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Petru Mironescu *

August 9, 2017

Abstract

If 1 <p <ooand 0 < A < 1, we may always decompose any function f € WrP(RN)as f=g+h
with g € WA?» and h € WP, A stronger property, natural in the context of functional calcu-
lus in Sobolev spaces, is that we may choose g € WAPAAWLP and h € WP nW1P. We address
here the question of the validity of a similar result for three Sobolev spaces W51 W$P W52.P2
satisfying the proportionality relations

1 6 1-6

(1)s=0s1+(1-0)sg, —=—+
P p1 P2

For most of s1,..., po satisfying (1), we prove that

for some 0 € (0,1).

) WEPRN) = (WorPLRN ) n WP (RN)) + (W2 P2 (RY) n WP (RY)).

In some exceptional situations, this equality does not hold, and we derive an alternative
decomposition.

We also establish the validity of (2) when the first equality in (1) is replaced by the subopti-
mal condition s > 60s7 +(1—0)ss.
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1 Introduction

In connection with the factorization of unimodular Sobolev maps, Haim Brezis and the author
observed the following property of Sobolev spaces [5]. Let 1 < p <oo and 0 <A < 1. Then every
function f € W-P(RY) can be decomposed as

f=g+h, with g€ WP AWbLPYRY) and h € (WP A WEPYRY). (1.1)

We will present in appendix a proof of this fact using factorization. We will also explain there how
(1.1) is related to functional calculus (superposition operators) in Sobolev spaces.
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Decomposition (1.1) has a flavor of interpolation, and indeed we have for example when p = 2
the equality [20, Section 2.4.3, Theorem, p. 66]

W2 =W F2 o, with 6:= 1/2- A). (1.2)

[We will recall in the next section the definition of the Triebel-Lizorkin spaces F, ;.] Using (1.2)
and the embedding Fil — W21 (see the next section), we find that W12 c W24 + W21 However,
this does not yield the stronger conclusion W12 ¢ (WA2A A W12) 4+ (W21 A Wb2). Actually, one
cannot derive the equality Z = (X N Z)+ (Y N Z) merely from the inclusion Z c X +Y (take e.g.
X=Rx{0}, Y ={0} xR and Z = {(x,x); x € R)}.

We address here the following question. Let 0 <s,s1,59 <00, and 1< p1,p,pg <oo. Assume
that

WP (RY) c WSLPH(RY) + W32P2(RY) for any N. (1.3)
Is it true that
WP (RN) = (WSPL A WSPYRY) + (W52P2 a WSP)RY) for any N? (1.4)

We emphasize the fact that we ask for N-independent properties. For example, by the Sobolev
embeddings we have W1 c L2 when N =1 or 2, but not for N = 3, and thus (1.3) does not hold for
31:32:0,3:1,171:]72:2,]7:1-

Our first results characterize most of the triples T' = (W5t:P1 W$-P W52:P2) guch that (1.3) and
(1.4) hold.

Proposition 1.1. Assume that (1.3) holds. Then there exists some 6 € [0,1] such that

$=20s1+(1-0)s9, (1.5)
1 1-
1_06.4-60 (1.6)
P p1 D2

Proposition 1.2. Assume that for some 6 €[0,1] we have (1.6) and s > 0s1+ (1 —0)so. Then both
(1.3) and (1.4) hold.

On the other hand, (1.3) and (1.4) trivially hold when (1.5)—(1.6) are satisfied with 8 =0 or 1,
since we then have either W*? — W#2:P2 or WP — W?31:P1_We next investigate the case where
6 1-0

32981+(1—9)32, —=—+
P D1 P2

for some 6 € (0, 1). (1.7)

In this case, (1.3) holds most of the time, but not always. For example, when N =1 we have
WY2E(R) ¢ WHLR) + LO(R), (1.8)

i.e., (1.3) does not hold for the triple T = (W11, W22 1,°°). Indeed, for N = 1 we have Wh! — L,
and thus W1 + L = L°°. However, WY2:2 ¢ [,

Definition 1.3. A triple T' = (W5L.PL WP W52:P2) is admissible if it satisfies (1.7).
An admissible triple T is irregular if s1 # s9, 1 < p < oo and (exactly) one of the spaces W51-P1,
W52:P2 ig of the form W with k£ € N. T is regular otherwise.

Thus T = (WL, W22, [,°°) (which corresponds to the example occurring in (1.8)) is irregular.

Our main result is the following

Theorem 1.4. Let T be a regular triple. Then both (1.3) and (1.4) hold.
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Equivalently, for every regular triple 7' we have
WEP(RN) = (WSPL A WSPYRN) + (Ws2P2 A WSP)RY), VN. (1.9)

For most of the regular triples, (1.4) follows automatically from (1.3), as explained in Propo-
sition 1.6 below. Thus, in particular, the conclusion of the theorem follows whenever T is as in
Proposition 1.6 and W*? can be obtained by interpolation from W*-"1 and W*2:2, However, when
T is admissible W** need not be an interpolation space between W*1-’1 and W*2:P2_at least for the
standard real and complex methods [20, Sections 2.4.2—-2.4.7, p. 64-73]; thus one cannot derive
Theorem 1.4 directly from Proposition 1.6. We will present, in Section 3, a proof of Theorem 1.4
which does not rely on interpolation and establishes simultaneously (1.3) and (1.4).

Definition 1.5. A Sobolev space W?*? is exceptional if s € N and either p =1 or p = oco. It is
ordinary otherwise.

Proposition 1.6. Assume that WP, W1-P1 aqnd W?*2:P2 are all three ordinary Sobolev spaces. As-
sume that for some (fixed) N we have WSP(RY) c WsLPL(RN) + Ws2P2(RN). Then for such N we
have

WP (RN) = (WSPT A WEPYRY) + (W2 P2 nWHP)RY).

We now turn to irregular 7”s. At least in some special cases (see (1.8) and, more generally, the
triples T' = (WL wlp-p ) with 1< p <00), (1.3) does not hold for such triples. We do not know
the characterization of irregular triples T' for which (1.3) and/or (1.4) do not hold. For irregular
triples, we were only able to establish a weaker form of (1.4), in which the space W* is replaced
by a slightly larger space, modeled on bmo (the local BMO space whose definition will be recalled
in the next section).

