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SUMMARY

This paper concerns the simulation of a class of nonlinescreie-time systems under a set of initial
conditions described by a bounding ellipsoid. We derive ece@dure allowing the propagation of such
ellipsoids through time, which makes it possible to set aguized hard bound on the evolution of the state
of the system for all the possible initial conditions. Twasiens of this procedure are given, the second of
which is slightly less general but less computationally deding. At the end of the paper, we first show an
application of the method in the domain of aerospace engimgesubsequently, three academic examples
of applications are presented, two of which come from therhef fractals.

KEY WORDS: Discrete-time systems, sum of squares, robustlsition, attitude dynamics.

1. INTRODUCTION

When dealing with nonlinear systems, it is often of capitaportance to be able to predict the
evolution of the state for uncertain initial conditionspesially in the case of safety-critical systems
like for example in aerospace applications, which are @taty the main motivation of this work.
A practical approach to this problem is the use of systensatitilation, which consists ideally in
checking the behaviour of the system with respect to all tesible initial conditions; but this is
strictly impossible if initial conditions are assumed tddrg to a dense set, leading to approaches
based on random tests or Monte Carlo methods [1]. Other appes have also been investigated,
for example based on random exploration [2] or sensitivitglgsis [3]. However, all of these
methods suffer of the shortcoming on being a sort of “siatitvalidation, in the sense that they do
not offer a hard bound on the evolution of the system, if noefeomputational complexity going
to infinity. Another approach is based on evaluating thecefiéthe initial condition with respect to
an output index (i.e. the time integral of the maximum dis&aftom the nominal trajectory), which
gives an idea of such effects but does not establish preoiseds on each state variable [4, 5].

In this article we present a radically different approacth® problem, based on the so called
“robust simulation” or simulation of sets [6, 7, 8, 9, 10], iaim offers instead mathematically
guaranteed bounds for the evolution of dynamical systetss (@lled “reachability analysis” in
the context of computer science [11, 12]). The specific nekttheveloped in this paper focuses
on a class of discrete-time systems, and it is based on theo$wsguares (SOS) relaxation of
polynomial problems [13], which leads to efficiently soll@lzonvex optimisation problems in
the form of linear matrix inequalities (LMIs) [14]. This amgach can be considered “safe”, as the
evolution of all the possible trajectories of the state ardtbounded, but on the other hand it is
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conservative, i.e. the bounds are not necessarily tight. @mhe main contribution of this work is
that the first theorem which we provide can be applied to a general set of nonlinear equations,
namely nonlinear implicit dynamical equations, which ctensfrom continuous-time dynamical
equations discretised thorugh implicit discretisatiorthoes. We also propose a computationally
cheaper specialised version which applies to a restriegtedfslynamical equations.

We would like to stress that robust simulation is a probleat #hares several similarities with
many works on computations on invariant sets [15], backwaathability [16] and search for
regions of attractions [17]. The goal of this paper is to fihd €nvelope containing the staie
each time instantand not to understand whether it is stable or whether iteviéintually converge
to a set. We have also to mention that the direct sum of squpgmach that we have chosen is not
the only possibility to deal with polynomials, i.e. momealaxations [18] are also a quite powerful
approach.

The paper is organised as follows. Section 2 contains thénpnaries and the problem
formulation. The two main theoretical results can then hmébin Section 3 and Section 4, in the
form of theorems with instructions for practical use. Aféeshort discussion on the computational
complexity in Section 5, these results are applied to foangxes in Section 6. Finally, conclusions
are drawn in Section 7.

2. PRELIMINARIES

2.1. Notation

We denote byN the set of non-negative integers, Bythe set of real numbers and By~ the set

of realn x m matrices. LetC be the set of complex numbers, ghthe imaginary unitR,, [z] is the

set of polynomials of degreein the entries of;, AT indicates the transpose of a matrix/,, is the
identity matrix of sizen, and0,,«,, is @ matrix of zeros of size x m. The notationA = 0 (resp.

