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SUMMARY

This paper concerns the simulation of a class of nonlinear discrete-time systems under a set of initial
conditions described by a bounding ellipsoid. We derive a procedure allowing the propagation of such
ellipsoids through time, which makes it possible to set a guaranteed hard bound on the evolution of the state
of the system for all the possible initial conditions. Two versions of this procedure are given, the second of
which is slightly less general but less computationally demanding. At the end of the paper, we first show an
application of the method in the domain of aerospace engineering; subsequently, three academic examples
of applications are presented, two of which come from the theory of fractals.
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1. INTRODUCTION

When dealing with nonlinear systems, it is often of capital importance to be able to predict the
evolution of the state for uncertain initial conditions, especially in the case of safety-critical systems
like for example in aerospace applications, which are ultimately the main motivation of this work.
A practical approach to this problem is the use of systematicsimulation, which consists ideally in
checking the behaviour of the system with respect to all the possible initial conditions; but this is
strictly impossible if initial conditions are assumed to belong to a dense set, leading to approaches
based on random tests or Monte Carlo methods [1]. Other approaches have also been investigated,
for example based on random exploration [2] or sensitivity analysis [3]. However, all of these
methods suffer of the shortcoming on being a sort of “statistical” validation, in the sense that they do
not offer a hard bound on the evolution of the system, if not for a computational complexity going
to infinity. Another approach is based on evaluating the effect of the initial condition with respect to
an output index (i.e. the time integral of the maximum distance from the nominal trajectory), which
gives an idea of such effects but does not establish precise bounds on each state variable [4, 5].

In this article we present a radically different approach tothe problem, based on the so called
“robust simulation” or simulation of sets [6, 7, 8, 9, 10], which offers instead mathematically
guaranteed bounds for the evolution of dynamical systems (also called “reachability analysis” in
the context of computer science [11, 12]). The specific method developed in this paper focuses
on a class of discrete-time systems, and it is based on the sumof squares (SOS) relaxation of
polynomial problems [13], which leads to efficiently solvable convex optimisation problems in
the form of linear matrix inequalities (LMIs) [14]. This approach can be considered “safe”, as the
evolution of all the possible trajectories of the state are hard bounded, but on the other hand it is
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conservative, i.e. the bounds are not necessarily tight. One of the main contribution of this work is
that the first theorem which we provide can be applied to a verygeneral set of nonlinear equations,
namely nonlinear implicit dynamical equations, which can stem from continuous-time dynamical
equations discretised thorugh implicit discretisation methods. We also propose a computationally
cheaper specialised version which applies to a restricted set of dynamical equations.

We would like to stress that robust simulation is a problem that shares several similarities with
many works on computations on invariant sets [15], backwardreachability [16] and search for
regions of attractions [17]. The goal of this paper is to find the envelope containing the stateat
each time instant, and not to understand whether it is stable or whether it willeventually converge
to a set. We have also to mention that the direct sum of square approach that we have chosen is not
the only possibility to deal with polynomials, i.e. moment relaxations [18] are also a quite powerful
approach.

The paper is organised as follows. Section 2 contains the preliminaries and the problem
formulation. The two main theoretical results can then be found in Section 3 and Section 4, in the
form of theorems with instructions for practical use. Aftera short discussion on the computational
complexity in Section 5, these results are applied to four examples in Section 6. Finally, conclusions
are drawn in Section 7.

2. PRELIMINARIES

2.1. Notation

We denote byN the set of non-negative integers, byR the set of real numbers and byRn×m the set
of realn×m matrices. LetC be the set of complex numbers, andj the imaginary unit.Rn[x] is the
set of polynomials of degreen in the entries ofx,A⊤ indicates the transpose of a matrixA, In is the
identity matrix of sizen, and0n×m is a matrix of zeros of sizen×m. The notationA � 0 (resp.
A � 0) indicates that all the eigenvalues of the symmetric matrixA are positive (resp. negative) or
equal to zero, whereasA ≻ 0 (resp.A ≺ 0) indicates that all such eigenvalues are strictly positive

(resp. negative). The symbol

(

n

k

)

indicates the binomial coefficient, for which we have

(

n

k

)

=
n!

k!(n− k)!
.