Theorem 1.7. Let T be an irregular triple, and assume e.g. that po = oo (and thus sg is an integer).
Let 1< g9 <oo. Then

WSP(RN) = (WSLPL AWSPYRN) + (FS2 A WSP)RN). (1.10)

00,q2
In particular, when sg =0 (and thus W52P2 = L°°) we have

WP (RY) = (WEPL A WSPYRY) + (bmo nWEP)RYN). (1.11)
When so >0, we have

WEP(RN) = (WELPLAWSPYRY) + ({f € W21, D271 f € bmo} n WHP)(RY). (1.12)
In the special case s9 =0, s¢N, p; =1, Theorem 1.7 was established in [5, Chapter 6].

Remark 1.8. The question of the validity of (1.3)—(1.4) is somewhat dual to the one of the validity
of the Gagliardo-Nirenberg inequalities. There, one asks whether the inclusion

WeLPLRN) A WezP2RN) c WP (RN) (1.13)
leads, for some appropriate 6 € [0, 1], to the estimate

0 1-0
”f”WS,P(RN)SJ Ilf”Wsl’pl([RN)”f”WSQ’pQ(IRN)' (114)

In the spirit of our Proposition 1.1, one may prove that the validity of (1.13) for every N re-
quires

$<0s1+(1-0)s9, (1.15)
1_6.3-6 (1.16)
P D1 P2



for some 6 € [0,1]. If we have either “<” in (1.15) or 6 € {0, 1}, then we have both (1.13) and (1.14);
this follows from the main result in [4]. As in our situation, the interesting case is the one of
admissible triples. In that case, (1.15) and (1.16) hold when s1, s, s9 are integers, as established in
the seminal contributions of Gagliardo [11] and Nirenberg [15]. It turns out that (1.15) and (1.16)
hold for most of the admissible triples, but not all of them. A characterization of the admissible
triples for which (1.15) and (1.16) hold has been obtained in [4]; see also [12], [16], [8] for older
partial results.

Remark 1.9. As one may expect, whenever it is possible to decompose f = f1+f2 with f1 € (WS1P1n
WSPYRN) and fo € (Ws2P2 0 WSP)RY), we also have a norm control for f; and f2 in terms of
Ifllwsr. A simple example of such decomposition with norm control is the following. For f €
L*RY), set f1:= f Ligif@i>1f1,2n,) 204 f2 1= 1w ifi<ifl,o v, Then clearly f1 e (L' nLAH®RY)
and fs € (L®NL2)(RY), and in addition we have the norm controls

Il i@y S W lpe@ny, I illewyy < M lpewyys Hf2llpoo@myy < I 2@y, 1 2llp2@yy < If 1 L2@ny-

Note however that the map f — (f1,f2) is not linear. Likewise, in general we will construct non-
linear decompositions.

Our text is organized as follows. In Section 2, we recall some basic facts on function spaces,
instrumental for our purposes. The proofs of Propositions 1.1, 1.2 and 1.6 and of Theorems 1.4
and 1.7 are presented in Section 3. A final appendix presents the factorization theory and its
connections with the sum-intersection property and with the functional calculus in Sobolev spaces.
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2 Basic properties of Triebel-Lizorkin spaces

Definition 2.1. Let v €.C§°(RN) be such that v = 1in B1(0) and suppy < B2(0). Define yo =y and,
for j =1, v (x) :== p(x/27) - w(x/2771). Set @)= 97_1wj € #.! Then for each temperate distribution
f we have

f:Z’fj iny',withfj::f*(pj. (2.1)
J

f =X f;is “the” Littlewood-Paley decomposition of f € &'
Note that #f; =y ;% f is compactly supported, and therefore f; € C* for each ;.

Definition 2.2. Starting from for Littlewood-Paley decomposition, we define the Triebel-Lizorkin
spaces F}, . as follows: for —co<s <00,0<p <ocoand 0 <g <oo, we let

i =)

. F o ={f e \flps <oob.
720 JN) LP([RN), p,q p.q

Same definition when p = g =oo.
This definition has to be changed when p = oo and 1 < ¢ < oo [20, Section 2.3.4, p. 50]: we let
||f||Fgo,q = inf{esssup

xeRN ‘ Loo(RN)
IEquivalently, we have ¢ =.% 1y and, for j > 1, @jlx)= 2N po(27x) — 2NU=D (277 1x).

(ZSj f j(x))

. S EL®Y), f=Y fi*o; in,sﬂ’}.
JZO lq(N)
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Most of the Sobolev spaces can be identified with Triebel-Lizorkin spaces [20, Section 2.3.5],
[17, Section 2.1.2].

Theorem 2.3. The following equalities of spaces hold, with equivalence of norms:

1. If s> 0 is not an integer and 1< p < oo, then WSP(RN) = F3 o

2. If s=01is an integer and 1 < p < oo, then WSP(RY) :F; .

When s =0 is an integer and either p =1 or p = oo, the Sobolev space W*? cannot be identified with
a Triebel-Lizorkin space.

Theorem 2.3 is usually used in conjunction with Lemma 2.5 below. The reason is that, in prac-
tice, we do not know the Littlewood-Paley decomposition of f, but only a Nikol’skij decomposition
of f.

Definition 2.4. A Nikol’skij decomposition of f € %' is a representation of the form f =Y f/ in
By;+1(0)\ By;-1(0), if j=1

', with supp Z f/ .
pe 7] {mw» if =0

Note that in particular the Littlewood-Paley decomposition f =} f; is a Nikol’skij decomposi-
tion.