A = 0) indicates that all the eigenvalues of the symmetric matrexre positive (resp. negative) or
equal to zero, wherea$ - 0 (resp.A < 0) indicates that all such eigenvalues are strictly positive

(resp. negative). The symbélZ) indicates the binomial coefficient, for which we have

We also defin€ (P, ¢) as the compact ellipsoid of dimensierwith matrix P € R"*" P = PT -
0 and centered im € R, i.e. £(P,c) = {z € R"|(z — ¢) T P71 (x — ¢) < 1}. At last, we employ
the symbok to complete symmetric matrix expressions avoiding rejoetst

2.2. Problem formulation

We consider a discrete-time dynamical system of ordevhose evolution is described by the
equation
hon (2 (k) x(k +1)) =0 1)

where k € NU {0} is the discrete time variable; € R™ is the state vectorh,, € R" is a
vector of polynomial functions in:(k) and z(k + 1) of degree not greater tham <€ N, i.e.
R, [[z(k)" z(k+1)T]T]. We suppose that the initial conditiar{0) is not exactly known, but
it is bound to belong to an ellipso®( P(0), ¢(0)) , i.e.

((0) = ¢(0)) T P(0) " (2(0) — (0)) < 1. 2
Under the assumption that (1) is well-posed, i.e. it is guedo solve forz(k + 1) if z(k) is given

(at least, forz(k) in a restricted subset @), the problem on which this article focuses is to find
the smallest ellipsoid (P (k), c(k)) that, for all the valid initial conditions, bounds the stateeach
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time instants with 0 < £ < N, i.e. such that
(x(k) = c(k)) " P(k)~ " (z(k) — c(k)) < 1. 3)

This problem can be decomposed into the iteration of an eleangproblem on a single time step,
i.e. finding the smallest(P(k + 1), c(k + 1)) for a givenz € E(P(k), c(k)).

We have chosen to focus on ellipsoids instead of semialgefets of higher degree (like in [19])
as we intend to use the method recursively. Using differets would increase the degree and the
computational complexity with each time step. Moreovdipsbids are quite useful in the practice,
as they can be quickly characterised geometrically in terhegnter and semiaxes.

3. MAIN RESULT

As stated ), is a vector of polynomials in the state variable at two défartime steps, namely
x(k) = [x1(k), 22(k), ... 2, (k)] ", andz(k + 1) = [z1(k + 1), 22(k + 1), ... 2,(k +1)]". As we
are going to deal with polynomials up to degreewe define also the vectgre R* which contains
all the possible monomials obtainable frartk) andxz(k+1) from degred) up tom (for example,
ifn=2m=2, theng = [1, xl(k:), xg(ki), l‘l(ki-i-l), l‘g(k—f—l), xl(k:)Q, l‘l(k)l‘g(k), xl(k;)xl(k:—i—
1), €1 (k)l‘g(k?-i—l), xg(k)Q, l‘g(kﬁ)xl (k—l—l), .. ]T) We have that

2n+m
j— ( ) ) . (4)
n
In this way, any polynomial in the variables ©fk), «(k + 1) up to degreen can be formulated
as a linear function of; so namely we have

B (x(k),z(k +1)) = HC = [Hi¢ Ho¢ ... Hu(]" (5)

with H € R#*™, Moreover, it is also possible to express polynomialsip to degree2m as
a quadratic form with respect t¢, i.e. p(z(k),z(k + 1)) = (TP¢, with P =PT € R*¥#, As
reported in the literature related to sum of squares probl, 13], this quadratic expression
of a polynomial is not unique, due to the fact that differenbqucts of monomials can yield
the same result, for exampi€ is eitherz? times1 or x; timesz;. This implies that there exist
linearly independent slack matric&ls, = W,” € R**#, with k = 1,...,v such that, " W;¢ = 0.
The number of such matrices [13] is

1 m—+ 2n ? m+2n 2n+2m
v=z + - . (6)
2 m m 2m
A polynomial p of degree2m or less can then be expressed with the so called Gram matrix
formulation as

.
pla(k),z(k +1)) =" (PJer/)ka) ¢ (7)
k=1
with a valid choice ofP, for anyy € R7, ¢ = [b1, 1, ... 1] . Notice that the Gram matriR is
not unique.
The main result of this paper is in the following theorem, ethbasically yields a practical
solution for the problem in Section 2.2 in its step-by-steprfulation.

