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Abstract 

Metabolomics is a key approach in modern functional genomics and systems biology. 

Due to the complexity of metabolomics data, the variety of experimental designs, and 

the variety of existing bioinformatics tools, providing experimenters with a simple and 

efficient resource to conduct comprehensive and rigorous analysis of their data is of 

utmost importance. In 2014, we launched the Workflow4Metabolomics (W4M; 

http://workflow4metabolomics.org) online infrastructure for metabolomics built on the 

Galaxy environment, which offers user-friendly features to build and run data analysis 

workflows including preprocessing, statistical analysis, and annotation steps. Here we 

present the new W4M 3.0 release, which contains twice as many tools as the first 

version, and provides two features which are, to our knowledge, unique among online 

resources. First, data from the four major metabolomics technologies (i.e., LC-MS, 

FIA-MS, GC-MS, and NMR) can be analyzed on a single platform. By using three 

studies in human physiology, alga evolution, and animal toxicology, we demonstrate 

how the 40 available tools can be easily combined to address biological issues. 

Second, the full analysis (including the workflow, the parameter values, the input data 

and output results) can be referenced with a permanent digital object identifier (DOI). 

Publication of data analyses is of major importance for robust and reproducible 

science. Furthermore, the publicly shared workflows are of high-value for e-learning 

and training. The Workflow4Metabolomics 3.0 e-infrastructure thus not only offers a 

unique online environment for analysis of data from the main metabolomics 

technologies, but it is also the first reference repository for metabolomics workflows. 

 

249 Words 
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Graphical abstract 

 

 

Highlights 

● A single online resource for LC-MS, FIA-MS, GC-MS and NMR metabolomics data analysis 

● 40 tools for data processing, statistical analysis, and metabolite identification 

● The user-friendly Galaxy interface for building, running, saving and sharing workflows 

● The first repository for the publication of workflows and histories with a permanent DOI 

● Key materials and interactive environment for e-learning and teaching 
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1. Introduction 

Metabolomics is the comprehensive quantification and characterization of the small 

molecules involved in metabolic chemical reactions (Oliver et al., 1998; Nicholson et 

al., 1999). It is a promising approach in functional genomics and systems biology for 

phenotype characterization and biomarker discovery, and has been applied to 

agriculture, biotechnology, microbiology, environment, nutrition, and health (Holmes 

et al., 2008; Chen et al., 2012; Rolin, 2013; Kell and Oliver, 2016; Johnson et al., 

2016). Complementary analytical approaches, such as Nuclear Magnetic Resonance 

(NMR) or High-Resolution Mass Spectrometry (HRMS) coupled to Liquid 

Chromatography (LC) or Gas Chromatography (GC), can be used after minimal 

sample preparation. These technologies allow routine detection of hundreds to 

thousands of signals in a variety of biological samples such as cell cultures, organs, 

biofluids, or biopsies (Cuperlovic-Culf et al., 2010; Brown et al., 2012). Due to the high 

complexity and large amount of signals generated, however, data analysis remains a 

major challenge for high-throughput metabolomics (Johnson et al., 2015).  

 

Analysis of metabolomics data (i.e., computational metabolomics) can be divided into 

three steps: preprocessing of raw data to generate the sample by variable matrix of 

intensities, statistical analysis to detect variables of interest and build prediction 

models, and annotation of variables to provide insight into their chemical and biological 

functions (Fig. 1). The two latter steps (statistics and annotation) can also be 

performed in the reverse order to get a first-pass overview of the dataset content by 

performing automatic query of metabolite databases. Furthermore, each step is 

subdivided into multiple successive, or alternative tasks. For example, preprocessing 

includes peak detection, denoising, and alignment. Statistical analysis involves 

normalization, univariate hypothesis testing and multivariate modeling. Finally, 

annotation relies on peak or spectrum matching with in-house and public databases 

of metabolites and spectra. This results in a high number of possible combinations of 

individual tasks to analyze in a dedicated data set. In addition, new methods and 

software tools constantly emerge to further expand, or refine, metabolomics analysis. 

Each of them has specific parameters and installation requirements. Typical data 

analysis by successive use of various software is time-consuming, repetitive, and 

error-prone: switching from one software to the other requires multiple steps of data 
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manipulation (import/export, up/download, format conversion). Additionally, the 

workflow (i.e., the sequence of software tools and the parameter values) is not saved, 

thus preventing efficient and reproducible analysis. 

 

Fig. 1. The Workflow4Metabolomics 3.0 online infrastructure (e-infrastructure) for data 

analysis of metabolomics experiments. Metabolomics experiments start with the biological 

question to be addressed, which, in turn, defines the experimental design. Sample collection, 

preparation, and analysis with NMR or MS instruments are then performed with the 

appropriate quality controls (reagent blanks, sample pools, etc.). The preprocessing step 

generates the sample by variable matrix of peak intensities. Statistical analysis includes 

normalization and batch-effect correction, univariate hypothesis testing, multivariate modeling, 

and feature selection. Annotation relies on the query of compounds and spectral databases, 

such as KEGG (Kanehisa and Gotto, 2000) and HMDB (Wishart et al., 2007). Identified 

metabolites can then be linked within genome-scale reconstructed networks, such as 

MetExplore (Cottret et al., 2010). More than 40 modules (tools) are currently available on the 

Workflow4Metabolomics e-infrastructure for building comprehensive LC-MS, FIA-MS, GC-

MS, and NMR preprocessing, statistical analysis, and metabolite annotation (Table 1). 
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Workflow management systems are software tools to compose and execute a series 

of computational tasks in a reproducible way (Leipzig, 2017). In the last decade, 

software environments with user-friendly features for creating, running, and sharing 

workflows have been developed, such as Galaxy (Giardine et al., 2005), Taverna (Hull 

et al., 2006), or KNIME (Berthold et al., 2006). Their graphical interfaces enable users 

who are not familiar with programming to build their workflow, by selecting tools and 

their parameters, and chain them in the desired order. Experimenters can therefore 

concentrate on the scientific design of the analysis and the interpretation of results, 

without worrying about software installation, command lines, scripts, data format and 

data management. 

 

 

Fig. 2. Galaxy features to create workflows on the W4M e-infrastructure. Selected 

computational tools (left panel), with the specific parameters values (right panel), can be 

chained to build the workflow (middle panel). Alternatively, workflows can be directly extracted 

from the current history by selecting Extract workflow from the History options menu. 

 

Galaxy is a major environment for workflow management available through a classic 

web-browser, with more than 50,000 users worldwide and hundreds of tools available 

(Boekel et al., 2015). The project started in the genomic community (Giardine et al., 

2005; Goecks et al., 2010), and further expanded to other omics fields such as 

proteomics (Boekel et al., 2015; Jagtap et al., 2014; Jagtap et al., 2015). The Galaxy 
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environment provides intuitive and powerful features that enable the experimenter to 

build and run complex workflows. For example, a tool can be re-run after changing a 

single parameter value with only two mouse clicks. The workflow (chained tools + 

selected parameter values) can be designed within a graphical editor interface (named 

canvas; Goecks et al., 2010; Fig. 2), and then run on the input data to obtain a history 

(workflow + attached input and output data). Alternatively, a history can be built by 

tuning the successive tools sequentially on the selected data set, and, once the history 

is completed, by extracting the corresponding workflow. A key feature is that both the 

workflow and the history can be saved and shared between users. 

 

To develop Galaxy pipelines for metabolomics, and make them available to the user 

community worldwide, we created the Workflow4Metabolomics online infrastructure 

(W4M e-infrastructure; Giacomoni et al., 2015). At that time, W4M already provided 

20 tools (some of them being newly developed for the infrastructure, while others 

corresponded to the integration of existing tools), which enabled the build of 

comprehensive workflows for LC-HRMS data analysis (Table 1). W4M not only gave 

access to the Galaxy environment to build workflows, but also offered a high-

performance computing environment to run the analyses, online documentations, and 

a help-desk served by 8 bioinformaticians from the Core Team. 

