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Introduction

In this paper we investigate the connection between the number of free subgroups of finite index in the free product of finite cyclic groups ∆ + = Z p * Z q , where p, q ≥ 2 (not necessarily prime or co-prime) and the number of certain hypermaps 1 , to reveal new qualitative and quantitative information about these numbers and their generating functions. We also investigate the link between conjugacy classes of free subgroups of finite index in ∆ + and isomorphism classes of hypermaps. Our present contribution is to provide new formulas, recurrence relations and asymptotics for said numbers, accompanied by software which supplies a wide spectrum of examples, and to establish the transcendence and non-holonomy of some of the associated generating functions.

The notation ∆ + is motivated by the fact that for pq ≥ 6 the group in question is isomorphic to the (p, q, ∞) orientation-preserving Fuchsian triangle group acting on two-dimensional hyperbolic space, a group whose relationship with hypermaps has been fruitfully investigated in many papers, of which we mention the ground-laying work by Jones and Singerman [START_REF] Jones | Theory of maps on orientable surfaces[END_REF], and a recent series of results by Breda d'Azevedo -Mednykh -Nedela [START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF], and Mednykh -Nedela [START_REF] Mednykh | Enumeration of unrooted hypermaps[END_REF][START_REF] Mednykh | Enumeration of unrooted maps of a given genus[END_REF][START_REF] Mednykh | Enumeration of unrooted hypermaps of a given genus[END_REF] who solved Tutte's classification problem for maps and hypermaps, as well as the papers [START_REF] Godsil | On the number of subgroups of given index in the modular group[END_REF][START_REF] Imrich | On the number of subgroups of given index in SL 2 (Z)[END_REF][START_REF] Petitot | Counting Rooted and Unrooted Triangular Maps[END_REF][START_REF] Stothers | The number of subgroups of given index in the modular group[END_REF][START_REF] Vidal | Sur la classification et le denombrement des sous-groupes du groupe modulaire et de leurs classes de conjugaison[END_REF][START_REF] Yao | Über die Anzahl der Untergruppen vom gegebenen Index in freien Produkten endlicher zyklischer Gruppen[END_REF].

Our methods also provide a solution to Tutte's classification problem as described in [START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF], without considering the genus-specific case, c.f. [START_REF] Mednykh | Enumeration of unrooted maps of a given genus[END_REF][START_REF] Mednykh | Enumeration of unrooted hypermaps of a given genus[END_REF].

General subgroup growth is the subject of the monograph [START_REF] Lubotzky | Subgroup Growth[END_REF] by Lubotzky and Segal, and further information on counting the number of subgroups in free products of cyclic groups of prime orders can be found in the papers by Müller and Schlage-Puchta [START_REF] Müller | Classification and statistics of finite index subgroups in free products[END_REF][START_REF] Müller | Character theory of symmetric groups, subgroup growth of Fuchsian groups, and random walks[END_REF][START_REF] Müller | Statistics of isomorphism types in free products[END_REF]. There they employ the general theory of subgroup structure in free products of (finite and infinite) cyclic groups together with representation theory, analytic number theory and probability theory, among other tools.

We use species theory (initiated by Joyal [START_REF]Une théorie combinatoire des séries formelles[END_REF], c.f. also the monographs [START_REF] Bergeron | Théorie des espèces et combinatoire des structures arborescentes[END_REF][START_REF] Flajolet | Analytic combinatorics[END_REF]) as our main computational tool, in order to generalise and enhance the results of [START_REF] Petitot | Counting Rooted and Unrooted Triangular Maps[END_REF][START_REF] Stothers | The number of subgroups of given index in the modular group[END_REF][START_REF] Stothers | Free Subgroups of Free Products of Cyclic Groups[END_REF]. This technique allows us to write down the generating series for the numbers of free subgroups of finite index in Theorem 4.2 (or rooted hypermaps in Theorem 4.1) and the number of their conjugacy classes in Theorem 6.2 (or isomorphism classes of hypermaps in Theorem 6.1) in a relatively simple form suitable for routine calculation and computer experiments. Species theory is virtually unknown in the group-theory community, and the authors hope that the applications to subgroup growth in this paper will make its use more widespread.

Another goal of the paper is to display a hierarchy of differential equations that can be used to obtain certain non-linear recurrence relations for the numbers of finite index free subgroups in ∆ + . This hierarchy is known as the Riccati hierarchy c.f. [START_REF] Grabowski | Mixed superposition rules and the Riccati hierarchy[END_REF], and its applications here appear as a simplified version of the general phenomenon described primarily in [START_REF] Goulden | The KP hierarchy, branched covers, and triangulations[END_REF][START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF]. Some of our generating series are associated with the classical Riccati equation, which, in particular, implies that they are non-holonomic (see Corollary 5.5). More connections between the classical Riccati equation, map enumeration and continued fractions representation of the respective generating series appear in [START_REF] Arquès | Rooted maps on orientable surfaces, Riccati's equation and continued fractions[END_REF].