Theorem 1

Consider the dynamical system described by (1), togethértive variables defined in (4), (5), (6).
If 2(k) is such thatz(k) — c(k)) " P(k)~'(x(k) — c(k)) < 1 is satisfied, therfz(k + 1) — c(k +
)T P(k+1)""(z(k 4+ 1) — c(k + 1)) < 1is true under (1) if the following inequalities hold:

I+A-0+30 bW, KT
K Plh+1) | =Y (8)
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§
Q4+ Wi =0 9

k=1
for some values of

L4 1/} S ]R’Y! 1/} - [1/}17 1/)27 cee w’y]—r;

L4 ¢ER’Y!¢: [¢17 ¢27 ¢’V]T;

e Q=07 € R whichis such that "Q¢ € R [[x(k) T 2(k+1)T]T];

o I =T € R*#, whichis suchthat "I, € Ry, [[z(k)T 2(k+1)T]T], fori =1,...,n,

where

Wi =W, € RW# satisfies TWy,¢ =0fork=1,...,7;

© =0T e RW#issuchthatTO¢ = ((TQC) (1 — (z(k) — c(k)) T P(k) " (z(k) — c(k)));
A=AT e Rrissuchthat "TAC = >"7  (CTTiC)(HC);

K e R™*#issuchthat¢ = x(k + 1) — c(k + 1);

I € R#**# is such that TI¢ = 1.

Proof

The goal is to assure that(k + 1) — c(k + 1)) T P(k+ 1)~ (z(k + 1) — c(k + 1)) < 1 is satisfied
under (1) and:(k) € E(P(k), c(k)). Thisis true ifl — ((x(k +1) —c(k+1))TP(k+ 1)~ (z(k +
1) — ¢(k + 1)) is sum of squares under the required circumstances, i.e. if

1—(x(k)—c(k)) "P(k) " x(k)—c(k)) > 0

Y
L= KP4+ 1) K+ Wi > 0 Whe”{ br(olb).a(k + 1) = 0.

k=1

(10)
The next step is the use the S-procedure [14, 21] employihgpmial multiplierst(z(k), x(k +
1)) >0 and v;(x(k),z(k+ 1)), for i=1,...,n (more on this later). Namely, we choose

7(z(k), z(k + 1)) as a polynomial of degre®n — 2, i.e.7(z(k), z(k + 1)) = (" Q¢, and in this way
7(z(k), z(k +1))(1 — (z(k) — c(k)) T P(k)~'(x(k) — c(k)) is of degree2m and can be expressed
as ¢'e¢; vi(z(k),r(k+1) = ¢ T;¢ has to be constrained to degree so that(¢'T;¢)H,¢

is at most of degre@m, and it can be expressed as a quadratic forn(.inThe condition
T(x(k),z(k+1)) =" (Q+>)_, ¢xWi)¢ > 0 demanded by the S-procedure for imposing an
inequality constraint is implied by (9) (this is a pure sunsqtiares problem). Then (10) is implied
by

-
CTI+A-0—K'P(k+1)7"K+ Y ¢Wi)¢ > 0. (11)
k=1
By the Schur complement [14], thanks to the fact tRék + 1) > 0, this is equivalent to (8) in
the theorem statement. Then (8) and (9) imply (10) whék) belongs to the initial ellipsoid,
completing the proof. O

In this proof the passage from (11) to (10), which we have a&Rrpld as an S-procedure, can
also be seen as an application of Schmiidgen’s Positiessaiz (see [22] or [23] page 29), with a
special choice of multipliers. Extending the class of Sepadure terms, i.e. including the products
of more than one constraint (i.e. elements in the ideals aedrgerings, see again [23] or [24]
for an example) as well as increasingwill reduce the conservatism of the result, at the cost of
substantially increasing the computational cost.

Theorem 1 can then be exploited in order to solve the probleah we have formulated in
the beginning, by searching for the smallest possible ssighE(P(k + 1), c(k + 1)) containing
x(k + 1) as a function ofP(k), ¢(k) under (1). This can be done by solving a convex optimisation
problem consisting in minimising the trace Bfk + 1). The procedure is summarised here.
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Optimisation problem 2
Consider (1);
given:H, P(k), c(k),
minimise: traceP (k + 1)),
over:P(k+1),c(k+1),Q,T, ¢ andg,
under: (8), (9)¢ "¢ € Ropo[[z(k) T 2(k+1)T]T] and¢ ' T;¢ € Ry [[x(k) T z(k+1)T]T].