 

Here, we present the new 3.0 version of the W4M e-infrastructure. The 20 new tools 

(Table 1) enable advanced workflows not only for MS technologies (LC-MS, GC-MS 

and Flow Injection Analysis: FIA-MS) but also for NMR data. Furthermore, the 

complete histories can be referenced online with a permanent DOI, thus enabling fully 

reproducible analyses. To demonstrate how the new computational features from 

W4M 3.0 can be used to address biological issues, we selected three real LC-MS, GC-

MS, and NMR case studies from published studies in human physiology, mouse 

toxicology, and algae evolution. In the next section (Case Studies), we briefly recall 

the objective of the three studies and the analytical methods used to generate the raw 

data. In the Results section, we then create three workflows to analyze the data, and 

compare the outputs with the published results. 
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Table 1 

List of available tools on the W4M online infrastructure. The 20 new tools from the 3.0 release 

are indicated with (N). The source code of the W4M tools is available on the Galaxy toolshed 

(https://toolshed.g2.bx.psu.edu). 

 

https://toolshed.g2.bx.psu.edu/
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2. Case Studies 

We have selected three case studies which illustrate the diversity of the biological 

issues, experimental designs, and analytical technologies in metabolomics. Here, we 

briefly describe the context, objective, and analytical methods of these three published 

studies. 

2.1. Sacurine human physiological study (LC-HRMS) 

Human urine has been used since Antiquity for disease prediction. Nowadays, this 

biofluid shows great promise for biomarker discovery in metabolomics. 

Characterization of the variations of the urine metabolome with age, BMI, and gender, 

is therefore critical not only to better understand human physiology, but also to avoid 

confounding effects in biomarker studies. Since physiological information about urine 

concentrations is scarce in metabolomics databases, a cohort of 184 volunteers from 

the CEA research institute was studied (Roux et al., 2012; Thevenot et al., 2015). 

Urine samples were analyzed by Ultra-high Performance Liquid Chromatography 

(Hypersil GOLD C18 column) coupled to High-Resolution Mass Spectrometry (LTQ-

Orbitrap Discovery, Thermo Fisher Scientific). 

 

The work by Roux et al. (2012) focused on the identification of the metabolites in urine, 

while the second study (Thevenot et al., 2015) analyzed the variations of their 

concentrations with age, body mass index (BMI), and gender. Raw data were 

preprocessed with XCMS (Smith et al., 2006) and annotated with CAMERA (Kuhl et 

al., 2012), and a selection of metabolites of putative interest were identified at levels 1 

and 2 (Metabolomics Standard Initiative; Sumner et al., 2007) by matching with the 

KEGG (Kanehisa and Gotto, 2000), HMDB (Wishart et al., 2007) and METLIN (Smith 

et al., 2005) databases, followed by interpretation of additional MS/MS fragmentation 

experiments (Roux et al., 2012). Quantification of their intensities was refined by visual 

determination of the peak limits in the raw data (Quan Browser tool from the Xcalibur 

software; Thevenot et al., 2015). 
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The raw files, both in the proprietary (RAW; profile) and in the open (mzML; centroid) 

formats, are publicly available (MTBLS404) from the MetaboLights repository (Haug 

et al., 2013).  

2.2. Ectocarpus (brown algae) ecological study (GC-MS) 

The brown alga Ectocarpus (Ectocarpales, Phaeophyceae) is a rare example of 

freshwater colonization by a marine species. To understand the molecular 

mechanisms involved in the transition between these habitats, a freshwater strain 

(FWS, accession CCAP 1310/196, origin Hopkins River Falls, Victoria, Australia) was 

exposed to either medium (1.6 parts per thousand of medium, ppt) or seawater (32 

ppt) salinity, and compared with the genome-sequenced Sea Water strain (SWS, 

accession CCAP 1310/4, origin San Juan de Marcona, Peru) cultured in seawater 

medium only (Dittami et al., 2012). 

 

Metabolites profiles were analyzed by Gas Chromatography coupled to Mass 

Spectrometry (GC-MS): algal samples were first harvested by filtration 2 h after the 

beginning of the light phase; samples (50 mg) were then dried with a paper towel and 

ground in liquid nitrogen; finally, algal powder was extracted with methanol, and ribitol 

(200 µM) was added as an internal standard. The complete extraction procedure, 

derivatization steps, and chromatographic conditions are described in Dittami et al. 

(2011). 

2.3. Bisphenol A Mus musculus toxicological study (NMR) 

The aim of this study was to assess the effect of perinatal exposure to Bisphenol A 

(BPA) on the brain metabolome (Cabaton et al., 2013). Brain samples were collected 

on 21-days-old male mice, whose mothers were exposed to either 0.025 or 0.25 µg 

BPA/kg body weight/day during gestation and lactation. Twenty four aqueous extracts 

(11 extracts from mice exposed to 0.025 µg and 13 from mice exposed to 0.25 µg) 

were analyzed on a Bruker DRX-600-Avance NMR spectrometer operating at 600.13 

MHz for 1H resonance frequency using an inverse detection 5 mm 1H-13C-15N 

cryoprobe attached to a CryoPlatform (the preamplifier cooling unit). The 1H NMR 

spectra were acquired at 300 K using the Carr-Purcell-Meiboom-Gill (CPMG) spin-

echo pulse sequence with pre-saturation, with a total spin-echo delay (2nτ) of 100 ms 
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to attenuate broad signals from proteins and lipoproteins. A total of 128 transients were 

collected resulting in 32,000 data points using a spectral width of 12 ppm, a relaxation 

delay of 2.5 s and an acquisition time of 2.28 s. Prior to Fourier Transformation, an 

exponential line broadening function of 0.3 Hz was applied to the FID. All NMR spectra 

were phased and baseline corrected with the TopSpin software (Bruker). 

3. Results 

The Workflow4Metabolomics online infrastructure (W4M e-infrastructure) offers a 

user-friendly and computationally efficient environment to build, run, and share 

workflows (see the Workflow Management with W4M section in the supplementary 

material). The W4M 3.0 release provides a total of 40 tools, from preprocessing, 

through statistical analysis, and up to annotation, including 20 new modules for 

advanced LC-HRMS analysis, FIA-MS, GC-MS and NMR workflows (Table 1). 

3.1. Analysis of LC-MS, GC-MS, and NMR metabolomics 

data sets on W4M 

To demonstrate how the tools can be combined on W4M to address biological issues, 

we designed three computational workflows to analyze data sets from published 

studies in human (Thevenot et al., 2015), algae (Dittami et al., 2012), and mouse 

(Cabaton et al., 2013). 

3.1.1. Physiological variations of the human urine metabolome: The 

W4M00001_Sacurine-statistics and W4M00002_Sacurine-

comprehensive LC-HRMS histories 

To characterize the physiological variations of the human urine metabolome with age, 

body mass index (BMI), and gender, samples from a cohort of adult volunteers from 

the Saclay research institute (hence the “sac[lay]urine” name) have been analyzed by 

LC-HRMS (Thevenot et al., 2015). 
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To investigate how the statistical analysis from the published study could be performed 

on W4M, the Sacurine-statistics workflow was first built with the following steps (Fig. 

3 and statistical steps from the supplementary Table S1): 

1. Batch correction: Correction of the signal drift by local regression (loess) 

modeling of the intensity trend in pool samples (Dunn et al., 2011); Adjustment 

of offset differences between the two analytical batches by using the average 

of the pool intensities in each batch (van der Kloet et al., 2009) 

2. Quality Metrics: Variable quality control by discarding features with a 

coefficient of variation above 30% in pool samples 

3. Normalization: Intensity normalization by sample osmolality 

4. Transformation: Log10 transformation 

5. Quality Metrics: Sample outlier filtering by using three statistics: Weighted 

Hotellings’T2 distance (Tenenhaus et al., 1999), Z-score of one of the intensity 

distribution deciles (Alonso et al., 2011), and Z-score of the number of missing 

values (Alonso et al., 2011) 

6. Univariate: Non-parametric univariate hypothesis testing of Spearman 

correlation with age or BMI, and of difference between gender medians 

7. Multivariate: Multivariate modeling by Orthogonal Partial Least Squares 

(OPLS) of the age, BMI, and gender responses 

8. Heatmap: Visualization of sample and variable clusters (by using the 1 - cor 

dissimilarity, where cor is the Spearman correlation) 

 

The workflow consists of 18 tools. Importantly, several of these computational 

methods are available online only on W4M. In addition, the statistical tools are generic 

(except the first one, Batch correction, which is focused on LC-MS data), and can 

thus be applied to any omic data set. 
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Fig. 3. Overview of the W4M00001 Sacurine-statistics and W4M00002 Sacurine-

comprehensive workflows (DOI:10.15454/1.4811121736910142E12 and 

DOI:10.15454/1.481114233733302E12). The input data (184 samples, 26 QC pools, and 24 

reagent blanks) were acquired in the negative ionization mode, in two batches (117 samples 

each). Note that the same workflows can be applied to the data from the positive ionization 

mode, except that the polarity parameter must be switched in the annotation tools (i.e., 

CAMERA, KEGG, and HMDB). The raw data are publicly available in the MetaboLights 

repository (MTBLS404). 