We also defineE(P, c) as the compact ellipsoid of dimensionn with matrixP ∈ Rn×n, P = P⊤ ≻
0 and centered inc ∈ R

n, i.e. E(P, c) = {x ∈ R
n | (x− c)⊤P−1(x− c) 6 1}. At last, we employ

the symbol∗ to complete symmetric matrix expressions avoiding repetitions.

2.2. Problem formulation

We consider a discrete-time dynamical system of ordern whose evolution is described by the
equation

hm(x(k), x(k + 1)) = 0 (1)

where k ∈ N ∪ {0} is the discrete time variable,x ∈ R
n is the state vector,hm ∈ R

n is a
vector of polynomial functions inx(k) and x(k + 1) of degree not greater thanm ∈ N, i.e.
Rm

[

[x(k)⊤ x(k + 1)⊤]⊤
]

. We suppose that the initial conditionx(0) is not exactly known, but
it is bound to belong to an ellipsoidE(P (0), c(0)) , i.e.

(x(0)− c(0))⊤P (0)−1(x(0)− c(0)) 6 1. (2)

Under the assumption that (1) is well-posed, i.e. it is possible to solve forx(k + 1) if x(k) is given
(at least, forx(k) in a restricted subset ofRn), the problem on which this article focuses is to find
the smallest ellipsoidE(P (k), c(k)) that, for all the valid initial conditions, bounds the stateat each
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time instantk with 0 < k 6 N , i.e. such that

(x(k) − c(k))⊤P (k)−1(x(k)− c(k)) 6 1. (3)

This problem can be decomposed into the iteration of an elementary problem on a single time step,
i.e. finding the smallestE(P (k + 1), c(k + 1)) for a givenx ∈ E(P (k), c(k)).

We have chosen to focus on ellipsoids instead of semialgebraic sets of higher degree (like in [19])
as we intend to use the method recursively. Using different sets would increase the degree and the
computational complexity with each time step. Moreover, ellipsoids are quite useful in the practice,
as they can be quickly characterised geometrically in termsof center and semiaxes.

3. MAIN RESULT

As stated,hm is a vector of polynomials in the state variable at two different time steps, namely
x(k) = [x1(k), x2(k), . . . xn(k)]

⊤, andx(k + 1) = [x1(k + 1), x2(k + 1), . . . xn(k + 1)]⊤. As we
are going to deal with polynomials up to degreem, we define also the vectorζ ∈ Rµ which contains
all the possible monomials obtainable fromx(k) andx(k+1) from degree0 up tom (for example,
if n = 2,m = 2, thenζ = [1, x1(k), x2(k), x1(k+1), x2(k+1), x1(k)

2, x1(k)x2(k), x1(k)x1(k+
1), x1(k)x2(k+1), x2(k)

2, x2(k)x1(k+1), . . . ]⊤). We have that

µ =

(

2n+m

2n

)

. (4)

In this way, any polynomial in the variables ofx(k), x(k + 1) up to degreem can be formulated
as a linear function ofζ; so namely we have

hm(x(k), x(k + 1)) = Hζ = [H1ζ H2ζ . . . Hnζ]
⊤ (5)

with H ∈ Rµ×n. Moreover, it is also possible to express polynomialsp up to degree2m as
a quadratic form with respect toζ, i.e. p(x(k), x(k + 1)) = ζ⊤Pζ, with P = P⊤ ∈ Rµ×µ. As
reported in the literature related to sum of squares problems [20, 13], this quadratic expression
of a polynomial is not unique, due to the fact that different products of monomials can yield
the same result, for examplex2