Lemma25. 1. Let1<p<oo 1<qg<ooandsécR Consider a sequence (f/) such that

H H (Zijj(x))J.zo 1200l Lo, <oo. Then f =Y f7 x ¢ converges in &' and
Iflmg, < H ’ (29 )) : (2.2)
p,q j=0 19(N) LP(RN)

2. Same conclusion if 1< p =q <oo.

Proof. 1t suffices to consider finite sums, and to establish (2.2) in this case. We start with item 2,
which is easier. Note that f € LP(RY), and thus f € %'

Let f =3 ;>0 f;j be the Littlewood-Paley decomposition of f. Since ¢; * ¢ =0 if |j — k| = 2, we
find that

fj:f*(/’j:ka*(Pk*(Pj: Y ffxpr*o;, (2.3)
k lk—jl<1

and thus

k
Ifile@yys X IF" % @r * @il Lo
k=jl<1

(2.4)
< Y W e lerc oilpany<C Y I L@y,
lk—jl<1 lk—jl<1
We obtain (2.2) with p = ¢ from (2.4).
We now consider item 1. From (2.3), we find that
fi@ls Y Iffxprrpii=sC Y ufFw. (2.5)

lk—jl<1 |k—jl=1
Here, ./ is the standard maximal operator, and we used the inequality [18, Proposition, p. 24]
If *pe) =Cptf(x), VpEF, VeE>O.
Using (2.5), we find that

7=0 j=0

nmgﬂgwﬁﬁﬂﬂuﬂ

e

LI(N) Il Lp(RN) LA(N) I Lp(RN)

the latter inequality being the Fefferman-Stein vectorial maximal inequality [10]. O
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Definition 2.6. We define, for f e L1 (RY),

1 lomo := sup/|f|+ supj[][lf(x)—f(y)ldxdy,
B BJB

|Bl=1 |Bl=<1

the sup being taken over the balls of volume < 1. We set bmo :={f € L}OC(RN); I f lomo < oo}. With
its natural norm, bmo is the local BMO space.

Then we have [21, Theorem, p. 47] bmo = Fc(>)02' Using this equality, Definition 2.2 and the
embedding ¢9 — ¢2, 0 < g <2, we obtain the following

Corollary 2.7. If f =} i~ fl x @jin ¥ and 0< q <2, then
2/q
||f||l2)mo <Cesssup ) If/(x)% < Cesssup (Z IfJ(x)Iq) , for some C independent of the f’’s. (2.6)
xeRN xeRN J
Corollary 2.8. For 1< q <2, we have Fgo’q — bmeo.

As we noticed above, when s € N the space W*! is not a Triebel-Lizorkin space. However, we
have the following

Lemma 2.9. 1. When s =0, we have F{ { — wsLRN).

2. More generally, for every s =0 and 1 < p < oo we have F; L& WP (RN). The same holds when
p =ooand s> 0 is not an integer.

3. When k >0 is an integer and 1< q <2, we have
FL  —{f eWFLo@®N); D*1f € bmo}.

Proof. We start with p = 1. When s is not an integer, we actually have equality. When s = 0 and
fe F?l, we have [|f|Li@yy < X0 I fjllLiwy) = IIfIIF?1 <o0o. When s =1 is an integer, we use the
fact that [20, Section 2.3.8, Theorem (ii), pp. 58—-59] ’

S . S . S .
fllps ~ D 1D/ fll sy = 2 1D Flige = 3 ID Flipiany = If sy,
T j=0 ’ j=0 o j=0

When 1 < p < 0o, the desired inclusion follows from
Foi—Fp,= WP®RY) (with ¢ = 2 or g = p, according to s).

Similarly if p = co and s is not an integer.
Finally, if p = co and s is an integer, we argue as for p = 1, relying on Corollary 2.8 and [20,
Section 2.3.8, Remark 2, p. 60]. O

We now briefly recall the characterization of Triebel-Lizorkin spaces in terms of wavelets.
Let wo,y1 be respectively a father and mother (sufficiently smooth) wavelets. For G € {0, 1V, jeN

. N .
and meZVN, let wJG’m(x) .= o2 _ler(21xr —m,), xRN, Let, for f € &,
i o, if j>0and G = {0}
Gm 2Nj/2(f,1//JG ), otherwise '



Recall [22, Section 3.1.3] that f = Z 2N/ Z/Ié mwé ., in the sense of #’. Conversely, if
7,G.m ’ ’

f=> ud w + Y 2_Nj/2ué mu/]G _in the sense of ./,
Gm 750,G 20N, m ’ ’
then the wavelet coefficients Aé . Of [ are given by
0, if j >0 and G = {0}
py, -, otherwise ‘

o=
G,m

N ) .
Let, for j €N and m € ZV, Q;j m be the cube H[2_](mr -1),277(m,+1)]. Set, for 0 < g <oo, s€R,
r=1

1/q

gx) =g () := Y2V A, 914, (x) 2.7
p,q G,m Js

When g = oo, we replace the ¢¢ norm by the sup norm.
Then one may read the smoothness of f in terms of the integrability properties of g. The
following statement is a rephrasing of [22, Theorem 1.64, p. 33].

Theorem 2.10. 1. Let —co<s<oo, 1<p<oo, 0<q <oo. Then IIfIIF;’q ~ IIg;’qlle([RN).
2. Same conclusion if p = q = oo.
3. In particular; if s > 0 is not an integer and 1< p < oo, then ||f lyss@yy ~ 185 p lILP-
4. If s 20 is an integer and 1< p <oo, then ||f llysr@yn) ~ lgs2lLr.

Let us note that when p = g, this norm equivalence takes a particularly simple form. More
specifically, we have

IFI2, ~ Y 26PNl P —co<s<oo, 1= p<oo (2.8)
b,p . ’
J.G.m
Ifllps, ., ~ sup 27|14, |, —00<s <oco. (2.9)
' j’G’m ’

Our next result relies on properties of the Besov spaces Bj, ,. In order to keep this section
short, we will be rather sketchy.

Lemma 2.11. Let 0<s<oo, 1 <p <ocoand € >0. Then, with g;,q as in (2.7), we have

1 lwsr@yy S IIgj’,f; I Lo @®N), (2.10)
185 plo@yy S 1F s @ny. (2.11)

Sketch of proof. The above estimates are equivalent to the embeddings
F5te — WOPRN) — F5 2. (2.12)

When s is not an in an integer, we have Ws?(RY) = F}, », and the conclusion is clear.