 

The workflow was applied to the preprocessed table of peak intensities from 210 

samples (184 urine of volunteers + 26 injection of the QC pool) and 113 identified 

metabolites from the negative ionization mode (see the Case Studies section for the 

description of the study, and the Workflow Management with W4M section for the 

formats of the dataMatrix.tsv, sampleMetadata.tsv, and variableMetadata.tsv input 

files). The running time on W4M was only a few minutes and the resulting history 

contained 53 files (total size: 4.0 MB). Statistical results were identical to those from 

the publication by Thevenot et al. (2015). In particular, the peak table used for 

univariate and multivariate statistics contained 183 samples and 109 metabolites, 

http://dx.doi.org/10.15454/1.4811121736910142E12
http://dx.doi.org/10.15454/1.481114233733302E12
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since the quality control steps discarded the HU_096 sample (p-values of the 

Hotelling’s T2 and decile Z-score < 10-4) and 4 variables (coefficient of variation in QC 

injections > 30%). This peak table is also identical to the data set included in the ropls 

Bioconductor package (Thevenot et al., 2015). The Sacurine-statistics history was 

publicly shared on the W4M e-infrastructure. It was assigned the W4M00001 reference 

ID and the permanent DOI:10.15454/1.4811121736910142E12 Digital Object 

Identifier (DOI) link for permanent access and citation (see the Referencing Histories 

section below). 

 

To perform the full analysis of the sacurine dataset (i.e., not restricting the analysis to 

the statistical steps nor to the identified metabolites only), we designed the Sacurine-

comprehensive workflow, starting with the preprocessing of the raw files, then 

performing the statistical analysis and finally annotating the full peak table (Fig. 3A): 

1. xcms.xcmsSet, xcms.group, xcms.retcor, and xcms.fillPeaks: 

Preprocessing of the raw files with XCMS (Smith et al., 2006) 

2. CAMERA.annotate: Annotation of isotopes, adducts and fragments with 

CAMERA (Kuhl et al., 2012) 

3. Statistical analysis (identical to the Sacurine-statistics workflow, with the 

addition of the Biosigner tool) 

4. HMDB MS search and Kegg Compounds: Annotation by m/z matching to the 

HMDB (Wishart et al., 2007) and KEGG (Kanehisa and Goto, 2000) metabolite 

databases;  

 

The Sacurine-comprehensive workflow includes 29 tools (21 being unique; Table S1) 

and provides a comprehensive example of the analysis of LC-HRMS metabolomics 

data (Fig. 3). In the statistical section, the Biosigner tool (Rinaudo et al., 2016) was 

included to further identify significant molecular signatures for classification between 

genders (see below). 

 

http://dx.doi.org/10.15454/1.4811121736910142E12
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Fig. 4. Results from the W4M00002_sacurine-comprehensive history 

(DOI:10.15454/1.481114233733302E12). (A) Computation time of the full analysis. Only tools 

running for more than 15 min are labeled. The total running time of the whole history (29 tools) 

was 10:10 hours. (B) Significant metabolite signatures for the discrimination between genders 

by each of the three PLS-DA, Random Forest, and Support Vector Machine (SVM) classifiers 

were selected independently with the Biosigner tool (Rinaudo et al., 2016). The biosigner 

algorithm iteratively selects only the features whose random permutation in the test subset 

decrease the prediction performances (Rinaudo et al., 2016). The metabolites from the final 

signature (i.e., those which passed all the selection iterations) are indicated in the 

corresponding classifier column with a dark green color. Metabolites which were discarded 

during one of the previous rounds are indicated with a color gradient from light green to dark 

red (by decreasing number of selection rounds). Dashed (respectively, dotted) borders around 

metabolite names indicate the 13C isotope (respectively, the Pantothenic acid dimer). 

 

The 234 raw files (184 samples + 26 injections of the Quality Control pool + 24 blanks) 

in mzML format (centroid mode) were split into two subfolders (one “blank” directory 

containing the blank reagent files only, and one “bio” directory with the remaining 210 

human and pool samples), before uploading as a single zipped file (17.6 GB). 

Application of the Sacurine-comprehensive workflow to this dataset resulted in a 

history containing 94 files, after a running time of about 10 hours (Fig. 4A). The majority 

of the time was spent in preprocessing with the XCMS tools and, to a lesser extent, in 

annotation with CAMERA.annotate, as these algorithms work on the raw files. In the 

http://dx.doi.org/10.15454/1.481114233733302E12
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statistical section, the Biosigner tool required 22 min of computation time, due to the 

large number of models built during the internal bootstrapping approach (Fig. 4A). 

 

The preprocessing step with the XCMS tools and the original parameter values (Roux 

et al., 2012) generated a peak table (dataMatrix) containing 4,667 features (Table S1), 

including 342 ions previously described in urine (Roux et al., 2012). These results were 

comparable with the 4,114 features (including 334 characterized ions) from the original 

peak table obtained at the time of the publication by Roux et al. (2012). We further 

evaluated the centWave algorithm which has been shown to provide better peak 

detection on high-resolution data sets compared with the original matchedFilter 

method (Tautenhahn et al., 2008). Such a comparison is straightforward on W4M due 

to both features provided by Galaxy for modifying only a few parameter values (in the 

xcms.xcmsSet tool) and re-running the workflow, and the high-performance 

environment of the infrastructure. A higher number of variables of interest (372 of the 

previously characterized metabolites in urine) were detected by centWave, with the 

parameter values suggested for an UPLC/Orbitrap acquisition system (Patti et al., 

2012). The total size of the peak table after the quality control filtering steps (which 

discard the ions with concentrations less than twice the concentration in blank reagent 

samples, or with a coefficient of variation in pool samples superior to 30% after signal 

drift correction) was also higher (3,120 features), including 85% of the matchedFilter 

ions. The centWave method was therefore selected for the reference workflow and 

history described hereafter (Table S1). 

 

As the identification of molecular signatures for prediction is of high interest in 

biomarker studies, the Biosigner tool was added to the statistical section of the 

workflow. Biosigner selects features that are significant for the predictive performance 

of either a PLS-DA, a Random Forest, or a Support Vector Machine classifier (Rinaudo 

et al., 2016). Eight features were selected in at least one of the molecular signatures, 

including one 13C isotopes and one dimer (Fig. 4B). The PLS-DA, Random Forest, and 

Support Vector Machine trained on each selected signatures (containing less than 0.2 

% of the initial variables) achieved high classification performances (84%, 90%, and 

92%, respectively). Three variables, which were annotated by the KEGG query and 

also matched the characterized metabolites described in urine (Roux et al., 2012), had 

been selected previously by Biosigner on the restricted dataset from the 
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W4M00001_Sacurine-statistics history (Rinaudo et al., 2016): Testosterone 

glucuronide, p-Anisic Acid (or 4-Methoxybenzoic acid), and Oxoglutaric acid (or alpha-

Ketoglutaric acid). This confirms that results could be reproduced on W4M using a 

comprehensive workflow starting from the raw files. It also highlights 4 additional ions 

providing high classification performance (including M479.2275T434) that were not 

previously described in the urine metabolome. 

3.1.2. Evolutionary mechanisms involved in the adaptation of marine 

species to freshwater: The W4M00004 GCMS Algae history 

Colonization of freshwater by marine organisms, as observed in Ectocarpus (brown 

algae), is a rare event. To understand the mechanisms involved in such an adaptation, 

a Fresh Water Strain (FWS) cultured in either low or seawater salinity, and a Sea 

Water Strain (SWS), were studied at several molecular levels, including metabolomics 

by GC-MS analysis (Dittami et al., 2012). At the time of the publication by Dittami and 

colleagues, no GC-MS tool was available on W4M. To reproduce the study results, we 

therefore implemented two new Galaxy tools for preprocessing and annotation (since 

the statistical tools already available on W4M can be applied to data from all 

technologies). First, the metaMS.runGC tool based on the metaMS package from 

Wehrens et al. (2014) was integrated for preprocessing. The main parameter is FWHM 

(full width at half maximum of chromatographic peaks), which is used for peak picking 

by the internal call to the matchedFilter algorithm from XCMS (Smith et al., 2006). The 

default value is 5 s, and can be modified within the User_defined setting. The 

metaMS.runGC function further groups individual ions within the same retention time 

window and same chromatographic profile into pseudospectra, by using the 

groupFWHM function from CAMERA (Kuhl et al., 2012). Each pseudospectrum 

usually (but not always) contains ions originating from a single compound (Wehrens 

et al., 2014). Finally, annotation information is added by matching pseudospectra 

against each other (or, optionally, against a database of standards with the Use 

Personal Database option). A table of retention index (RI) of each alkane used in the 

GC-MS experiment can also be provided (Use RI option): with that option, the RI 

information is added into the variableMetadata.tsv outputs, which can facilitate peak 

annotation. The main output of metaMS.runGC is a data matrix of pseudospectra 

intensities (sum of the intensities of all ions from the pseudospectrum), which can be 
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used for downstream statistical analysis. It is important to note that, in this data matrix, 

each row corresponds to one compound, in contrast to the classical XCMS output 

where each row is a single ion feature. This is particularly interesting because unlike 

electrospray ionization commonly used in LC-MS, electron impact ionization in GC-

MS generates a lot of ions for each compound. 

