with s = 225 and M = 100. The
results are given in Figure 5 which displays the score associated to each change-
point for a given matrix Y (top). We can see from the top part of Figure 5 some
spurious change-points appearing near from the true change-point positions. In
order to identify the most representative change-point in a given neighborhood,
we keep the one with the largest score among a set of contiguous candidates.
The result of such a post-processing is displayed in the second and third rows
of Figure 5. More precisely the boxplots associated to the estimation of K�

1

(resp. the histograms of the estimated change-points in rows) are displayed in
the middle (resp. bottom) part of Figure 5 for different threshold (resp. when
the threshold is equal to T = 30% of the largest score). We can see from these
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Fig. 5. Top: Scores associated to each estimated change-points for different values of
σ; the true change-point positions in rows and columns are located at 101, 201, 301
and 401. Middle: Boxplots of the estimation of K�

1 for different values of σ and thresh
after the post-processing step. The horizontal line corresponds to the true value of K�

1 .
Bottom: Histograms of the estimated change-points in rows for different values of σ
after the post-processing step with thresh=30%.

figures that when thresh is in the interval [20, 40] the number and the location
of the change-points are very well estimated even in the high noise level case.

4.2 Application to HiC Data

In this section, we applied our methodology to publicly available data (http://
chromosome.sdsc.edu/mouse/hi-c/download.html) already studied by [3]. More
precisely, we studied the interaction matrices of Chromosomes 1 and 19 of the
mouse cortex at a resolution 40 kb and we compared the number and the location
of the estimated change-points found with our approach with those obtained by
[3] on the same data since no ground truth is available. The matrices of these
interaction matrices are displayed in Figure 6. We can see from this figure that
modeling these matrices as block wise constant matrices corrupted with white
seems to be relevant.

We display in Figure 7 the number of change-points in rows found by our
approach as a function of the threshold thresh used in our adaptation of the
stability selection approach presented in the previous section. We also dis-
play in this figure a red line corresponding to the number of change-points
found by [3].

http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html
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Fig. 6. Raw interaction matrices of Chromosome 1 (left) and Chromosome 19 (right)
for the mouse cortex. The darkest entries correspond to the lowest values.

Fig. 7. Number of change-points in rows found by our approach as a function of the
threshold (‘•’) in % for the interaction matrices of Chromosome 1 (left) and Chromo-
some 19 (right) of the mouse cortex. The horizontal line corresponds to the number of
change-points found by [3].

We also compute the two parts of the Hausdorff distance for the change-points
in rows which is defined by

d
(

̂tB ,̂t
)

= max
(

d1

(

̂tB ,̂t
)

, d2

(

̂tB ,̂t
))

, (11)

where ̂t and ̂tB are the change-points in rows found by our approach and [3],
respectively. In (11),

d1 (a,b) = sup
b∈b

inf
a∈a

|a − b| , (12)

d2 (a,b) = d1 (b,a) . (13)

More precisely, Figure 8 displays the boxplots of the d1 and d2 parts of the Haus-
dorff distance without taking the supremum in orange and blue, respectively.
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Fig. 8. Boxplots for the infimum parts of the Hausdorff distances d1 and d2 between
the change-points found by [3] and our approach for the Chromosome 1 (left) and the
Chromosome 19 (right) of the mouse cortex for the different thresholds in %. In each
plot, the boxplot on the left corresponds to d1 and the boxplot on the right corresponds
to d2.

Fig. 9. Topological domains detected by [3] (upper triangular part of the matrix) and
by our method (lower triangular part of the matrix) from the interaction matrix of
Chromosome 1 (left) and Chromosome 19 (right) of the mouse cortex with a threshold
giving 232 (resp. 85) estimated change-points in rows and columns.

We can observe from Figure 8 that some differences indeed exist between the
segmentations produced by the two approaches but that the boundaries of the
blocks are quite close when the number of estimated change-points are the same,
which is the case when thresh = 1.8% (left) and 10% (right).

In the case where the number of estimated change-points are on a par with
those of [3], we can see from Figure 9 that the change-points found with our strat-
egy present a lot of similarities with those found by the HMM based approach
of [3].

Our method also gives access to the estimated change-point positions for
different values of the thresholds. Figure 10 displays the different change-point
locations that can be obtained for these different values of the threshold.
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Fig. 10. Plots of the estimated change-points locations (x-axis) for different thresholds
(y-axis) from 0.5% to 50% by 0.5%. The estimated change-point locations associated
to threshold which are multiples of 5% are displayed with black points.

However, contrary to our method, the approach of [3] can only deal with
binned data at the resolution of several kilobases of nucleotides. The very low
computational burden of our strategy paves the way for processing data collected
at a very high resolution, namely at the nucleotide resolution, which is one of
the main current challenges of molecular biology.

5 Conclusion

In this paper, we proposed a novel approach for retrieving the boundaries of
a block wise constant matrix corrupted with noise by rephrasing this problem
as a variable selection issue. Our approach is implemented in the R package
blockseg which will be available from the Comprehensive R Archive Network
(CRAN). In the course of this study, we have shown that our method has two
main features which make it very attractive. Firstly, it is very efficient both from
the theoretical and practical point of view. Secondly, its very low computational
burden makes its use possible on very large data sets coming from molecular
biology.
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