When s is an integer and 1 < p < oo, the Littlewood-Paley decomposition f =} ; f; of f satisfies
[7, Lemma 2.1.1]

”fO”Lp([RN) = ”f”Lp([RN); 2sj”fj”Lp([RN) 5 ”Dsf”Lp([RN), Vj =1 (2.13)

Thus sup; ZSJIIfJIILp([RN) S f lwsp@yys i-e., we have the embedding

WHPRYN) - BS . (2.14)



On the other hand, we have [19, Chapter 5, Lemma 3.14]
1D fill oy S 27 1 fll oy, V720,
and thus

||f||Ws,p([RN) S Z (”fj”Lp([RN) + ||Dsfj ||Lp([RN)) 5 ZZSJ”fj”Lp([RN)-
J J

Equivalently, we have the embedding
B3 | — WSP(RY). (2.15)

We obtain (2.12) via (2.14)—(2.15) and the following elementary embeddings [20, Section 2.3.2,
Proposition 2, p. 47]

F3e =BS5S —BS  — WPRY)— B  —BS*=F5" O
3 Proofs

Proof of Proposition 1.1. In order to prove the existence of some 6 such that (1.6) holds, we have
to establish the double inequality

min{p1, pe} < p <max{py, pa}. (3.1

We argue by contradiction. Assume first that p > max{p1, po}. Let

2
F0) = o YR
Clearly, f € LP(R), and more generally f € W*P(R) for every integer k. It follows that f €
W3P(R) for every s = 0. On the other hand, for every f1, f2 such that f = f1 + f2 and every x we
have either |f1(x)] = f(x)/2 or |fo(x)| = f(x)/2. We find that

IF1OIP + [f2(0)IP2 2 f(2)Pt + f(x)P? := g(x).

Since, for sufficiently small ¢, we have g ¢ L1(R), we find that f ¢ LP1(R) + LP2(R). Therefore,
[ € W3LPL(R) + W52P2(R), which is a contradiction.

Assume next that p < min{pi,ps}. Let p <r <min{pq,p2}. Let N be sufficiently large such
that WSP(B) ¢ L”(B); here, B is a ball in RY. By a standard extension argument, there exists
some f € WoP(RY) such that f ¢ L"(RY). Such an f does not belong to L?OC(IRN), and thus does not
belong to LPY(RN) + LP2(RY). We find that f ¢ WsLPL(RY) + W52P2(RY), again a contradiction.

We thus know that (3.1) holds, or equivalently, that (1.6) holds for some 6.

We next proceed to the proof of (1.5). Assume first that p; = po = p. Then 6 is not determined
by (1.6), and its existence is equivalent to s = min{s{, s9}. Arguing by contradiction, assume that
s <min{si,so}. Let s < p <min{sy,sg}. If f € WP (R) \ WP-P(R), then

f g WPLP(R) + Wo2P(R) = WHine1s2hP(R) c WPP (R),

a contradiction.

Assume next that p; # ps. Then 6 is determined by (1.6). Argue again by contradiction and
assume that s <0s1+(1—-0)s9. Set 0 :=0s1+(1—-0)s9 > s. Consider some € > 0 such that s+e <o —¢.
In view of Lemma 2.11, in order to contradict (1.3) it suffices to establish, for some appropriate N,
the non inclusion

F e ot ooy (3.2)



With no loss of generality, we may assume that
1<pi<pg=<oo. (3.3)

We will treat separately the cases po < oo and pg = o
Set, in all cases,

S1—& S9—€ S1 S9

a:= = +e. (3.4)

P1 D2 P1 P2

Proof of (3.2) when pg < oo. We rely on the following
Claim. For appropriate C1,Co >0, we have

[a+b=8,8>C12%] = [2617P1|g|P1 4 2(5278)P2|p P2 > 520 ~)P], (3.5)

Granted the claim , we conclude as follows. Consider some f €.’ such that for every j, G and
m we have either )L] =0 or I/IJ ml = C12%, with C; as in (3.5). The claim combined with (2.8)
implies that for every pOSSLble decompos1t10n f =f1+f2 we have

I|f1llps1 e Hf2lPh e 2 ”f"pa - (3.6)

Pl Pl FP2 P2

We are now in position to obtain a contradiction. Let N be sufficiently large such that (o — e+
a)p<N.Let6:=N-(og-¢ + a)p > 0. Fix some Gy € {0, 1}Y \ {0}". For every j € N, consider a set
Mjc 7V such that #M; ~ 207 Set

Z 2—NJ/2C zaijO .
J,meM;

By (2.8), we have

”f”FW - 22((s+£+a)p—N+6)j — 22—((0—5)—(s+£))jp <00,
J J

while

If 115y ~ D 2007 Er PN+ = 571 = 0o,
PP J

We complete the proof of (3.2) when po < co using the two above inequalities and (3.6).

Proof of (3.2) when ps =00 and 0 € (0,1]. This time we have a = —(s9 — £). We modify the definition
of f by setting

—-Nj/2 :0aj
Z 2 J2 wGo,

J,meM;
Assume, by contradiction, that f = f1 + f2 for some f1 € F}\,, and fo € F2 . Write f1 =
-Nj/2,J ' _ -Nj/i23J i
Zj,G,m 7 an mwG,m, f2 - Zj,G,m 27 bG,meG,m'

Since f2 € Fé oo, we have
b7 | < €272 = €29, ¥ j,G,m.

Since aéo,m + béo’m =j2% Vj VYmeM i, for sufficiently large jo we have

la’ |>1‘2“f Yi>jo, VmeM;
Go,m —2.] » V.J=J0, J



Inserting this into (2.8) and using the fact that
(s1—e+a)p1—N+6=(s1—s2)p1—0(s1—s2)p =(s1—s2)(p1—0p) =0 (since p; =Op),
we find that

p1 . ((s1—e+a)p1—N)j . ((s1—e+a)p1—N+0)j _ D1 _
”f”FSrS Z Z Jplz 1 p1-N)Jj Z JP12 1 p1 J — Z JPI = 0o.
PLP1  j=jo,meM; J=Jjo Jj=jo,meM;

On the other hand, we have
”f”p N ijz((s+£+a)p—N+5)j — ijz—((a—s)—(s+£))jp < 00.