 

 

Fig. 5. W4M00004 GCMS Algae reference workflow 

(DOI:10.15454/1.4811272313071519E12). Twelve Ectocarpus samples (brown algae), 

corresponding to 4 biological replicates of 3 algal cultures (a freshwater strain in low and 

seawater saline conditions, and a marine strain as a control) were analyzed with an Agilent 

GC-MS instrument. Preprocessing, statistics, and annotation of the data set were performed 

with the metaMS.runGC, Multivariate, and Golm Metabolome Database tools, in addition 

to a local query of the NIST database (Table S2). An in-house spectral database was created 

and used to refine the peak picking (red arrow). Raw files (in the open NetCDF format) are 

publicly available on W4M (http://workflow4metabolomics.org/datasets). 

 

Second, we developed a tool to search the Golm Metabolome Database (Kopka et 

al., 2005). This annotation tool uses the peakspectra.msp file generated by 

metaMS.runGC. The .msp file can be further exported to query the commercial NIST 

database with the mssearch software (usually installed on GC-MS instruments). The 

http://dx.doi.org/10.15454/1.4811272313071519E12
http://workflow4metabolomics.org/datasets
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resulting .msp file can be used as an in-house database (Wehrens et al., 2014) to 

annotate pseudospectra from future experiments. 

 

To perform the analysis of the GC-MS data from the three Ectocarpus cultures (a 

freshwater strain in low and seawater saline conditions, and a marine strain as a 

control), the W4M00004 GCMS Algae workflow was then designed (Fig. 5 and Table 

S2): 

1. Preprocessing with metaMS.runGC (the default parameter values were used) 

2. Annotation by using the Golm Metabolome Database tool and the local NIST 

database 

3. Creation of a spectral database with identified pseudospectra 

4. metaMS.runGC: Reprocessing using the in-house database for refined 

pseudospectra alignment 

5. Normalization: Intensity normalization by dry weight of sample 

6. Multivariate: Exploratory data analysis with PCA 

7. Multivariate: PLS-DA modeling of the three distinct algal cultures 
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Fig. 6. Quality control and annotation of the “Unknown 2” pseudospectrum. Top: The EIC of 

the pseudospectrum clearly indicates that all grouped ions belong to a single compound (no 

co-elution). Only ions with correlated chromatographic profiles are grouped by the metaMS 

algorithm, resulting in a cleaned pseudospectrum for further spectral database annotation 

(Wehrens et al., 2014). Bottom: After matching to the Golm and NIST databases, the 

“Unknown 2” pseudospectrum was annotated as citric acid, which is the correct identification 

(confirmed by injection of the pure compound).  

 

Prior to data upload, the 12 GC-MS raw files (4 biological replicates of the 3 cultures) 

were converted from the Agilent commercial format (*.D) into the open NetCDF format, 

by using the Agilent Chemstation software (‘export as AIA/ANDI Files’ menu; Note that 

the freely available ProteoWizard software can also be used for file conversion; 

Chambers et al., 2012). The converted files from the W4M00004 study are available 

for download from W4M as a unique zipped file (260.8 MB; 

http://workflow4metabolomics.org/datasets). 

 

Application of the workflow to the raw data resulted in a history containing 21 files 

generated in 11 minutes (7 min for peak picking and 4 min for statistics). The data 

matrix contained 52 pseudospectra. The quality of each pseudospectrum was checked 

visually on the GCMS_EIC.pdf output (Fig. 6, top). All pseudospectra were then 

matched against the Golm and NIST spectral databases, by using the 

peakspectra.msp file (Fig. 6, bottom). As a control, the internal standard ribitol was 

confirmed to be the “Unknown 5”. Importantly, “Unknown 2” and “Unknown 4” were 

annotated as citric acid and mannitol, respectively (Fig. 6, bottom). Surprisingly, 

mannitol was not detected in two samples (alg 2 and alg 3), because the retention time 

shift (15 s) was superior to the default threshold in metaMS.runGC (3 s). We therefore 

used an option from metaMS.runGC which enables to refine the alignment of 

pseudospectra between samples by providing a database of reference spectra 

(Wehrens et al., 2014): first, we created a spectral database with ribitol, citric acid, and 

mannitol, from the peakspectra.msp file generated previously; second, we re-run the 

metaMS.runGC tool with this additional spectral information, and successfully 

detected mannitol in all samples (feedback step on Fig. 5). We could then perform the 

downstream statistical analyses. The matrix of intensities (dataMatrix) was first 

normalized by dry weight of sample. Exploratory data analysis was then performed by 

http://workflow4metabolomics.org/datasets
http://workflow4metabolomics.org/datasets
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PCA: distinct clusters corresponding to three algal cultures were observed on the 

score plot. In particular, a clear metabolic shift was observed for the FWS cultures 

from the low versus seawater saline conditions. The decreased concentrations of 

mannitol, which is a putative osmoprotector, in the FS strain, were in accordance with 

the results from Dittami et al. (2012). Finally, PLS-DA discrimination between the 3 

cultures resulted in a classifier with a significant (p < 0.05, when compared with models 

built after random permutation of the labels) and high Q2 value (Q2Y = 0.84). These 

multivariate analyses, which were not included in the original publication, therefore 

provide complementary information. 

3.1.3. Brain toxicity of Bisphenol A: The W4M00006 NMR 

BPAMmusculus history 

The aim of this study was to assess the effect on the brain metabolome of perinatal 

exposure to Bisphenol A (BPA), an endocrine disruptor widely used in plastics and 

resins (Cabaton et al. 2013). To analyze NMR data on W4M, specific preprocessing 

and annotation modules have been developed for the 3.0 version (see below). The 

implemented workflow (Fig. 7) corresponds to a complementary pairwise comparison 

study (BPA0.025 vs BPA0.25), which was not presented in the original publication. 

The 0.25 and 0.025 µg BPA/kg body weight/day treatments correspond to 1/100 and 

1/000 of the tolerable daily intake (TDI: “Estimated maximum amount of an agent, 

expressed on a body mass basis, to which individuals may be exposed daily over their 

lifetimes without appreciable health risk”; World Health Organization, 2004) and were 

picked up to demonstrate that even at very low doses of exposure, BPA is still 

modulating differently the brain metabolome of the CD1 mice. 
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Fig. 7. W4M00006 BPAMmusculus reference workflow 

(DOI:10.15454/1.4821558812795176E12). The input data (24 samples) were acquired using 

1H NMR spectroscopy. TopSpin (Bruker) preprocessed files (Bruker format) are available on 

W4M for download (http://workflow4metabolomics.org/datasets). 