Throughout the paper we give concrete formulas for several particular cases of free products of cyclic groups, as well as for the related hypermaps as combinatorial objects, and a SAGE code is provided in the Appendix to support our findings and to provide illustrative examples where necessary.

D. The convention in the literature is to call the orbits of σ vertices (σ stands for the French sommets), the orbits of α hyper-edges (α for arêtes) and the orbits of ϕ = σ -1 α -1 hyper-faces (ϕ for faces), even though these are not all technically vertices, edges and faces. The hypermap H can be equivalently represented as H = D; α, ϕ . If α is an involution then H is called a map (see [START_REF] Nedela | Maps, Hypermaps and Related Topics[END_REF] for an introduction to maps and hypermaps).

One might find it helpful to construct a graph where we associate with each distinct cycle of ϕ a white vertex and with each distinct cycle of α a black vertex; a white vertex is connected to a black vertex by an edge if their defining cycles have non-empty intersection. Then the n edges in this bipartite graph can be thought of as darts, and the graph will turn out to be the dual graph to the topological hypermap defined below.

Indeed, a hypermap naturally appears in the setting of an orientable genus g surface Σ g and a graph Γ embedded in Σ g as ι : Γ → Σ, satisfying 1) the complement Σ g \ ι(Γ) is a union of topological discs called faces, 2) the faces are properly two-colourable (e.g. into black and white), i.e. faces of the same colour intersect only at vertices of Γ, and 3) the corners of the white faces are labelled with the numbers 1, 2, 3, . . . in some fashion (we may think that this information is carried by the embedding map ι), and a black face corner label is equal to the adjacent white face corner label, when moving clockwise around their common vertex.

Then the triple H = Σ g ; Γ, ι is an oriented labelled topological hypermap. By removing a sub-disc in the interior of each face of a hypermap we obtain a ribbon graph or "fat" graph, which is a graph together with a cyclic ordering on the set of darts incident to each vertex; the edges of the ribbon graph can be seen as small rectangles or ribbons attached in a given cyclic order to discs glued at the vertices.

The correspondence between the topological and combinatorial definitions follows:

1) each disjoint cycle of α is obtained from recording the corner labels of a black face in an anticlockwise direction, 2) each disjoint cycle of σ is obtained from recording the labels around a vertex in an anticlockwise direction, 3) each disjoint cycle of ϕ is obtained from recording the corner labels of a white face in an anticlockwise direction.

Consequently, the set of face labels becomes the set of darts of H, the white faces become hyper-faces of H and the black faces become hyper-edges of H. Thus the combinatorial and topological descriptions of H agree. Indeed, each topological hypermap produces a unique combinatorial hypermap, and given the above combinatorial information one may assemble an oriented connected surface from a number of topological discs, which are represented by polygons with labelled corners.

A topological hypermap H is rooted if we mark the first edge encountered while moving clockwise around the white corner of H labelled 1, and a combinatorial hypermap is rooted if one of its darts is marked as a root. We always assume that the root dart is 1.

Example 2.1. A partial picture of a rooted hypermap is shown in Figure 1. The root corner is marked with an arrow and numbered 1. If we ignore the labelling (or marked root) of a hypermap, then we consider its entire isomorphism class. Two (combinatorial) hypermaps H 1 = D 1 ; α 1 , σ 1 and H 2 = D 2 ; α 2 , σ 2 , assumed to be neither labelled nor rooted, are isomorphic if there exists ψ ∈ S n such that ψ α 1 ψ -1 = α 2 and ψ σ 1 ψ -1 = σ 2 . Their topological counterparts are isomorphic if there exists an orientation-preserving homeomorphism between the respective surfaces which preserves the graph embedding. Two (combinatorial) rooted hypermaps are isomorphic if their roots correspond to each other under some hypermap isomorphism. An analogous definition holds in the topological case. Below we shall use the combinatorial and topological descriptions of hypermaps interchangeably.

A (p, q)-hypermap H on n darts is one in which α and ϕ are permutations in S n such that α has n/p cycles of length p, and ϕ has n/q cycles of length q. In other words, all hyper-edges of H are p-gons and all hyper-faces of H are q-gons. Given this definition, it is more convenient to represent H as H = D; α, ϕ . Example 2.2. The partial picture in Figure 1 features a (5, 6)-hypermap. By analogy with fullerene polyhedra, we shall call [START_REF] Deryagina | On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices[END_REF][START_REF]Digital Library of Mathematical Functions[END_REF]-hypermaps fullerene hypermaps, for short. However, in this case fullerene hypermaps do not have any specific restrictions (apart from those coming from the number of darts) on their topological genus, and thus on the number of pentagonal faces.