Fpp
This leads to a contradiction and completes the proof of (3.2) when p9 =00 and 6 € (0,1].
Proof of (3.2) when ps = oo and 6 = 0. This is similar to the case ps = co and 0 € (0,1]. We have
a=—(sg—¢€)=—(0—¢) < —(s+¢). Consider f:=Y;, 2 N/"2 jz"‘fwéo,m. [This time, the sum in m
is over all m € ZV.] We then have f € fof ¢.. Arguing by contradiction, we obtain that f cannot
be decomposed as [ = f1+ fo with f1 € F;} 7 and f5 € Fa2 5. Indeed, as in the previous case, if
f2 € F3Z o then for large jo we have

AP 2 Y Y eV —
PLPL jzjomezN
Proof of the claim. Let S > 0. The function
[0,00) 3t — g(t):= 2(81—8)j(1 — 1S + 9(s2=€)jp2/p1 tPZ/PISPQ/Pl

is convex, and its derivative at the origin is negative. Thus g has a global minimum at the point
to where g'(¢9) = 0. Solving the equation g'(¢) = 0, we find that ¢y = C12%/S™!, with C; > 0 inde-
pendent of j. Provided that S = C12%, we have ¢( < 1, and therefore the first term in g(¢) is non
negative. For such S, we thus have

g(t) = g(to) = 2(82—£)jp2/p1(to)pz/p1sp2/p1 — Q62— et@pa/p1j C2(U—£)p/p1j, V=0,

with ¢ > 0 independent of S. .
Let now a,b be such thata+b6 =S = C12%. Then

231]171 |a|p1 + 232.1172 |b|p2 > zsljplgpl + ZSQJPQQPZ,

where
a, if0<a,b<S8S b, if0<a,b<S
a:=40, ifa<O0andb>S,b:=18S, ifa<0andb>S. 3.7
S, ifa>Sand b<0 0, ifa>Sandb<0

Therefore, it suffices to prove (3.5) under the extra assumption that 0 <a,b <S. Write a =
(1-8)S,b=tS, with t €[0,1]. We then have

9(81-€)jp1,P1 4 9ls2-€)jp2p P2 (2(s1—e)ja 4 9(s2-€)jpa/p1 pr/pl)pl
]
= [g(O)IP! = [g(to)IP! = P12 8P,

Proof of Proposition 1.2 assuming Theorem 1.4. As already noticed in the proof of Proposition 1.1,
when p1 = pg = p or when 6 € {0,1}, properties (1.3) and (1.4) are trivially true. We may thus

A
assume that p; # pe and 0 €(0,1). Set 1 :=s—-(0s1+(1-0)s3)>0. For 0<e < ik let 6 > 0 satisfy

Oe+(1-0)0 = A. Then we may pick € such that neither s; + € nor s9 + ¢ is an integer. Thus the
triple T := (W51+6P1 WP W52+0.02) ig regular. Granted Theorem 1.4, this implies

(WHPLAWSPYRY) +(W*2P2 A WHP)RY) « WHP(RY)
— (W81+£,p1 N Ws’p)(lRN) + (W82+5,p2 N Ws’p)(lRN) |:|
< (WSLPL A WSPYRY) + (WS2P2 A WSP)RY).
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Proof of Proposition 1.6. Decompose f € WSP(RN) as f.: f1+f2, with f1 € WsLPL(RN) and fo €
We2P2(RN)., Write, in the sense of &/, f = XiGm 2_NJ/2)Lé,m1//JG,m, fi=X;am2 —NJ /2aG mu/JG,m,

fe=%am Z_Nj/zbé mwé - 10 the spirit of (3.7), define

J : J J J
) aG,m’ 1f0.5aG,m’bG,mS./1G,m )
J — e J J J — NJ/Z J
gG’m.—< 0, 1faG,m<0§1nd bG,m?/lG,m’ il.— g ijm
ALy ifal, > AL andby <O o
J . J J J
bG ,m’ lfo.saG,m’bG,mslllG,m ) )
J — J e J J J —— Nj/i24J J
QGm =9 AGm’ lfaG,m<0?'nd bG,m?/lG,m’iz‘_ g 2 QGmme‘
0, ifal, >AL andb) <0 Hm

Then f = i .t i 9 and Theorem 2.10 implies that

Hf HWSP([RN) S sy < 00, Ul wsror@yy ~ S 1 llwsier @iy < 00,

S lws.p ey < 00, S I fellysz pagavy < 00 O

Hi HWSP([RN) ‘f HWS2 P2(RN) ™

Proof of Theorem 1.4. The case where p; = ps is trivial, since we then have WP c Wmin{s1.s2h.p
We may thus assume that

1<pi<p<pg=<oo. (3.8)

We further distinguish between the cases s; = s9 and s1 # s9, and also between po < oo and
p2=00 o ,
Given f € WSP(RN), we write f =¥ g.m 2‘NJ/2/1’ Ve m:

Case 1. s1=s3=s¢N. Set f1:=Y ;g.m2 “Nilg J wG e 12 =2jGm Z_Nj/zbé’mwé’m, with

; {%m, if|A, 1227 {0, if AL, 12279
a ’ = ’

Gm o, if A <2757 M A e HEIAG, 1 <275
Since p1 < p, we have
J op sji(p1-p)jyJ P

IaG,mI 1< 2801 IAG,mI . 3.9)
Using (3.9), the fact that s is not an integer and (2.8), we find that

I 1lwspmyy S I lws.o@yy, ||f1||Wslp1(RN) S ||f||WSp(RN) (3.10)
Similarly, if po < co then we have

12 lwsp@myy SN lws.o@y), ||f2||W82p2(RN) ||f||Wsp(RN) (3.11)
On the other hand, if ps = co then

12 llwsp@yy SN lwso@yy 1f2llwsacomyy S 1. (3.12)

We complete this step via (3.10)—(3.12).

Remark 3.1. The estimates (3.10)—~(3.12) are nonlinear, while one would expect linear estimates.
Actually, it is possible to obtain linear estimates by cutting the coefficients )Lé ., at height A27%/

instead of 275/, with A := || fllwsp@y)- The corresponding decomposition satisfies
11 llwsp@yy + 11 llwsier gy + 1 fellwse@yy + 1 f2llwsope@vy S I s ey

Similar observations apply to all the other cases.
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Case 2. s1 =s2 =s €N. In this case, we follow the ideas of DeVore and Scherer [9] concerning the
interpolation theory of classical spaces, in the form presented in Bennett and Sharpley [1, Section
5.5, pp. 347-362].