 

The 7 tools from the BPAMmusculus workflow are detailed in Table S3 and illustrated 

on Fig. 8. First, the 24 TopSpin-preprocessed spectra were uploaded into W4M as a 

single zipped file (see the Workflow Management with W4M section). Second, spectra 

were segmented into 809 buckets by using the NMR Bucketing tool: this tool divides 

the whole spectrum into “small” fixed-size windows (e.g., 0.01 ppm). In addition, 

spectrum regions corresponding to water, solvent or contaminant resonances can be 

excluded. Finally, the sum of intensities inside each bucket (area under the curve) is 

computed by using the trapezoidal method. Third, spectra were normalized to the Total 

Intensity with the NMR Normalization tool. The objective of sample normalization is 

to make the data from all samples directly comparable with each other (i.e., to remove 

systematic biological and technical variations). The NMR Normalization tool includes 

3 normalization methods: Total intensity (each bucket integration is divided by the 

integration of the total spectrum), quantitative variable (e.g., sample weight, 

osmolality), and Probabilistic Quotient Normalization (PQN; Dieterle et al., 2006), 

where each spectrum is compared to a reference sample (e.g., the median spectrum 

of control samples). Fourth, exploratory data analysis and multivariate modeling were 

http://dx.doi.org/10.15454/1.4821558812795176E12
http://workflow4metabolomics.org/datasets
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performed with the Multivariate tool. PCA was first used to detect outliers: two 

observations were excluded for subsequent analyses. Then, an OPLS-DA classifier of 

the two treatment doses was built: the model was significant (permutation test p-value 

< 0.05), and 157 variables (buckets) having a VIP value > 0.8 were selected. In 

parallel, univariate analysis of differences between the two doses was performed with 

the Wilcoxon-Mann-Whitney test (Univariate tool). No significant difference was 

observed after correction for multiple testing (False Discovery Rate set to 5%). 

 

 

Fig. 8. W4M00006 BPAMmusculus: From experiment to metabolite annotation. Top: 

Experimental design, sample preparation, and acquisition of NMR spectra (Bruker files). (1-3) 

Data reduction (bucketing + normalization). (4) Multivariate analysis (PCA and OPLS-DA 

score plots, and permutation tests). (5-6) Annotation of significant metabolites. 

 

Sixth, buckets were annotated with the NMR Annotation tool. This tool decomposes 

any input spectrum from a complex biological matrix into a mixture of spectra from 

pure compounds provided as a reference database. The internal database currently 

contains 175 spectra of pure compounds, which were acquired on a Bruker Avance III 
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600 MHz NMR spectrometer, at pH 7.0. The deconvolution algorithm uses a penalized 

regression to compute a parsimonious list of non-zero coefficients (i.e., proportions) 

for the reference spectra detected in the mixture (Tardivel et al., submitted). The output 

proportionEstimation table contains the identified metabolites with their estimated 

relative concentration (the highest concentration being arbitrarily set to 1). The NMR 

Annotation tool was applied to one spectrum from each of the two classes (BPA0.025 

and BPA0.25), and resulted in the annotation of 39 metabolites. Among them, the 

Glutamic Acid and the GABA neurotransmitters had high VIP predictive values (4.1 for 

the 2.35 ppm bucket, and 2.6 for the 2.3 ppm bucket, respectively), which confirmed 

the previous results showing a decrease of the concentrations of these metabolites 

following exposure to BPA (Cabaton et al., 2013). Furthermore, these new analyses 

showed that two other neurotransmitters, Taurine (3.44-3.41, 3.26-3.24 ppm) and 

Aspartate (3.91-3.89, 2.7-2.69 ppm), had high discriminative values (VIP of 2.9 for the 

3.26 ppm bucket, and 2.2 for the 3.90 ppm bucket, respectively). To our knowledge, 

this is the first time that comprehensive NMR workflows (from preprocessing to 

identification) can be created, run, and published online. 

3.2. Referencing histories 

The histories from each case study (i.e., workflow and the associated input data and 

output result files) were further published on W4M (i.e., shared with the community) 

and referenced with a digital object identifier (DOI) which can be cited in publications 

(Table 2). Referenced histories can be imported by any user into his/her account, and 

the workflow can be extracted from the history with the Extract Workflow functionality, 

e.g., for application to new data sets. 

 

Making workflows and associated data available to the community is essential to 

demonstrate the value and the reproducibility of the analysis (Mons et al., 2011). As 

for raw data, journal editors will increasingly recommend that the process of generating 

the results (code, parameter values, output data) is made available on reference 

repositories. Funding agencies such as European Programs also require that the 

generated data are made public on reference online resources. Finally, sharing 

analyses gives experimenters the opportunity to receive feedback on their results, get 

cited, and initiate new collaborations. While databases for raw data and metabolites 
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already exist, the W4M e-infrastructure is the first repository for data analysis 

workflows dedicated to metabolomics. 

 

Referencing histories on W4M is straightforward (see the “Referenced Workflows and 

Histories” section on the home page). Authentication is required to access the shared 

histories in Galaxy. Extra anonymous credentials for reviewers, however, may be 

provided to authors from reference histories when submitting their manuscript. Six 

histories have already been referenced (Table 2), and have been cited in publications 

such as Thevenot et al. (2015), Rinaudo et al. (2016), and Peng et al. (2017).  

 

 

Table 2 

Publicly referenced histories (workflows and associated data and result files; 

http://workflow4metabolomics.org/referenced_W4M_histories). The DOI points to a landing 

page which details the main steps, data size, and name of the maintainer, and gives access 

the whole history online. 

ID Raw data Technol. Species Matrix Factor(s) Nb 
samples 

Size Publication 

W4M00001_
Sacurine-
statistics 
DOI:10.1545
4/1.4811121
736910142E
12 

MTBLS404 LC-MS H. sapiens urine age, BMI, 
gender 

210 4 
MB 

Thevenot et al., 
2015 
DOI:10.1021/acs.j
proteome.5b0035
4  

W4M00002_
Sacurine-
comprehensi
ve 
DOI:10.1545
4/1.4811142
33733302E1
2 

MTBLS404 LC-MS H. sapiens urine age, BMI, 
gender 

234 18 
GB 

Thevenot et al., 
2015 
DOI:10.1021/acs.j
proteome.5b0035
4  

W4M00003_
Diaplasma 
DOI:10.1545
4/1.4811165
052113186E
12 

N/A LC-MS H. sapiens plasma diabetic 
type 

63 11 
MB 

Rinaudo et al., 
2016 
DOI:10.3389/fmol
b.2016.00026 

W4M00004_
GCMS-Algae 
DOI:10.1545
4/1.4811272
313071519E
12  

N/A GC-MS E. 
siliculosus 

alga salinity 12 260 
MB 

Dittami et al., 
2012 
DOI:10.1111/j.136
5-
313X.2012.04982.
x 

W4M00005_
Ractopamine
-Pig 
DOI:10.1545

MTBLS384 LC-MS S. Scrofa serum Ractopami
ne 

164 327 
MB 

Peng et al., 2017 
DOI:10.1007/s113
06-017-1212-0 

http://workflow4metabolomics.org/referenced_W4M_histories
http://dx.doi.org/10.15454/1.4811121736910142E12
http://dx.doi.org/10.15454/1.4811121736910142E12
http://dx.doi.org/10.15454/1.4811121736910142E12
http://dx.doi.org/10.15454/1.4811121736910142E12
http://www.ebi.ac.uk/metabolights/MTBLS404
http://dx.doi.org/10.1021/acs.jproteome.5b00354
http://dx.doi.org/10.1021/acs.jproteome.5b00354
http://dx.doi.org/10.1021/acs.jproteome.5b00354
http://dx.doi.org/10.15454/1.481114233733302E12
http://dx.doi.org/10.15454/1.481114233733302E12
http://dx.doi.org/10.15454/1.481114233733302E12
http://dx.doi.org/10.15454/1.481114233733302E12
http://www.ebi.ac.uk/metabolights/MTBLS404
http://dx.doi.org/10.1021/acs.jproteome.5b00354
http://dx.doi.org/10.1021/acs.jproteome.5b00354
http://dx.doi.org/10.1021/acs.jproteome.5b00354
http://dx.doi.org/10.15454/1.4811165052113186E12
http://dx.doi.org/10.15454/1.4811165052113186E12
http://dx.doi.org/10.15454/1.4811165052113186E12
http://dx.doi.org/10.15454/1.4811165052113186E12
http://dx.doi.org/10.3389/fmolb.2016.00026
http://dx.doi.org/10.3389/fmolb.2016.00026
http://dx.doi.org/10.15454/1.4811272313071519E12
http://dx.doi.org/10.15454/1.4811272313071519E12
http://dx.doi.org/10.15454/1.4811272313071519E12
http://dx.doi.org/10.15454/1.4811272313071519E12
http://dx.doi.org/doi:10.1111/j.1365-313X.2012.04982.x
http://dx.doi.org/doi:10.1111/j.1365-313X.2012.04982.x
http://dx.doi.org/doi:10.1111/j.1365-313X.2012.04982.x
http://dx.doi.org/doi:10.1111/j.1365-313X.2012.04982.x
http://dx.doi.org/10.15454/1.4811287270056958E12
http://www.ebi.ac.uk/metabolights/MTBLS384
http://dx.doi.org/10.1007/s11306-017-1212-0
http://dx.doi.org/10.1007/s11306-017-1212-0
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4/1.4811287
270056958E
12 