Notice that the ellipsoids found in this way are not necelystight (i.e. the ellipsoids are bigger
than the locus ofc(k + 1)), for two reasons. First, Theorem 1 only states a sufficiand (not
necessary) condition. Second, the ellipsoidal shape hers dbitrarily imposed: the image of the
initial set mapped to the following time step does not nemélyshave an ellipsoidal shape.

Solving the problem above repeatedly allows going from thendls onz(0) to the bounds on
xz(N) forany N > 0 (yielding the systematic or robust simulation of the sygtem

4. A SPECIAL CASE

In this section we introduce a variant on the main result,clwidgan be applied to discrete-time
dynamical systems of orderwhose evolution is described by the equation

gm(@(k)z(k +1) = fm (x(k)) (12)

wherek € N U {0} is the discrete time variable, € R™ is the state vectow,, € R,,,[x(k)] with
m € N, andf,,(z(k)) € R" is a vector of polynomial®,,[z(k)]. The reason for focusing on such
a special case (which is not indeed quite restrictive), & te can derive a set of LMIs that are
much smaller than in the case of Theorem 1, as it will be shawer bn.

In this case, botl,,, andf,, only depend on:(k), and not on:(k + 1). We then define the vector
x € R” which contains all the possible monomials obtainable fad#k) from degree up tom (for
example, ifn, = 2, m = 2, theny = [z1(k), z2(k), z1(k)?, z1(k)z2(k), z2(k)?, 1] 7). We also have

that
o= (” ;m> . (13)

As seen before, any polynomial in the cl@s,[x(k)] can be formulated as a linear function af
S0

fm(x(k» = FTXv gm(l‘(k)) = GTX (14)
with F' € RP*", G € RP. Notice that of course the sizeof x is much smaller than the sizeof
¢. As a consequence of working wighinstead of¢, also the number of slack matrices);, with
i=1,...,1 such thaty"Q;x = 0, is much smaller than the numberof slack matricesV; in ¢,

with ,
LZl((m—i—n) +<m+n>>_(n+2m). (15)
2 m m 2m
We can now formulate the theorem which deals with this speeise.

Theorem 3

Consider the dynamical system in (12)zffk) is such thatz(k) — c(k)) " P(k)~(z(k) — c(k)) <
1 is satisfied, thetiz(k + 1) — c¢(k + 1)) T P(k + 1)~ (z(k + 1) — c¢(k + 1)) < 1 is true under (12)
if the following two inequalities hold:

GGT -0+ Y, vkQr F—Gelk+1)"

FT— ek 1 1)GT pk+1) | =0 (16)
Q+> okQr =0 (17)
k=1

for some values of
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hd wERLaT/}:WlJP% wb]—r!
L4 ¢€RL1¢:[¢17¢27"'¢L]T;
e O =0T € RP*?, which is such that "Qx € Roy,—2[z(k)],

where

e Q) =Q/ e RP*r satisfiesy ' Qry =0fork =1,...,4
e =0T e RP*’issuchthat 'Oy = (x Q) (1 = (z — c(k)) " P(k) ' (z — c(k))).

Proof

We start by rewriting the expressiofiz(k +1) —c(k+1))"P(k+ 1)~ (a(k + 1) — c(k +

1)) < 1; multiplying the terms of this equation on the left by, (z(k)) = x(k)'G and
on the right by g,,(z(k)) = GTx(k), replacing g,,(z(k))z(k + 1) with f,,(z ( )) according
to (12) we getx (k)" GGTx(k) — (FTx(k) — c(k + 1)GTX(1€))TP(/€ + 1) FTx(k) — ek +
DG x(k))" > 0.