We claim that it suffices to decompose every f € (WP nC®)RN) as f = f1 + fo2, with

||f1||Ws,1([RN) f, ||f||Ws,p([RN), ||f1 ||Ws,p([RN) f, ||f||Ws,p([RN), (3.13)
Ifellwscomyy S N lwsomyys I Felwsemyy S IF lwsp@y)- (3.14)

Indeed, if this holds then Hélder’s inequality implies that

Ifillwsri@yy S I lwso@yys | fellwspe@yy S I lwso@yy, 1< p1<p2<oo, (3.15)

and then a density argument shows that (3.13)—(3.15) hold without the extra assumption f € C*;
this settles this case.

We next proceed to the construction of f1 and f5. Let .4 denote the standard maximal (uncen-
tered) operator. Set Hy(x) := }4=¢10%f(x)| and H(x) := Z;‘f:OHg(x). Let Q:={x e RN: #H(x) > 1}
and M :=RV\ Q. Thus M is closed and H(x) <7, Vx € M.

Let ¢ be such that [|.Z gl rwy) < cllgllLrwy), V& € LP(RMN). If 7 := cllHllLp@ny ~ I f lwspwy), then

1 1
il P il p
Q2] < > /g;(./%H) (x)dx < > II%HIILP(RN) <1 (3.16)

We then let f2 be the Whitney extension of f3y and set f1 := f — fo. More specifically, let () ;)
be a Whitney covering of {2 with cubes of size ¢; and centers y;. Let @;; denote the cube of center
y;j and size ¢¢;. Recall the following properties of the Whitney covering:

(Q;9/8) is a covering of 2, Q; 4 intersects M, V j, Z]le(x) <C(N), VxeQ. 3.17)
J

Let (¢;) be an adapted Whitney partition of unity in Q, i.e.,
suppd; € Qo8 Vj, and [0%¢;| S (€))%, Vae N, (3.18)
Let x; e MN@Q; 4 and set

b
lal<s—1 a!

f, in M

the Taylor expansion of order s — 1 of f around x;. Then we set f3 := ) .
YTjp;, inQ

This fo satisfies [1, Theorem 5.10, p. 355] fo € WS°(RY) and
I fellwscomyy ST~ If lwsogny)- (3.19)

On the other hand, using the fact that |Q2] <1 (by (3.16)), we find that for every 1 <r < p the
function f7 satisfies

1 f1llwsr@yy = I1F = fellwsr@) < I f lwsr@ + I f2llwsr)

(3.20)
S lwsr)+7 S lwsr@) +7 S lwsrgny-
Combining (3.19)—(3.20), we also have
||f2||Ws,p([RN) S ||f||Ws,p([RN)~ (3.21)

We obtain (3.13) (and complete this case) from (3.19)—(3.21).
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Case 3. s1 #s9 and pg <oo. This is somewhat the general case. We will prove below that

FZ;‘] = (FSI

P1,91 nFZ,q)—l_(Fsz nF;J,q)> (3.22)

p2,92

under the assumptions
—00< 81,8,89 <00, S1 %89, 0< p1<p<ps<oosuchthat (1.7) holds, 0<q1,9,92 <oo. (3.23)

In view of Theorem 2.3 and Lemma 2.9, this is stronger than the conclusion of Theorem 1.4.

We now proceed to the proof of (3.22). Throughout the calculations we perform in this case, we
assume (3.23).

Define, in the spirit of (3.4),

S1 S9
P2 D1

@:=F—7 (3.24)
P1 P2

p2 _p _pP P (3.95)

=71 1 1
p P2 pP1 D
and
(si1+a)p1=(s+a)p=(s2+a)pa. (3.26)

In addition, we have
either s1+a,s+a,seo+a>0,ors1+a,s+a,sgs+a<0. 3.27)
Given a sequence (x;) of nonnegative numbers, set, for i =1,2,
Si(x) =Y 250 (x )T, gi(x):=[S;(0PTT, T(x):= ) 299(x,), h(x):=[T(x)]P"9. (3.28)
Lemma 3.2. There exists some finite constant C such that
[x; <29, V jl = ga(x) < Ch(x).
Lemma 3.3. There exists some finite constant C such that
[V, x;=2% or x; =0] = g1(x) < Ch(x).

Granted the two lemmas, we proceed to the proof of (3.22). .
Let f € F§ , and write, in the sense of &/, f =Y. ; g m 27 NI2AL  yl, . Set

fu= Y 2NPAL wl far= Y 2NPAL il (3.29)

mg ml>2% mg =297

Clearly, f1,f2 € F}, ,
We next note that, for each x and j, there exists some subset M(j,x) of ZN, say M(j,x) =
{mﬁ x}];=1 (with % := 3" independent of j and x), such that m ¢ M(j, k) = «x ¢ Qjm. This implies

that for all x € RY we have

[0} J [0}
Y 2l [ 1g,, @~ T 2
.j’G7m J.?G?[

. p )
aJG i ]le’mfx(x), Yo,Vp, Vag’m. (3.30)

7
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Applying Lemmas 3.2 and 3.3 with x; :=

A]’f

G,m
Jx

1g , (x)andusing (3.29)—(3.30), we find that

R

Ifilge  SUFNg o If2lgs,  SIF i - (3.31)

P1:.91 pP2,92

It thus remains to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Define A :=(s9+ a)qs, B :=(s+ a)q. By (3.26), we have either A,B > 0, or
A,B<0. .
Set a;j:=2"%x;€[0,1]. Then

Sa(0) = Sa(a) 1= Y 24%(a )92, go(x) = F2(a) = [Sa(a)]"??,
T(x) = T) =Y 2P/(a;)?, h(x) = h(a):= [T(@)]”?.
Let J be an arbitrary nonnegative integer, and set
A% :={a=(a,)j20;a;€[0,1], Vj, and a; =0, ¥ j > J}. (3.32)

In order to establish the lemma, it suffices to prove that

Z2(a) < Ch(a), Vac A?, (3.33)
provided C does not depend on /. N
Fix J. For a € Ai, a#0, set ]?g(a) = (g;;z(a). Since fg is homogeneous of degree ps—p >0, it
a

attains its maximum at some a such that at least one of the a’s equals 1. For this a, set
A :={j=d;a; =0}, Ap:={j<J;a,;=1}, Ag:={j<J;0<a;<1}.