W4M00006_
BPA-
Mmusculus 
DOI:10.1545
4/1.4821558
812795176E
12 

W4M NMR Mus 
Musculus 

brain BPA dose 24 7 
MB 

Cabaton et al., 
2013 
DOI:10.1289/ehp.
1205588  

 

 

  

http://dx.doi.org/10.15454/1.4811287270056958E12
http://dx.doi.org/10.15454/1.4811287270056958E12
http://dx.doi.org/10.15454/1.4811287270056958E12
http://dx.doi.org/10.15454/1.4821558812795176E12
http://dx.doi.org/10.15454/1.4821558812795176E12
http://dx.doi.org/10.15454/1.4821558812795176E12
http://dx.doi.org/10.15454/1.4821558812795176E12
http://workflow4metabolomics.org/node/48
http://dx.doi.org/10.1289/ehp.1205588
http://dx.doi.org/10.1289/ehp.1205588
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4. Discussion 

High-throughput analysis of the metabolic phenotype has a profound impact on the 

understanding of biochemical reactions and physiology, and prediction of disease 

(Peyraud et al., 2011; Balog et al., 2013; Etalo et al., 2015; Li et al., 2016; Weiss et 

al., 2016). To cope with the volume and complexity of data generated by modern high-

resolution MS and NMR instruments, adapt to the diversity of experimental designs, 

and ensure rigorous and reproducible analyses, there is a strong need for user-

friendly, modular, and computationally efficient software platforms. To demonstrate 

how the Workflow4Metabolomics 3.0 e-infrastructure meets this workflow challenge, 

we designed, run, and referenced online three comprehensive analyses of previously 

published LC-MS, GC-MS, and NMR data studies from human physiology, mouse 

toxicology, and alga evolution. The workflow sequence, parameter values, and critical 

points are detailed to provide examples of critical design and interpretation of 

analyses. The outputs of W4M analyses confirmed the published results: for each case 

study, key metabolites were selected and annotated, with significant concentration 

differences either between gender, BMI, and age (human study), or after perinatal 

exposition to Bisphenol A (mouse study), or in response to salinity stress (algae study). 

Furthermore, they shed new lights on the datasets, e.g., by suggesting variations of 

neurotransmitter concentrations even at the lowest doses of BPA exposure (mouse 

study). Workflow building and running was very efficient: the Sacurine-comprehensive 

workflow, which contains 29 tools for preprocessing, statistical analysis and 

annotation, could be run on 234 raw files in a few hours. Workflow management was 

straightforward, as illustrated by the comparison between the matchedFilter and 

centWave approaches for LC-MS preprocessing. Together, these results demonstrate 

that comprehensive LC-MS, GC-MS, and NMR data analyses can be readily designed 

and run on the W4M e-infrastructure. 

 

The number of available tools on W4M 3.0 for pre-processing, statistical analysis and 

annotation, 40, has doubled since the previous release (Giacomoni et al., 2015), and 

now allows to analyze LC-MS, FIA-MS, GC-MS, and NMR data. Importantly, several 

tools implement original methods from the Core Team which provide unique features 

to the W4M workflows, such as the Biosigner tool for selection of significant molecular 

signatures for PLS-DA, Random Forest, or SVM classifiers, the NMR Annotation tool 



29 
 

for annotation of NMR spectra, or the proFIA tool for the preprocessing of data from 

Flow Injection Analysis coupled to High-Resolution Mass Spectrometry (FIA-HRMS; 

Delabriere et al., under review). Furthermore, to cope with the computer intensive 

preprocessing of LC-MS data, the xcms.xcmsSet and CAMERA.annotate tools can 

now be run in parallel (see the supplementary material). All W4M tools are 

implemented by a large core team of bioinformaticians and biostatisticians based on 

five metabolomics facilities, and supported in the long term by two national 

infrastructures, namely the French Institute of Bioinformatics (IFB; French Elixir node) 

and the National Infrastructure for Metabolomics and Fluxomics (MetaboHUB). In 

addition to ensuring a sustainability and high-performance computing environment, 

these large clusters provide cutting-edge technologies, know-how, and scientific 

expertise from both the experimental and computational fields. In the near future, new 

unique tools will be available on W4M (e.g., to extend the NMR workflow and to 

analyze MS/MS data). Moreover, complementary Galaxy tools have been recently 

described in metabolomics (e.g., for Direct Infusion MS data; Davidson et al., 2016), 

but also in complementary omics communities (Boekel et al., 2015) such as 

proteomics (Jagtap et al., 2015; Jagtap et al., 2014; Fan et al., 2015). Due to the 

modularity of the Galaxy environment, and the relative ease of wrapping existing code 

into Galaxy tools, the number of W4M tools and contributors should continue to expand 

rapidly. To help developers integrating their tools, an updated virtual machine and the 

code of the Galaxy modules are publicly available on the W4M GitHub 

(https://github.com/workflow4metabolomics) and the Galaxy Toolshed 

(https://toolshed.g2.bx.psu.edu/; ‘[W4M]’ tag) repositories. 

 

Workflow4Metabolomics brings the workflow management features of the Galaxy 

environment to the metabolomics user community through its online infrastructure. 

Online availability has many advantages compared with local installation: no local 

computing resources are needed, local software installation and update is not 

required, and the infrastructure can be directly accessed from anywhere. Two online 

platforms have recently emerged for LC-MS processing and annotation (XCMS 

Online; Tautenhahn et al., 2012), and statistical analysis (MetaboAnalyst; Xia et al., 

2009), respectively. In contrast, W4M provides for the first time a single resource for 

the comprehensive analysis of either LC-MS, FIA-MS, GC-MS, or NMR metabolomics 

data. In addition, by building on the Galaxy environment, W4M provides the user with 

https://github.com/workflow4metabolomics
https://toolshed.g2.bx.psu.edu/
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unique features to build, run, and share workflows and histories (e.g., with remote 

collaborators in multi-center or transdisciplinary projects). 

 

In particular, W4M 3.0 now offers to reference a history publicly, by assigning a unique 

ID and DOI permanent link, which can be cited in publications. To our knowledge, this 

is the first time that workflows (and associated data) can be referenced. Furthermore, 

since the source code of the W4M tools is also publicly available (as discussed above), 

referenced analyses can be fully dissected and reproduced online (or locally) by the 

scientific community. The W4M infrastructure thus fills a gap between existing 

repositories for raw data, such as MetaboLights (Haug et al., 2013) or the 

Metabolomics Workbench (Sud et al., 2016), and the spectral and metabolite 

databases such as KEGG (Kanehisa and Goto, 2000), HMDB (Wishart et al., 2007), 

ChEBI (Degtyarenko et al., 2008) or MassBank (Horai et al., 2010). Further 

interoperability between the W4M workflow resource and the MetaboLights data 

repository is ongoing within the PhenoMeNal European consortium. In the open data 

era (Leonelli et al., 2013), the need for peer-reproduced workflows (Gonzalez-Beltran 

et al., 2015) and workflow storage (Belhajjame et al., 2015) is pivotal for good science 

and robust transfer to the clinic (Baker, 2005). Besides, funding agencies and journal 

editors already require data to be made publicly available (the MetaboLights repository 

is already recommended by scientific journals such as Metabolomics, the EMBO 

Journal, and Nature Scientific Data; Kale et al., 2016). W4M should therefore become 

the reference repository for metabolomics workflows.  

 

To help users cope with data analysis concepts, parameter tuning, and critical 

interpretation of diagnostics and results, training is of major importance (Via et al., 

2013; Weber et al., 2015). On the W4M infrastructure, remote e-learning is possible 

through many tutorials (http://workflow4metabolomics.org/howto). In addition, the 

reference histories provide detailed examples of workflows, and of table and figure 

outputs (http://workflow4metabolomics.org/referenced_W4M_histories). Furthermore, 

“hands-on” sessions using W4M can be readily organized since only an internet 

connection is needed to access the infrastructure (for users wishing to use W4M for 

training, please contact us at contact@workflow4metabolomics.org). Based on our 

experience, optimal results are achieved when users analyze their own data. We 

therefore regularly organize one-week courses combining practical presentations in 

http://workflow4metabolomics.org/howto
http://workflow4metabolomics.org/referenced_W4M_histories
mailto:contact@workflow4metabolomics.org
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the mornings, and tutoring sessions in the afternoons (Workflow4Experimenters, W4E; 

http://workflow4metabolomics.org/events). Such trainings with about 25 participants 

offer unique opportunities to discuss the designs, methods, and tools for 

comprehensive and rigorous data analysis. 