We would like to have this last expression verified (in the S&¥8se) whenl — (z(k) —
c(k)) T P(k)~Y(z(k) — c(k)) = 0. For this purpose we can use again the S-procedure wiiti/gn
varying multiplierr(z(k)) > 0; let r(z(k)) = x " Qx, 7(z(k)) € Ra,,_o[z(k)], so thatr(z(k))(1 —
(x(k) — c(k)) T P(k)~Y(z(k) — c(k)) is of degrem and can be expresseda50y. The condition
m(z(k)) = x " (Q+ >4, #xQr)x = 0isimplied by (17). Then

x(k)TGGTx(k) — (FTx(k) — e(k + )G x(k) TP(k+1) HETx(k) = c(k+1)GTx(k)T >0
whenl — (z(k) — c(k)) " P(k)~" (x(k) — c(k)) = 0
(18)
is implied by (S-procedure)

X(k)T(GGT -0+ z;zl VeQr)x (k) (19)
(FT (k) — ek + )G x(R) TPl + 1 LET (k) — ek + 1)GTx(E)T > 0.

By using the Schur complement [14], thanks to the fact th@t+ 1) > 0, this is equivalent to (16)
in the theorem statement. Then (16) and (17) imply (18) wién belongs to the initial ellipsoid,
concluding the proof.

O

The proof has been formulated again as relying on the S-guwee The same proof, namely
the passage from (19) to (18) can also be seen as an appiiadtiButinar's Positivstellensatz
[25]. Such a theorem (see [23] pages 29-30) guaranteeshth&Q@S formulation of the inequality
(x(k+1) —c(k+1))TP(k+1)"Y(z(k + 1) — ¢(k + 1)) < 1 is non conservative if the degree of
7(z(k)) is sufficiently high. This means that one can reduce the coatsem of the theorem by
choosing a bigger value of (it is always possible to do so), at a higher computationsi.co

In this case as well, an optimisation problem allows the dsketheorem.

Optimisation problem 4
Consider (12);
given:F, G, P(k), c(k)
minimise: traceéP(k + 1))
over:P(k+ 1), c¢(k + 1), 2, ¢ ande,
under: (16), (17) ang " Qx € Ra,,_2[z(k)].

Notice that again the ellipsoids found in this way are noessarily tight, as the ellipsoidal shape
has been arbitrarily imposed and the image of the initialisetot necessarily an ellipsoid. The
advantage of using Optimisation 4 rather than Optimisa®pif the dynamical equations can be
cast into (12), is that the solution of (16), (17) is sensielys computationally intensive than (8),
(9), as explained in the next section.
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5. COMPUTATIONAL COMPLEXITY

As all SOS based methods, the proposed theorems and ogitmiggiocedures are of limited
applicability for systems of high ordem) or for polynomials of high degreen). Figure 1
shows the computational complexity in terms of number ofnovins to be found when running
Optimisation 2 and Optimisation 4.

Optimisation 2 Optimisation 4

108 - - 10° - -
—o— m=1 1l —&—m=1
—¥— m=2
107 = —— m=3 1]
10° H —>%—m=4
—8—m=5

=
o
o

(=Y
o
N

number of unknowns
number of unknowns

Figure 1. Number of unknowns in the two optimisation protdem

Moreover, the inequalities in (8) (Optimisation 2) are afesi. and . + n, whereas the ones in
(16) (Optimisation 4) are of sizge andp + n. As an example, fon =2, m =2, (8) is of size
17 x 17 and the number of slack matricesyis= 75, for a total of130 unknowns, whereas for (16)
the size i8 x 8 and the number of slack matrices is- 6 for a total of18 unknowns. In general it
is difficult to say which is the maximum number of unknowng thaomputer can deal with, but in
our experience a number of unknowns in the ordeidfshould not pose specific problems. In this
sense, it is also important that further research efforisSOS in general as well) should be focused
on devising a method to contain the explosion in complexity.

The next section shows some examples where the computatmmalexity is manageable and
the proposed optimisation problems can successfully hedol

6. EXAMPLES

6.1. Aerospace applications: attitude dynamics

As a first example, we consider the attitude dynamics of & figidy in space (like a satellite or a
celestial body), under no external torque. The continuous-dynamic of the three principal body
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axis components, ws, ws Of its rotational velocity is described by Euler's equat§6]