1
is eitherx2

1
times1 or x1 timesx1. This implies that there exist

linearly independent slack matricesWk =W⊤

k ∈ Rµ×µ, with k = 1, . . . , γ such thatζ⊤Wkζ = 0.
The number of such matrices [13] is

γ =
1

2

(

(

m+ 2n

m

)2

+

(

m+ 2n

m

)

)

−

(

2n+ 2m

2m

)

. (6)

A polynomial p of degree2m or less can then be expressed with the so called Gram matrix
formulation as

p(x(k), x(k + 1)) = ζ⊤

(

P +

γ
∑

k=1

ψkWk

)

ζ (7)

with a valid choice ofP , for anyψ ∈ Rγ , ψ = [ψ1, ψ2, . . . ψγ ]
⊤. Notice that the Gram matrixP is

not unique.
The main result of this paper is in the following theorem, which basically yields a practical

solution for the problem in Section 2.2 in its step-by-step formulation.

Theorem 1
Consider the dynamical system described by (1), together with the variables defined in (4), (5), (6).
If x(k) is such that(x(k)− c(k))⊤P (k)−1(x(k) − c(k)) 6 1 is satisfied, then(x(k + 1)− c(k +
1))⊤P (k + 1)−1(x(k + 1)− c(k + 1)) 6 1 is true under (1) if the following inequalities hold:

[

I+ Λ−Θ+
∑γ

k=1
ψkWk K⊤

K P (k + 1)

]

� 0 (8)
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Ω+

γ
∑

k=1

φkWk � 0 (9)

for some values of

• ψ ∈ R
γ , ψ = [ψ1, ψ2, . . . ψγ ]

⊤;

• φ ∈ Rγ , φ = [φ1, φ2, . . . φγ ]
⊤;

• Ω = Ω⊤ ∈ Rµ×µ, which is such thatζ⊤Ωζ ∈ R2m−2

[

[x(k)⊤ x(k + 1)⊤]⊤
]

;

• Γi = Γ⊤

i ∈ Rµ×µ, which is such thatζ⊤Γiζ ∈ Rm

[

[x(k)⊤ x(k + 1)⊤]⊤
]

, for i = 1, . . . , n,

where

• Wk =W⊤

k ∈ Rµ×µ satisfiesζ⊤Wkζ = 0 for k = 1, . . . , γ;
• Θ = Θ⊤ ∈ Rµ×µ is such thatζ⊤Θζ = (ζ⊤Ωζ)

(

1− (x(k) − c(k))⊤P (k)−1(x(k)− c(k))
)

;
• Λ = Λ⊤ ∈ Rµ×µ is such thatζ⊤Λζ =

∑n

i=1
(ζ⊤Γiζ)(Hiζ);

• K ∈ Rn×µ is such thatKζ = x(k + 1)− c(k + 1);
• I ∈ R

µ×µ is such thatζ⊤Iζ = 1.

Proof
The goal is to assure that(x(k + 1)− c(k + 1))⊤P (k + 1)−1(x(k + 1)− c(k + 1)) 6 1 is satisfied
under (1) andx(k) ∈ E(P (k), c(k)). This is true if1− ((x(k + 1)− c(k + 1))⊤P (k + 1)−1(x(k +
1)− c(k + 1)) is sum of squares under the required circumstances, i.e. if

1− ζ⊤K⊤P (k + 1)−1Kζ +

γ
∑

k=1

ζ⊤ψkWkζ > 0 when

{

1−(x(k)−c(k))⊤P (k)−1(x(k)−c(k)) > 0
hm(x(k), x(k + 1)) = 0.