 

In conclusion, the Workflow4Metabolomics 3.0 e-infrastructure provides 

experimenters with unique features to learn, design, run, share, and reference 

comprehensive LC-MS, FIA-MS, GC-MS, and NMR metabolomics data analyses. 

  

http://workflow4metabolomics.org/events
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1. Workflow Management with W4M 

We provide here a brief description of the features offered by the 

Workflow4Metabolomics 3.0 online infrastructure (e-infrastructure). Some of these 

features, such as the building and sharing of workflows and histories, are provided 

by the Galaxy environment, which is used internally by W4M (Goecks et al., 2010). 

Other features are specific to the e-infrastructure, such as the computational tools 

themselves, the referencing of histories with DOI, the user accounts, the tutorials, 

the help desk, and the practical training sessions. 

1.1. User Accounts 

Accounts can be requested on the W4M home page. Accounts are private (i.e., only 

accessible to the user via his/her credentials). 

1.2. Data Format 

1.2.1. Raw data (for preprocessing tools) 

1.2.1.1. MS 

MS data should be in either the mzML, mzXML, mzData, or NetCDF open format 

(Smith et al., 2006). We recommend the use of centroid data, in order to reduce file 

size. Conversion of raw data from proprietary format to centroid open format should 

be performed by the user before upload into W4M, e.g., by using the open-source 

ProteoWizard software (Chambers et al., 2012). 

 

Raw files should be organized into a single or multiple folder(s), corresponding to the 

class(es) to be considered during preprocessing. The class information is used in the 

xcms.group tool, through the minfrac argument, to discard features which are not 

detected in a sufficient number of samples in at least one class (Smith et al., 2006). 

Separate classes may correspond to distinct sample types (blank reagent, quality 

control pools), or experimental conditions (treatment; Smith et al., 2006). 

 

Raw files (either in a single or multiple folders) must be zipped before upload (we 

recommend the use of the 7-Zip open source software; http://www.7-zip.org). 

 

For LC-MS, it is also possible now to upload the files individually (i.e., without folders 

and zip file). Within the history, the files must then be grouped as a data collection 

http://www.7-zip.org/
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(Afgan et al., 2016) for further parallel processing by the xcms.xcmsSet tool. The 

use of a data collection therefore speeds up this computer intensive step. After peak 

detection, the collection of xset.RData outputs, together with a sampleMetadata file 

indicating the classes, are merged with the xcms.xcmsSet Merger tool before the 

grouping step (xcms.group). More details about the use of data collection for LC-

MS data preprocessing can be found: 

1) in the following tutorial: 

http://download.workflow4metabolomics.org/docs/170510_galaxy_xcms_dataset_col

lection.m4v 

2) and on the ‘W4M_sacurine-subset_parallel-preprocessing’ public history: 

https://galaxy.workflow4metabolomics.org/history/list_published 

1.2.1.2. NMR 

NMR preprocessing tools currently work with Bruker files. Each sample directory 

should be organized with acquisition run and process numbered “1” (Table 1 and 

Fig. 8; upper right). Sample directories should then be gathered in a single parent 

directory, which should in turn be zipped before upload into W4M. 

1.2.2. Preprocessed data (for normalization, quality control, 

statistical analysis, and annotation tools) 

Preprocessing of the sample raw files generates a unique sample by variable data 

matrix of peak intensities, in addition to metadata of samples (e.g., sample ID, factor 

of interest) and variables (e.g., m/z and retention time). Such data and metadata are 

handled in W4M in a unique format consisting of 3 separate tables: dataMatrix, 

sampleMetadata, and variableMetadata. These tables, in a tabulated format (e.g., 

.tsv), are generated by the preprocessing tools from W4M, but can also be created 

or modified with spreadsheet editors (such as the Excel or the OpenOffice Calc 

software). The “3 table” format is used in all tools following the preprocessing (i.e., all 

tools for normalization, quality control, statistical analysis, and annotation). Details 

about the formats of the 3 tables can be found in the online tutorials (HowTo section 

from the front page). Once uploaded into W4M with the Upload File tool, the formats 

of the 3 tables can be verified with the Check Format tool (Data Handling section; 

note that the ‘search tools’ feature on top of the ‘Tools’ panel is helpful for locating a 

specific tool). 

1.3. Data Upload 

The Upload File tool allows data upload from a local computer into the W4M 

infrastructure. For sizes up to 2 GB (e.g., NMR raw zip or preprocessed data and 

metadata tables), files can be selected with a simple drag and drop. For bigger data 

sets (e.g., LC-MS and GC-MS raw zip), an FTP client software is required (such as 

Cyberduck, https://cyberduck.io, or WinSCP, https://winscp.net) to directly connect to 

http://download.workflow4metabolomics.org/docs/170510_galaxy_xcms_dataset_collection.m4v
http://download.workflow4metabolomics.org/docs/170510_galaxy_xcms_dataset_collection.m4v
https://galaxy.workflow4metabolomics.org/history/list_published
https://cyberduck.io/
https://winscp.net/
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the ftp://workflow4metabolomics.org infrastructure (with your W4M credentials) and 

copy/paste the zip file (see the Galaxy Initiation tutorial in the HowTo section). 

1.4. Building Workflows 

The user-friendly Galaxy features within the W4M e-infrastructure allow to build and 

save complex workflows. Workflows can be built de novo by using the canvas 

(editor): tools can be chained, and parameter values can be selected. Alternatively, 

workflows can be extracted from an existing history with the Extract workflow option 

(e.g., when the tools have been sequentially tuned on specific data). 

 

1.5. Running Workflows 

W4M offers users a high-performance environment for computing (4,000 cores) and 

data storage. The infrastructure can be accessed via a simple web browser and 

does not consume local resources. Once jobs are launched, the computation will 

continue and the results will be saved, even if the local connection is switched off by 

the user. 

1.6. Sharing Histories 

Histories can be shared with a dedicated user by using his/her W4M email (e.g., with 

colleagues within a lab or a consortium, or with a member from the help desk). 

Alternatively, histories can be published online to give all users unrestricted access 

to the workflow and the associated data (e.g., for training or citation purposes, see 

below). 

1.7. Referencing Histories 

Histories (workflow and all associated input and output data and metadata) can now 

be published on W4M 3.0 with a reference ID and a permanent Digital Object 

Identifier (DOI; see the Result section). Reference histories can then be cited in 

publications (see for instance Rinaudo et al., 2016), thus giving reviewers and 

readers full access to the analysis (i.e., data, metadata, workflow, parameters, and 

results). 

1.8. Tutorials 

Tutorials for data preparation, upload, and analysis, in addition to history sharing and 

publishing, are available in the HowTo section from the front page 

(http://workflow4metabolomics.org). 

http://workflow4metabolomics.org/
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1.9. Help desk 

For any question regarding the features of the infrastructure, the help desk is 

available at support@workflow4metabolomics.org. 

 

2. Case Studies workflows 

For each reference workflow designed for the three case studies, the tools, 

parameter values, and critical points are described hereafter. Histories can be 

accessed via the corresponding DOI permanent link, and imported into the user 

account with Import history followed by start using this history. Workflows can then 

be extracted by selecting Extract workflow from the History options menu. 

2.1 Table S1: W4M00002_Sacurine-comprehensive 

(DOI:10.15454/1.481114233733302E12). 

Please note that the statistical steps are identical to the W4M00001_Sacurine-statistics 

workflow. 