. Jo—J-

w1 = Z5waws

. Js—J

Wy = 3J2 1w1w3 (20)
. Ji=d

w3 = S wiwa

where.Jy, Jo, J3 are the moments of inertia with respect to the principal baxis. Such equations
conserve the energy of the system, so a discretization wjphio# methods (like forward Euler
integration) fails to keep such aspect (in the same way atsneanus-time linear systems with poles
on the imaginary axis turn into unstable discrete-timeesystif forward Euler is used, regardless
of how small the sampling time is). For this reason, an inifpiiscretisation method is preferrable,
like Tustin’s method, which turns (20) into

w1 (k?-i—l) =w1 (k) — % JQJTle (WQ(k)w3 (k?) — w9 (k?-‘rl)w?,(k?-i-l))
wa(k+1) = ws (k) — 5 L5 (w1 (k)ws (k) —wi (k+1)ws (k+1)) (21)
ws (k‘+1) :wd(k) — % Jl];JQ (wl (k)WQ (k‘) — w1 (k+1)w2(k+1))

for any chosen discretisation stép These discrete-time equations fit into the framework of (1)
with n = 3 andm = 2, which implies;, = 28 and~y = 196, for a total 0f448 unknown variables
in Theorem 1. For the sake of this example, we gitk 0.5 s, J; = 1 kg-m?, J, = 1.2 kg-m?,

Js = 1.5 kg-m?, and initial conditions inf(a?I3,w,) (a ball of radiusa centered inwg), with

a = 0.1rad/s andvy = [1.8 0, 0.5] " rad/s.

The conditions stated in Theorem 1 have been coded usingMatid the Yalmip toolbox [27],
and SeDuMi [28] has been chosen as solver for the optimisg@tioblem in Optimisation 2. We
have propagated the ellipsoid from tifies up to8 s, and compared it with the simulation of the
evolution of a set of randomly initial points taken from thmtial ellipsoid. Figure 2 shows how
the procedure successfully propagates the ellipsoidsgasaw see the projection of the results on
two different planes, namely the final and initial pointfsloid and some intermediate values. On
a2.67 GHz quad-core personal computer, the solver takess to compute each time step.

0.6

04

021

0.2+

04+

06}

1 1.2 1.4 1.6 1.8 2 2.2 -0.2 0 0.2 04 06 0.8 1
“y Yy

Figure 2. Propagations of the ellipsoids of Example 6.1jgotmons on thev; — w3 andws — w3 planes.

The black ellipses represent the initial conditions, whsrthe empty ellipses are the final result of the

propagation afteg s. The dots are the simulation of randomly generated irgtalditions (the bright dots
in the initial ellipse), the final values are indicated by thieker dots.
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6.2. Cubic function

We now consider a simple dynamical system described by #ilarsexpression

z(k+1) = %x(k):‘ - f—ox(k)Q + 1—10. (22)
This equation fits nicely into (12) with = 1, m = 3, x(k) = [z(k), z(k)?, z(k)3, 1]7,
0 0
F=| 0] e=1 (23)
0.1 1

In this casey; = 3 andp = 4 for a total of10 unknowns in Theorem 3, whereas if Theorem 1 were
to be used, we would have= 27 andy = 10 (79 unknowns).

It can be observed that the system in (22) has a locally sedpldibrium point atz = 0.1 and
a locally unstable one far = 1. Initial conditions between such two points will make thatst
converge td.1, while for z(0) > 1 the state will diverge.

Again, by employing Matlab, we have simulated the systentior different ellipsoids of initial
conditions:

1. 2(0) = 0.8, P(0) = 0.03;
2. 2(0) = 0.8, P(0) = 0.04.

The first set of initial conditions does not include the uhkaquilibrium point. We have iterated
the ellipsoid (which in this case aof = 1 degenerates to an interval) up 8= 10, and we have
veryfied that in fact all its points converge to the stableildaium (Figure 3). This is not the case
for the second initial condition, for which such convergeigimpossible (Figure 4). Notice that in
both cases the center of the ellipsoid does not coincide thélpropagation of the initial nominal
valiue (i.e.z(0) = 0.8). Moreover, in this special case the bounds appear to bt bgltomparing
the ellipsoids to the simulation of the upper (“+” symbol)daower bounds (“0” symbol) in the
figure. The solver time is on averagd5s s per time step.

x(k+1) = +0.1 +0.8x(k)? +0.1x(k)®

l T T T T
+
T % x, nominal
09 + + X, upper | A
O X, lower
T ellipsoid
0.8% 4
0.7} + 4
*
D
0.6 i
x o
05r * 1
04 E
03 * 4
O]
0.2 B
o *
ol 1 £ & @