(10)
The next step is the use the S-procedure [14, 21] employing polynomial multipliersτ(x(k), x(k +
1)) > 0 and νi(x(k), x(k + 1)), for i = 1, . . . , n (more on this later). Namely, we choose
τ(x(k), x(k + 1)) as a polynomial of degree2m− 2, i.e.τ(x(k), x(k + 1)) = ζ⊤Ωζ, and in this way
τ(x(k), x(k + 1))(1 − (x(k)− c(k))⊤P (k)−1(x(k) − c(k)) is of degree2m and can be expressed
as ζ⊤Θζ; νi(x(k), x(k + 1) = ζ⊤Γiζ has to be constrained to degreem, so that(ζ⊤Γiζ)Hiζ

is at most of degree2m, and it can be expressed as a quadratic form inζ. The condition
τ(x(k), x(k + 1)) = ζ⊤(Ω +

∑γ

k=1
φkWk)ζ > 0 demanded by the S-procedure for imposing an

inequality constraint is implied by (9) (this is a pure sum ofsquares problem). Then (10) is implied
by

ζ⊤(I+ Λ−Θ−K⊤P (k + 1)−1K +

γ
∑

k=1

ψkWk)ζ > 0. (11)

By the Schur complement [14], thanks to the fact thatP (k + 1) ≻ 0, this is equivalent to (8) in
the theorem statement. Then (8) and (9) imply (10) whenx(k) belongs to the initial ellipsoid,
completing the proof.

In this proof the passage from (11) to (10), which we have explained as an S-procedure, can
also be seen as an application of Schmüdgen’s Positivstellensatz (see [22] or [23] page 29), with a
special choice of multipliers. Extending the class of S-procedure terms, i.e. including the products
of more than one constraint (i.e. elements in the ideals and preorderings, see again [23] or [24]
for an example) as well as increasingm will reduce the conservatism of the result, at the cost of
substantially increasing the computational cost.

Theorem 1 can then be exploited in order to solve the problem that we have formulated in
the beginning, by searching for the smallest possible ellipsoid E(P (k + 1), c(k + 1)) containing
x(k + 1) as a function ofP (k), c(k) under (1). This can be done by solving a convex optimisation
problem consisting in minimising the trace ofP (k + 1). The procedure is summarised here.
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Optimisation problem 2
Consider (1);

given:H, P (k), c(k),
minimise: trace(P (k + 1)),
over:P (k + 1), c(k + 1), Ω, Γi, ψ andφ,
under: (8), (9),ζ⊤Ωζ ∈ R2m−2[[x(k)

⊤ x(k + 1)⊤]⊤] andζ⊤Γiζ ∈ Rm[[x(k)⊤ x(k + 1)⊤]⊤].

Notice that the ellipsoids found in this way are not necessarily tight (i.e. the ellipsoids are bigger
than the locus ofx(k + 1)), for two reasons. First, Theorem 1 only states a sufficient (and not
necessary) condition. Second, the ellipsoidal shape has been arbitrarily imposed: the image of the
initial set mapped to the following time step does not necessarily have an ellipsoidal shape.

Solving the problem above repeatedly allows going from the bounds onx(0) to the bounds on
x(N) for anyN > 0 (yielding the systematic or robust simulation of the system).

4. A SPECIAL CASE

In this section we introduce a variant on the main result, which can be applied to discrete-time
dynamical systems of ordern whose evolution is described by the equation

gm(x(k))x(k + 1) = fm(x(k)) (12)

wherek ∈ N ∪ {0} is the discrete time variable,x ∈ Rn is the state vector,gm ∈ Rm[x(k)] with
m ∈ N, andfm(x(k)) ∈ Rn is a vector of polynomialsRm[x(k)]. The reason for focusing on such
a special case (which is not indeed quite restrictive), is that we can derive a set of LMIs that are
much smaller than in the case of Theorem 1, as it will be shown later on.