By the above, we have Ag # @. Set m :=min Ay and M := max As.
Step 1. Proof of the lemma when A3 = @. Assume first that A,B > 0. Then
Saa)= Y 24 < Y 247 <oAM T(q)= ¥ 2B/ > 2BM
JEA2 J<M JEA
We find that
(ZAM)pz/qz

0% gy =

since A22 = BZ (by (3.26)).
92 q N B N
If A,B <0, we have similarly Sy(a) < 24™ and T(a) = 2™, and therefore fa(a) < 1.

Step 2. Proof of the lemma when A3 # @. Set ¢ := min A3, L := maxAs.

0 ~
If j € A3, then —f9(a) =0, and thus
da j

p22Y[85(@)P?92 Ha ) M T()P'? = p2P [T(@)1P'7"(a,)T [S2(a)P?2,
which implies that

(@,)7279=C,12874 v je Ay, with C; = C1(a) constant. (3.34)

Step 2.1. Proof of the lemma when A3 # ¢ and q2 = q. By (3.34), the quantity 284 does not
depend on j € A3. On the other hand, since g2 = q¢ we have B—A =(s—s9)q # 0. Thus A3 contains
only one element, Ag ={¢} ={L}. We find that

g2@)= Y 2% +2%%ap)?, ha)= Y 287+ 28%a ) .
JEA JEA

14



As in Step 1, when A,B > 0 we find that

(24M +240(a)0)™"" _ gAPa/aM 1 9Arala (g )P

fala) < <1,

(zBM + zBf(a[)q)P/q ~ 2Bp/gM | 9Bp/a(q )P
th . . . p2 D
e latter inequality following from A— =B—, po>p and O<a,<1.

2
The case where A,B <0 is handled similarly.

Step 2.2. Proof of the lemma when A3 # @ and q2 # q. Define y := . It follows from (3.34)

that

q92—4

aj:CQZYj, VjeAs. (3.35)

Let us note that

B-A Bgo—A S—82
A+yqa=A+ g2 = 1 q=q

q2 #0.
q2—¢q q2—¢q q2—q

We therefore have the following four possibilities:
1. A, B>0,A+yq2>0.
2. A,LB>0,A+vq2<0.
3. A,B<0,A+yq2>0.

4. A, B<0,A+vyq2<0.

We complete Step 2.2 in one of these cases, and let to the reader the three other ones, which
are similar. Assume e.g. that A,B >0 and A+vyg2 <0. In this case we obtain an information on Cy
by letting, in (3.35), j = ¢. [If A +yq2 > 0, we take j = L.] Since 0 <a, <1, we have 0 < Co2"! <1,
and thus Cy = C3277¢, with 0 < C3 < 1. We find that

a;j=C32""9 Vje As, for some C3 € (0,1). (3.36)
Since A >0 and A +yq2 <0, we find that

So(a) < Z 94T 4 Z 2(A+Yq2)j(03)q22—7q25 < 9AM +2(A+Yq2)€(03)q22—7q25 —9AM 2A[(C'3)q2,
<M izt

while
T(a)=2BM + 2BY(C4)9.

We find that

(24M + 2“”(03)‘12)‘92/‘72 9AP2/a2M | 9AP2/asl((14)P2

z <
fola) S (2BM+2B€(C3)Q)p/q ~  9BplgM 4 9Bplal(C4)P

since AR :BB, 0<Cs<1and ps>p.
q2 q
The proof of Lemma 3.2 is complete. O
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Sketch of proof of Lemma 3.3. This is very much s~imilar to the. proof of Lemma 3.2. This time, we
have a; € {0} U[1,00). With C :=(s1 + a)q1, we set S1(a):= ZZCJ(aj)ql and

A},::{a:(aj)jzo;aj:OOranZ“j, Vj,anda;=0, Vj>dJ}

) ~ [S1(a)PVn ~ )
IfaeAy, a#0, we set fi1(a) := W. We have to prove that f1(a) <1, VJ, Va€e A},
a

a #0. This is obtained following the same strategy as in the proof of Lemma 3.2, considering, for
a maximum point a of f7, the sets

A :={j=dJ;a;=0}, Ap:={j<dJ;a;=1}, A3:={j<J;1<a;<oo}.

The key ingredients are that C and B are either both positive or both negative, respectively

the fact that, when ¢ # g1, the quantity C + g1 does not vanish.

q1—4qg
Details are left to the reader. O

Case 4. s1 # s9 and ps =oo. This is very much similar to Case 3. We prove the equality

Fpo=F o NFp )+ (F2 NFp ) (3.37)

under the assumptions
—00<81,8,89 <00, $1#89, 0< p1<p < pg=o0such that (1.7) holds, 0 < q1,q <oo. (3.38)

[For an improvement of (3.37) under more restrictive conditions of p1, see the proof of Theorem
1.7.]
In view of Theorem 2.3 and Lemma 2.9, this implies Case 4. In order to prove (3.37), we

decompose f € F}, , as in (3.29). By Theorem 2.10 and Lemma 3.3, we have f; € Ff,ll’ql NEF} .- On
the other hand, since ps = co we have @ = —sg, and then clearly (3.29) implies that f3 € Fa2 .o NF*P.
The proof of Theorem 1.4 is complete. O

Proof of Theorem 1.7. We will prove the following version of (3.37): we have

Fp o =EF)  nFy )+ FL,,NF, ) (3.39)
under one of the following assumptions

-00<81,8,52 <00, 1 #89, 1 <pi1<p<pg=ocosuch that (1.7) holds, (3.40)

0<g<oo, 1<q1,q2 <00 '
or

-00<S81,8,89 <00, $1#89, 1 =p1 < p < pg=oo such that (1.7) holds, (3.41)

0<g<oo,qg1=1, 1<qgg<oo.

Granted (3.39), we obtain the conclusion of Theorem 1.7 via Theorem 2.3, Corollary 2.8 and
Lemma 2.9.

We now proceed to the proof of (3.39).