0 1 2 3 4 5 6 7 8 9 10
k

Figure 3. Evolution of the state for Example 6.2, with thei@iellipse not touching the unstable equilibrium
point.
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x(k+1) = +0.1 +0.8x(k)? +0.1x(k)®

1.1 T T T
% x, nominal
1+ 0+ o+ o+ o+ o+ o+ H T Xupper | T
O x, lower
09 ellipsoid 4
0.8% i
0.7 B
*

x 0.6 4
051 * 1
0.4} o g
03 ¥ 1
0zr * i

[0]
01 . . | B % » o o o
0 1 2 3 4 5 6 7 8 9 10

k

Figure 4. Evolution of the state for Example 6.2, with theiatiellipse ending at the unstable equilibrium
point.

6.3. Julia fractal

We now focus on a system with a more complex (and fascinatiygamics. We consider the
following dynamical equation:
2(k+1) = z(k)* +c¢ (24)

wherez, ¢ € C. The invariant sets of such equation are known as Julia selslia fractals [29].
For z = x1 + jxo, n = 2 andm = 2 the equation can be recast into the framework of Theorem 3
and Optimisation 4, witlp = 6 and. = 6 for a total of18 unknowns. We consider the special case
of ¢ = 0.123 + 0.7457, for which the invariant set has a fractal shape (nicknantieel rabbit”), and
three attractors defining a three-point limit cycle. We hsineulated the evolution of the system for
an ellipse located completely inside the invariant settamperiphery. The simulations, in Figure 5,
show that eventually all the points in this initial set comeeto the limit cycle, after a few bounces
around the plane. The solver takes on avefagge s to compute each time step; we have also run,
for comparison, the problem in the form of Optimisationi2= 15, v = 50, 130 unknowns), for
which we have had an average computational tim@3# s per time step, and ellipsoids which can
be considered numerically identical.

6.4. Newton fractal

At last, we consider the following dynamical equation:

2(k)2 -1

32(k)? (25)

z(k+1)=z(k)+
where agaire € C. There are three attractors for this equation; partitigrtime plane according
to which one the state converges to generates a so-calletoNdkactal [29]. The name comes
from the fact that (25) is the formula for Newton'’s iteratiofor finding the roots of an equation,
namelyz (k)3 — 1 = 0 in this case; in fact, the attractors are such roots, i.ectiiéc roots ofl in
the complex plane.

Forz = x1 + jxa, n = 2 andm = 5 the equation can be recast into the framework of Theorem 3
with . = 165 andp = 21 for a total of351 unknowns (whereas if Theorem 1 were to be used, we
would havey = 7000, u = 126 and14621 unknown variables, which would make the problem too
cumbersome to be solved by a common personal computer irsan&lale time). Again we have
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simulated the evolution of the system for an ellipse locattipletely inside one of the invariant,
convergent sets, in its periphery. The simulations (Fig)rehow that eventually all the points in
this initial set converge to one attractor. The solver tis1@68 s per time step on average.

7. CONCLUSIONS

In this paper we have shown an efficient method which can beoy®g in order to validate
the properties of dynamical systems through a systematiclation. The method offers hard
mathematical bounds but it requires solving a convex ogaion at each time step, which can
be computationally intensive. In any case, we believe thiatrnethod can be helpful in relevant
application, proposing a different and complementary epghn with respect to the popular Monte
Carlo approach and other approaches found in the literaftw@ugh examples, we have seen that
this systematic simulation can be used to validate regidrgt@ctions for equilibrium points or
limit cycles (generalising other results from the literatulike for example [8] which applied to
polynomial functions, or [9], which only applied to quadedunctions).

We believe that the main advantage of the proposed methbaltik ts based on LMIs, so it will be
possible to upgrade it exploiting the LMI-based theory dsusi control in order to take into account
a wide array of possible situations, including for exampteartainties in the model parameters.
Concerning other future research directions, we are alswasted in applying the method to the
simulation of aerospace systems.
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Figure 5. Evolution of the bounding ellipse for Example @.Be filled area is the Julia set.

Figure 6. Evolution of the bounding ellipse for Example &4ch area of a different color represents the
region of attraction of one of the three solutions.