In this case, bothgm andfm only depend onx(k), and not onx(k + 1). We then define the vector
χ ∈ R

ρ which contains all the possible monomials obtainable fromx(k) from degree0 up tom (for
example, ifn = 2,m = 2, thenχ = [x1(k), x2(k), x1(k)

2, x1(k)x2(k), x2(k)
2, 1]⊤). We also have

that

ρ =

(

n+m

n

)

. (13)

As seen before, any polynomial in the classRm[x(k)] can be formulated as a linear function ofχ,
so

fm(x(k)) = F⊤χ, gm(x(k)) = G⊤χ (14)

with F ∈ Rρ×n, G ∈ Rρ. Notice that of course the sizeρ of χ is much smaller than the sizeµ of
ζ. As a consequence of working withχ instead ofζ, also the numberι of slack matricesQi, with
i = 1, . . . , ι, such thatχ⊤Qiχ = 0, is much smaller than the numberγ of slack matricesWi in ζ,
with

ι =
1

2

(

(

m+ n

m

)2

+

(

m+ n

m

)

)

−

(

n+ 2m

2m

)

. (15)

We can now formulate the theorem which deals with this special case.

Theorem 3
Consider the dynamical system in (12). Ifx(k) is such that(x(k) − c(k))⊤P (k)−1(x(k) − c(k)) 6
1 is satisfied, then(x(k + 1)− c(k + 1))⊤P (k + 1)−1(x(k + 1)− c(k + 1)) 6 1 is true under (12)
if the following two inequalities hold:

[

GG⊤ −Θ+
∑ι

k=1
ψkQk F −Gc(k + 1)⊤

F⊤ − c(k + 1)G⊤ P (k + 1)

]

� 0 (16)

Ω +

ι
∑

k=1

φkQk � 0 (17)

for some values of
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• ψ ∈ R
ι, ψ = [ψ1, ψ2, . . . ψι]

⊤;
• φ ∈ Rι, φ = [φ1, φ2, . . . φι]

⊤;
• Ω = Ω⊤ ∈ Rρ×ρ, which is such thatχ⊤Ωχ ∈ R2m−2[x(k)],

where

• Qk = Q⊤

k ∈ Rρ×ρ satisfiesχ⊤Qkχ = 0 for k = 1, . . . , ι;
• Θ = Θ⊤ ∈ R

ρ×ρ is such thatχ⊤Θχ = (χ⊤Ωχ)
(

1− (x − c(k))⊤P (k)−1(x− c(k))
)

.

Proof
We start by rewriting the expression(x(k + 1)− c(k + 1))⊤P (k + 1)−1(x(k + 1)− c(k +
1)) 6 1; multiplying the terms of this equation on the left bygm(x(k)) = χ(k)⊤G and
on the right by gm(x(k)) = G⊤χ(k), replacing gm(x(k))x(k + 1) with fm(x(k)) according
to (12) we getχ(k)⊤GG⊤χ(k)− (F⊤χ(k)− c(k + 1)G⊤χ(k))⊤P (k + 1)−1(F⊤χ(k)− c(k +
1)G⊤χ(k))⊤ > 0.

We would like to have this last expression verified (in the SOSsense) when1− (x(k)−
c(k))⊤P (k)−1(x(k)− c(k)) > 0. For this purpose we can use again the S-procedure with anx(k)-
varying multiplierτ(x(k)) > 0; let τ(x(k)) = χ⊤Ωχ, τ(x(k)) ∈ R2m−2[x(k)], so thatτ(x(k))(1 −
(x(k)− c(k))⊤P (k)−1(x(k) − c(k)) is of degree2m and can be expressed asχ⊤Θχ. The condition
τ(x(k)) = χ⊤(Ω +

∑ι

k=1
φkQk)χ > 0 is implied by (17). Then

χ(k)⊤GG⊤χ(k)− (F⊤χ(k)− c(k + 1)G⊤χ(k))⊤P (k + 1)−1(F⊤χ(k)− c(k + 1)G⊤χ(k))⊤ > 0
when1− (x(k)− c(k))⊤P (k)−1(x(k) − c(k)) > 0

(18)
is implied by (S-procedure)

χ(k)⊤(GG⊤ −Θ+
∑ι

k=1
ψkQk)χ(k)

−(F⊤χ(k)− c(k + 1)G⊤χ(k))⊤P (k + 1)−1(F⊤χ(k)− c(k + 1)G⊤χ(k))⊤ > 0.
(19)

By using the Schur complement [14], thanks to the fact thatP (k + 1) ≻ 0, this is equivalent to (16)
in the theorem statement. Then (16) and (17) imply (18) whenx(k) belongs to the initial ellipsoid,
concluding the proof.