Let f € F, ,, and let f =} [} be the Littlewood-Paley decomposition of /. Set fi.= 2ik—ji<ifr =
Yik—ji<1 [ * @r * @;. Taking into account the fact that ¢; * ¢, =0if |j — k| =2 and that 3., ¢, =6 in
the sense of ./, we find that

J» J

J
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On the other hand, we clearly have

H (Zijj(x)). S (Zsjfj(x)). = ||f||F;;q- (3.43)
7200 za Il £,p (VY 7200 za) Il £,p (V) ’
Define
1
=—#0. (3.44)
p(s—s2)

Let us note that (1.7) and (3.44) imply the identity

Pl (s1—-s)6p1=1. (3.45)

p

. . /
Given x € BY, let h(x) := (L2971 0)1e)"

J = J(x) as follows: J is the least non negative integer such that 27 = [A(x)]°.

, so that A < co a.e. Whenever A(x) < oo, define

Lemma 3.4. Let 6 and J be as above.
1. If 6 >0, then

pi/q1 Vg2
(Z 281ﬂ1|ff(x)|ql) < hix) and (Z 2|2 <1 (3.46)
j<J j=J
2. If 6 <0, then
r1/q1 P
(Z 231JQ1|fj(x)|q1) < h(x) and (Z 282jQ2|fj(x)|q2 <1. (3.47)
Jj>dJ Jsd

Granted Lemma 3.4, we complete the proof of Theorem 1.7 as follows. Assume e.g. that § >0,
the case & < 0 being similar. Define, for a.e. x € RV,
Fl(x), ifj<d(x) hie) o {o, if j < J(x)

(3.48)

Jix) — ; :
g {0, if j=J(x)’ f), if j=J()

Combining (3.42), (3.43), Lemma 3.4 and Lemma 2.5, we find that the series f1:= Y. g/ * ¢; and
f2:=h’ % @; converge in ', that f = f1 + f2, and that f1 € F},} ; nF} , fa€FZ . NF; . O

Proof of Lemma 3.4. We consider only the case § > 0, the case § < 0 being similar. Set M :=[A(x)]°.
We let to the reader the case where M < 1 and thus J = 0 and the first sum in (3.46) vanishes.
Assuming that M =1, we have 27 ~ M and

1) < 275 [h()1VP =278/ MVOP) |y j > 0. (3.49)
Since § > 0, we have s > s9, and thus s; > s > s9. Using (3.49), we find that

Z 281JQ1|fj(x)|q1 < pa1/@p) Z 9(s1-8)jq1 < prq1/0p)gls1-9)dq1 _ pra1l1/6p)+(s1=9)] (3.50)

Jj<d Jj<Jd

Combining (3.45) and (3.50), we find that

. . pi/g1 p1/p+(s—1-s)6
Z 25191 £ (x)| 21 S [M1/5] - MV = h(x),
j<d
i.e., the first inequality in (3.46) holds.

For the second inequality, we note that (3.49) leads to

Z 2Szjq2|fj(x)|‘21 < M22/6p) Z 9(82-8)jq2 < pra2/dp)gls2=s)Jqz _ pra2ll/(6p)+(s2=s)] _
= j=J

the latter equality following from the definition of 6. O
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Appendix. Factorization, functional calculus, sum-intersection

The lifting problem for S'-valued Sobolev maps is the following. Let B be a ball in RY. Let s >0
and 1< p <oo. Is it possible to lift every map u € WSP(B;S') as u = e'¥ with ¢ € WSP(B;R)? This
question has been completely answered in [3]. The answer depends on s, p and N. For example,
in WP(B;S') the answer is positive if N =1 or [N = 2 and p = 2], but negative if [N = 2 and
1 < p < 2]. Factorization is a substitute to lifting, but is also valid and relevant if the answer to
the lifting problem is positive. Special cases of factorization were announced in [13]. The general
case is presented in [5] and asserts the following. Let s >0 and 1 < p < co. Then every map
u € W5P(B;S!) can be factorized as u = e’ v, with ¢ € WSP(B;R) and v € Fif’l(B;Sl).

Factorization has the following application announced in the introduction. Let p > 1 and con-
sider some f € WHP(B;S1). Set u := e e WhP(B;S1). Let 0< A< 1. Since u € WP 0L, we also
have u € WhPA (by Gagliardo-Nirenberg). Factorization implies that u = e'? v, with ¢ € WAP"* and
veFP < WP,

We note that

WPLB;R) 3 v =9, with f € W'P(B;R) and ¢ € WHPA(B;R). (3.51)

We next invoke the following delicate result [5]. If f1 € WLPL(B;R), fo € W32P2(B;R) are such
that

s1p1=1,s9pg =1, 112 e WP with s> 1,

then fi + fo € WS3P3 n W$3P3:1  In our case, this implies that vi=f-@e WPlAWLP and thus
@=f—-weWLP, Finally, f = ¢+, with ¢ e WAPAAWLP and w e WP AWLP,

Our Theorem 1.4 yields the same conclusion without factorization.

Let us also note that not only factorization leads to a sum-intersection property, but sum-
intersection is necessary for factorization to hold. Indeed, let p = 2 and u € W?(B;S'). Then
we may write u = e/ with f € WLP(B;R) [2]. Assume that we want to factorize u = e'?v with
e WAPA(B;R) and v € WP-1(B;S1). The first step consists of splitting (assuming this is possible)
f =@+, with ¢ € WHP* and y € WP1. However, this decomposition does not imply that v :=
eV € WPL(B;S1). Indeed, if s >1 and p > 1, then a map g € W7 satisfies e’ € WP if and
only if g satisfies the extra-assumption g € W?° [6]. In our case, this implies that factorization in
WAPA(B; S1) requires the sum-intersection property of the triple T' = (W12, WA-P/A WP-1) However,
one cannot reduce factorization to sum-intersection, since in general W*?(B;S!) does not have the
lifting property.

Sum-intersection property has the following implication related to lifting, presented in [5]. If
sp < 1, then maps in W5P(B;S') can be lifted within W*? [3]. Factorization leads to a better
result. Indeed, let u € WP (B;S?) and let ¢ € WSP(B;R) be a lifting of u. Write, as in Theorem 1.7,
¢ = @1+ @2, with ¢1 € BMO nW*P and ¢g € WP L AWSP. Set v := e'¥2 € WP-1. Then v has a lifting
p3 e WeP 1AL [14]. By Gagliardo-Nirenberg, we also have @3 € WP and clearly ¢3 € BMO (since
@3 € L*). Finally, u = e'¥, where v := @1 + @3 satisfies the improved regularity v € WP n BMO.
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