Tool Step Parameters 

(non-default 

values) 

Variables Critical points 

Upload File Data upload 

(negative 

ionization mode; 2 

batches; 24 

blanks + 26 QCs 

+ 184 samples = 

234 files; mzML 

format; centroid; 

17.6 GB) 

  File splitting between 

subfolders impacts 

xcms.group (minfrac 

parameter) 

xcms.xcmsset Peak detection 

within each file 

centWave: 

ppm = 3, 

peakwidth = 

c(5,20), 

snthresh = 10, 

mzdiff = 0.01, 

prefilter = 

c(3,5000), 

noise = 1000 

 

[Original 

matchedFilter 

parameters: 

step = 0.01, 

 Check the Total Ion 

Chromatogram (TIC) and 

Base Peak 

Chromatogram (BPC) 

graphical outputs, 

displayed as pairwise 

comparisons between the 

classes; 

See also the ‘1.2.1.1 Data 

Format’ for parallel 

processing of the files (as 

a ‘data collection’) 

mailto:support@workflow4metabolomics.org
http://dx.doi.org/10.15454/1.481114233733302E12
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fwhm = 4, 

snthresh = 3] 

xcms.group Peak grouping 
between samples 

bw = 5, 
minfrac = 0.1, 
mzwid = 0.01 

 Check on the graphical 
output the relevance of 
the selected parameter 
values 

 

Tool Step Parameters Variables Critical points 

xcms.retcor Alignment of 
retention times 
between samples 

extra = 1, 
missing = 40 

 Check on the graphical 
output the number of 
peak groups used for 
alignment, and their even 
distribution along the time 
axis  

xcms.group Peak grouping 
between samples 

bw = 5, 
minfrac = 0.1, 
mzwid = 0.01 

  

xcms.fillPeaks Imputation of 
missing values 

 7,456 
(100%) 
 
[4,667 
(100%)] 

 

CAMERA.annotate Annotating 
features which 
may belong to the 
same metabolite 
(isotopes, 
adducts, 
fragments) 

num_digits = 4 
polarity = 
negative 

 Select the appropriate 
polarity 

Upload File Import of the 
sampleMetadata 
file which contains 
the sampleType, 
injectionOrder, 
and batch 
columns (to be 
used in the 
Quality Metrics, 
Generic Filter, 
and Batch 
Correction tools), 
osmolality values 
for the 
Normalization 
tool, and age, 
BMI, and gender 
values for the 
Univariate, 
Multivariate, and 
Biosigner 
statistical tools 
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Check Format Checking format 
of dataMatrix, 
sampleMetadata, 
and 
variableMetadata 
files 

   

 

 

Tool Step Parameters Variables Critical points 

Quality Metrics + 
Generic Filter 

Discarding 
variables with: 
1.a) 
blankMean_over_
sampleMean > 
0.5 
or 
1.b) pool_mean < 
0.1 
Discarding blank 
samples 

 6,041 
(81%) 
 
[3,732 
(80%)] 

 

Batch correction Correcting each 
variable for signal 
drift and batch 
effect 

all_loess_pool  Include enough injections 
of the pool sample (at 
least 5 per batch to use 
loess correction), in 
particular at the first and 
last positions; check on 
the graphic if a correction 
is necessary, and which 
kind of model (linear or 
loess) provides the best 
fit 

Quality Metrics + 
Generic Filter 

Discarding 
variables with 
pool_CV > 0.3 
Discarding pool 
samples 

 3,120 
(42%) 
 
[2,102 
(45%)] 

If dilutions of the pool 
sample are provided, the 
correlation with the 
dilution factor is 
computed and can be 
used as an additional 
quality metric 

Normalization Dividing all 
intensities of a 
sample by its 
osmolality value 

   

Transformation  log10   

Univariate Hypothesis testing 
of non-zero 
Spearman 
correlation with 
age or BMI 
(respectively of 
difference of 
medians between 
genders with the 

fdr = 0.05   
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Wilcoxon test), 
including a 
correction for 
multiple testing 

 

 

 

Tool Step Parameters Variables Critical points 

Multivariate OPLS 
(respectively 
OPLS-DA) 
modeling of the 
age or BMI 
response 
(respectively of 
the gender 
response) 

Number of 
orthogonal 
components = 
NA (i.e. 
automatically 
optimized by 
the algorithm) 

 Check the diagnostics; in 
particular the pQ2 value 
obtained after random 
permutation of the labels 
should be <0.05 to avoid 
overfitting 

Biosigner Selection of 
significant 
features for 
building either a 
PLS-DA, Random 
Forest, or SVM 
model of the 
gender response 

Seed = 123  Set a specific seed value 
(Advanced computational 
parameters) to reproduce 
an identical signature 
from the internal 
bootstrap procedure  

HMDB MS search Search the HMDB 
database by the 
ion mz values 

Molecular 
Weight 
Tolerance +- = 
0.001 
Molecular 
Species: 
negative mode 

  

Kegg Compounds Search the KEGG 
database by the 
neutral masses 

Delta of mass 
= 0.001 
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2.2 Table S2: W4M00004_GCMS-Algae 

(DOI:10.15454/1.4811272313071519E12). 

 

Tool Step Parameters 

(non-default 

values) 

Variables Critical points 

Upload File Data upload (12 

.CDF files converted 

from the Agilent 

Chemstation .D 

format) 

  File splitting between 

subfolders impacts 

xcms.group (minfrac 

parameter) 

metaMS.runGC Preprocessing of GC-

MS data 

  Too high 

similarity_threshold value 

might result in some 

compounds with low 

intensity being 

misaligned; check the 

quality of the 

pseudospectra with the 

GCMS_EIC graphical 

output 

Golm 

Metabolome 

Database 

Search the Golm 

Metabolome 

Database with 

spectra in the .msp 

format 

   

For additional database search  

Download 

metaMS result 

Download locally the .msp file for NIST search  

NIST search on 

local computer 

Read the .msp file with your mssearch software (usually preinstalled on your 

GC-MS workstation; for additional information, see the tutorial in the HowTo 

section from the W4M portal) 

Creation of a 

spectral 

database 

Open the peakspectra.msp file; keep Unknowns 2, 4 and 5 only, and set the 

compound names to Citric acid, Mannitol, and Ribitol, respectively; when saving, 

make sure to keep the .msp (or .txt) file extension 

Data re-processing using the user spectral database 

Upload file Upload the modified 

.msp spectra 

database file into 

Galaxy 

   

 

 

http://dx.doi.org/10.15454/1.481114233733302E12
http://dx.doi.org/10.15454/1.481114233733302E12
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Tool Step Parameters Variables Critical points 

metaMS.runGC Preprocessing of GC-

MS data 

Choose the 

Use personal 

database 

option and 

select your 

modified .msp 

file 

52 

pseudo-

spectra 

 

Normalization Dividing the 
intensities of each 
sample by the dry 
weight value 

   

Multivariate PCA and PLS-DA Scaling = 

pareto, 

transformation 

= Log10 

 Check the diagnostics; for 

PLS models, the pQ2 

value obtained after 

random permutation of 

the labels should be 

<0.05 to avoid overfitting 
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2.3 Table S3: W4M00006_BPAMmusculus 

(DOI:10.15454/1.4821558812795176E12). 

 

Tool Step Parameters 

(non-default 

values) 

Variables Critical points 

Upload data Data upload (24 

samples; Bruker 

format; 7 MB) 

  File name (“1”) of the 

acquisition run and of the 

process of interest impacts 

NMR Bucketing 

NMR 

Bucketing 

Spectra bucketing 

and integration 

BucketWidth = 

0.01 

LeftBorder = 9.5 

RightBorder = 

0.8 

ExclusionZones: 

 Left = 5.1 

 Right = 4.5 

809 

buckets 

Exclusion zones depend on 

the biological matrix and on 

the solvents used to 

prepare the samples 

NMR 

Normalization 

Spectra 

normalization to 

total intensity 

Normalization 

method = Total 

  

Multivariate PCA Scaling = pareto   

Multivariate OPLS-DA modeling 

of the treatment 

response 

Number of 

orthogonal 

components = 

NA (i.e. 

automatically 

optimized by the 

algorithm) 

Scaling = pareto 

 Check the diagnostics; in 
particular the pQ2 value 
obtained after random 
permutation of the labels 
should be <0.05 to avoid 
overfitting 

Generic Filter Discarding variables 

with 

Treatment_OPLSD

A_VIP_pred < 0.8 

 157 

buckets 

 

Univariate Hypothesis testing 

of difference of 

means between 

treatment doses 

with the Wilcoxon 

test and the False 

Discovery Rate 

correction for 

multiple testing 

corrected p-

value 

significance 

threshold = 0.05 

  

 

http://dx.doi.org/10.15454/1.4821558812795176E12
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Tool Step Parameters Variables Critical points 

NMR 

Annotation 

Spectra annotation 

based on an in-

house database 

(175 reference 

compounds) 

ExclusionZones: 

Left = 5.1 

Right = 4.5 

shift = 0.01 

39 

identified 

metabolit

es 

Input spectrum can be a 

pool of all biological 

samples; alternatively, one 

spectrum from each class 

can be annotated; 

Exclusion zones depend on 

the biological matrix and on 

the solvents used to 

prepare the samples 

Identified metabolites 

should be checked by an 

NMR analyst 
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