The proof has been formulated again as relying on the S-procedure. The same proof, namely
the passage from (19) to (18) can also be seen as an application of Putinar’s Positivstellensatz
[25]. Such a theorem (see [23] pages 29-30) guarantees that the SOS formulation of the inequality
(x(k + 1)− c(k + 1))⊤P (k + 1)−1(x(k + 1)− c(k + 1)) 6 1 is non conservative if the degree of
τ(x(k)) is sufficiently high. This means that one can reduce the conservatism of the theorem by
choosing a bigger value ofm (it is always possible to do so), at a higher computational cost.

In this case as well, an optimisation problem allows the use of the theorem.

Optimisation problem 4
Consider (12);

given:F ,G, P (k), c(k)
minimise: trace(P (k + 1))
over:P (k + 1), c(k + 1), Ω, ψ andφ,
under: (16), (17) andχ⊤Ωχ ∈ R2m−2[x(k)].

Notice that again the ellipsoids found in this way are not necessarily tight, as the ellipsoidal shape
has been arbitrarily imposed and the image of the initial setis not necessarily an ellipsoid. The
advantage of using Optimisation 4 rather than Optimisation2, if the dynamical equations can be
cast into (12), is that the solution of (16), (17) is sensiblyless computationally intensive than (8),
(9), as explained in the next section.
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5. COMPUTATIONAL COMPLEXITY

As all SOS based methods, the proposed theorems and optimisation procedures are of limited
applicability for systems of high order (n) or for polynomials of high degree (m). Figure 1
shows the computational complexity in terms of number of unknowns to be found when running
Optimisation 2 and Optimisation 4.
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Figure 1. Number of unknowns in the two optimisation problems.

Moreover, the inequalities in (8) (Optimisation 2) are of sizeµ andµ+ n, whereas the ones in
(16) (Optimisation 4) are of sizeρ and ρ+ n. As an example, forn = 2, m = 2, (8) is of size
17× 17 and the number of slack matrices isγ = 75, for a total of130 unknowns, whereas for (16)
the size is8× 8 and the number of slack matrices isι = 6 for a total of18 unknowns. In general it
is difficult to say which is the maximum number of unknowns that a computer can deal with, but in
our experience a number of unknowns in the order of104 should not pose specific problems. In this
sense, it is also important that further research efforts (on SOS in general as well) should be focused
on devising a method to contain the explosion in complexity.

The next section shows some examples where the computational complexity is manageable and
the proposed optimisation problems can successfully be solved.

6. EXAMPLES

6.1. Aerospace applications: attitude dynamics

As a first example, we consider the attitude dynamics of a rigid body in space (like a satellite or a
celestial body), under no external torque. The continuous-time dynamic of the three principal body
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axis componentsω1, ω2, ω3 of its rotational velocity is described by Euler’s equations [26]







ω̇1 = J2−J3

J1

ω2ω3

ω̇2 = J3−J1

J2

ω1ω3

ω̇3 = J1−J2

J3

ω1ω2

(20)

whereJ1, J2, J3 are the moments of inertia with respect to the principal bodyaxes. Such equations
conserve the energy of the system, so a discretization with explicit methods (like forward Euler
integration) fails to keep such aspect (in the same way as continuous-time linear systems with poles
on the imaginary axis turn into unstable discrete-time systems if forward Euler is used, regardless
of how small the sampling time is). For this reason, an implicit discretisation method is preferrable,
like Tustin’s method, which turns (20) into











ω1(k+1)=ω1(k)−
T
2

J2−J3

J1

(ω2(k)ω3(k)−ω2(k+1)ω3(k+1))

ω2(k+1)=ω2(k)−
T
2

J3−J1

J2

(ω1(k)ω3(k)−ω1(k+1)ω3(k+1))

ω3(k+1)=ω3(k)−
T
2

J1−J2

J3

(ω1(k)ω2(k)−ω1(k+1)ω2(k+1))

(21)

for any chosen discretisation stepT . These discrete-time equations fit into the framework of (1),
with n = 3 andm = 2, which impliesµ = 28 andγ = 196, for a total of448 unknown variables
in Theorem 1. For the sake of this example, we pickT = 0.5 s, J1 = 1 kg·m2, J2 = 1.2 kg·m2,
J3 = 1.5 kg·m2, and initial conditions inE(α2I3, ω0) (a ball of radiusα centered inω0), with
α = 0.1 rad/s andω0 = [1.8 0, 0.5]⊤ rad/s.

The conditions stated in Theorem 1 have been coded using Matlab and the Yalmip toolbox [27],
and SeDuMi [28] has been chosen as solver for the optimisation problem in Optimisation 2. We
have propagated the ellipsoid from time0 s up to8 s, and compared it with the simulation of the
evolution of a set of randomly initial points taken from the initial ellipsoid. Figure 2 shows how
the procedure successfully propagates the ellipsoids, as we can see the projection of the results on
two different planes, namely the final and initial points/ellipsoid and some intermediate values. On
a2.67 GHz quad-core personal computer, the solver takes1.17 s to compute each time step.

ω
2

-0.2 0 0.2 0.4 0.6 0.8 1

ω
3
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-0.4
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0

0.2

0.4

0.6

ω
1

1 1.2 1.4 1.6 1.8 2 2.2

ω
3

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 2. Propagations of the ellipsoids of Example 6.1, projections on theω1 − ω3 andω2 − ω3 planes.
The black ellipses represent the initial conditions, whereas the empty ellipses are the final result of the
propagation after8 s. The dots are the simulation of randomly generated initialconditions (the bright dots

in the initial ellipse), the final values are indicated by thethicker dots.
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6.2. Cubic function

We now consider a simple dynamical system described by the scalar expression

x(k + 1) =
1

10
x(k)3 +

8

10
x(k)2 +

1

10
. (22)

This equation fits nicely into (12) withn = 1,m = 3, χ(k) = [x(k), x(k)2, x(k)3, 1]⊤,

F =







0
0.8
0.1
0.1






, G =







0
0
0
1






. (23)

In this case,ι = 3 andρ = 4 for a total of10 unknowns in Theorem 3, whereas if Theorem 1 were
to be used, we would haveγ = 27 andµ = 10 (79 unknowns).

It can be observed that the system in (22) has a locally stableequilibrium point atx = 0.1 and
a locally unstable one forx = 1. Initial conditions between such two points will make the state
converge to0.1, while forx(0) > 1 the state will diverge.

Again, by employing Matlab, we have simulated the system fortwo different ellipsoids of initial
conditions:

1. x(0) = 0.8, P (0) = 0.03;
2. x(0) = 0.8, P (0) = 0.04.

The first set of initial conditions does not include the unstable equilibrium point. We have iterated
the ellipsoid (which in this case ofn = 1 degenerates to an interval) up toN = 10, and we have
veryfied that in fact all its points converge to the stable equilibrium (Figure 3). This is not the case
for the second initial condition, for which such convergence is impossible (Figure 4). Notice that in
both cases the center of the ellipsoid does not coincide withthe propagation of the initial nominal
valiue (i.e.x(0) = 0.8). Moreover, in this special case the bounds appear to be tight, by comparing
the ellipsoids to the simulation of the upper (“+” symbol) and lower bounds (“o” symbol) in the
figure. The solver time is on average0.15 s per time step.

k
0 1 2 3 4 5 6 7 8 9 10

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x(k+1) = +0.1 +0.8x(k)2 +0.1x(k)3

x, nominal
x, upper
x, lower
ellipsoid

Figure 3. Evolution of the state for Example 6.2, with the initial ellipse not touching the unstable equilibrium
point.
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k
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x

0.1

0.2

0.3
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0.5
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0.8

0.9

1

1.1
x(k+1) = +0.1 +0.8x(k)2 +0.1x(k)3

x, nominal
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Figure 4. Evolution of the state for Example 6.2, with the initial ellipse ending at the unstable equilibrium
point.

6.3. Julia fractal

We now focus on a system with a more complex (and fascinating)dynamics. We consider the
following dynamical equation:

z(k + 1) = z(k)2 + c (24)

wherez, c ∈ C. The invariant sets of such equation are known as Julia sets or Julia fractals [29].
For z = x1 + jx2, n = 2 andm = 2 the equation can be recast into the framework of Theorem 3
and Optimisation 4, withρ = 6 andι = 6 for a total of18 unknowns. We consider the special case
of c = 0.123 + 0.745j, for which the invariant set has a fractal shape (nicknamed “the rabbit”), and
three attractors defining a three-point limit cycle. We havesimulated the evolution of the system for
an ellipse located completely inside the invariant set, in its periphery. The simulations, in Figure 5,
show that eventually all the points in this initial set converge to the limit cycle, after a few bounces
around the plane. The solver takes on average0.19 s to compute each time step; we have also run,
for comparison, the problem in the form of Optimisation 2 (µ = 15, γ = 50, 130 unknowns), for
which we have had an average computational time of0.38 s per time step, and ellipsoids which can
be considered numerically identical.

6.4. Newton fractal

At last, we consider the following dynamical equation:

z(k + 1) = z(k) +
z(k)3 − 1

3z(k)2
(25)

where againz ∈ C. There are three attractors for this equation; partitioning the plane according
to which one the state converges to generates a so-called Newton fractal [29]. The name comes
from the fact that (25) is the formula for Newton’s iterations for finding the roots of an equation,
namelyz(k)3 − 1 = 0 in this case; in fact, the attractors are such roots, i.e. thecubic roots of1 in
the complex plane.

Forz = x1 + jx2, n = 2 andm = 5 the equation can be recast into the framework of Theorem 3
with ι = 165 andρ = 21 for a total of351 unknowns (whereas if Theorem 1 were to be used, we
would haveγ = 7000, µ = 126 and14621 unknown variables, which would make the problem too
cumbersome to be solved by a common personal computer in a reasonable time). Again we have
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simulated the evolution of the system for an ellipse locatedcompletely inside one of the invariant,
convergent sets, in its periphery. The simulations (Figure6) show that eventually all the points in
this initial set converge to one attractor. The solver time is0.68 s per time step on average.

7. CONCLUSIONS

In this paper we have shown an efficient method which can be employed in order to validate
the properties of dynamical systems through a systematic simulation. The method offers hard
mathematical bounds but it requires solving a convex optimisation at each time step, which can
be computationally intensive. In any case, we believe that this method can be helpful in relevant
application, proposing a different and complementary approach with respect to the popular Monte
Carlo approach and other approaches found in the literature. Through examples, we have seen that
this systematic simulation can be used to validate regions of attractions for equilibrium points or
limit cycles (generalising other results from the literature, like for example [8] which applied to
polynomial functions, or [9], which only applied to quadratic functions).

We believe that the main advantage of the proposed method is that it is based on LMIs, so it will be
possible to upgrade it exploiting the LMI-based theory on robust control in order to take into account
a wide array of possible situations, including for example uncertainties in the model parameters.
Concerning other future research directions, we are also interested in applying the method to the
simulation of aerospace systems.
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Figure 5. Evolution of the bounding ellipse for Example 6.3.The filled area is the Julia set.
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Figure 6. Evolution of the bounding ellipse for Example 6.4.Each area of a different color represents the
region of attraction of one of the three solutions.