Example 2.3. A triangulated surface carries a (2, 3)-hypermap all of whose bigonal hyper-edges are collapsed into ordinary edges. We shall refer to a (2, 3)-hypermap as a triangulation (of an oriented surface), thus allowing identification of two sides of the same triangle. Figure 2 shows a triangulation of a torus with α = (1, 4)(2, 5) [START_REF] Bergeron | Théorie des espèces et combinatoire des structures arborescentes[END_REF][START_REF]Digital Library of Mathematical Functions[END_REF], σ = (1, 6, 2, 4, 3, 5), ϕ = (1, 2, 3) [START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF][START_REF] Deryagina | On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices[END_REF][START_REF]Digital Library of Mathematical Functions[END_REF].

Another important class of hypermaps is the class of (2, 4)-hypermaps, or quadrangulations. In general, every (2, q)-hypermap is equivalent to a map as described in [17, §2 - §3], and (once labelled) its corner labels of hyper-edges become exactly the dart labels of the resulting map after all bigonal hyper-edges are collapsed into usual edges. Example 2.4. The (3, 3)-hypemaps are triangulations that admit a colouring which is chequerboard around the vertices. We shall call (3, 3)-hypermaps bi-coloured triangulations (whose dual map is a bipartite cubic graph). Figure 3 features a bicoloured triangulation of a torus with α = σ = ϕ = (1, 2, 3).

Formal series.

A hypergeometric sequence (c k ) k≥0 is one for which c 0 = 1 and the ratio of consecutive terms is a rational function in k, i.e. there exist monic polynomials

P (k) and Q(k) such that c k+1 c k = P (k) Q(k) .
If P and Q can be factored as

P (k) Q(k) = (k + a 1 )(k + a 2 ) . . . (k + a p ) (k + b 1 )(k + b 2 ) . . . (k + b q )(k + 1)
, with a i , 1 ≤ i ≤ p, b j , 1 ≤ j ≤ q, non-negative real numbers, then we use the notation

p F q a 1 . . . a p b 1 . . . b q ; z for the formal series F (z) = k≥0 c k z k , c.f. [34, §3.2].
The factor (k + 1) belongs to the denominator for historical reasons. Such a hypergeometric series satisfies the differential equation ( 1)

ϑ(ϑ + b 1 -1) • • • (ϑ + b q -1) -z(ϑ + a 1 ) • • • (ϑ + a p ) p F q (z) = 0,
where ϑ = z d dz , c.f. [6, §16.8(ii)]. Among numerous differential equations related to (1) is the classical Riccati equation, which will play an important role in this paper. It is a first order non-linear equation with variable coefficients f i (x), of the form

(2) dy dx = f 1 (x) + f 2 (x)y + f 3 (x)y 2 .
The Pochhammer symbol is related to hypergeometric series, is defined as

(a) n = a(a + 1) . . . (a + n -1),
and has asymptotic expansion

(3) (a) n ≈ √ 2π Γ(a) e -n n a+n-1 2 ,
where Γ(a) is the Gamma function of a, defined as Γ(a) = (a -1)! if a is a positive integer, and Γ(a) = ∞ 0 x a-1 e -x dx for all the non-integer real positive numbers. A formal power series y = f (x) is said to be D-finite, or differentiably finite, or holonomic, if there exist polynomials p 0 , . . . , p m (not all zero) such that p m (x)y (m) + • • • + p 0 (x)y = 0, where y (m) denotes the m-th derivative of y with respect to x. All algebraic power series are holonomic, but not vice versa, c.f. [START_REF] Flajolet | Analytic combinatorics[END_REF]Appendix B.4].

Finally recall that the Hadamard product (A B)(z) of two formal single-variable series

A(z) = n≥0 a n z n n! and B(z) = n≥0 b n z n n! is given by (A B)(z) := n≥0 a n b n z n n! .
Let λ = 1 n 1 2 n 2 . . . m nm be a partition of a natural number n ≥ 0, i.e. n = i≥1 in i . We write λ n and define λ! :

= 1 n 1 n 1 !2 n 2 n 2 ! . . . m nm n m !. Let z λ := z n 1 1 z n 2 2 . . . z nm m
for some collection of variables z 1 , z 2 , . . . . Then for two multi-variable series

A(z) = n≥0 λ n a λ z λ λ! and B(z) = n≥0 λ n b λ z λ λ! we have (A B)(z) := n≥0 λ n a λ b λ z λ λ! .
2.3. Species theory. Species theory (théorie des espèces) is due to A. Joyal [START_REF]Une théorie combinatoire des séries formelles[END_REF] and is a powerful way to describe and count labelled discrete structures. Since it requires a lengthy and formal setup, we give here only the basic ideas and refer the reader to [START_REF] Bergeron | Théorie des espèces et combinatoire des structures arborescentes[END_REF][START_REF] Flajolet | Analytic combinatorics[END_REF] for further details.

A species of structures is a rule (or functor) F which produces i) for each finite set U (of labels), a finite set F [U ] of structures on U , ii) for each bijection σ :

U → V , a function F [σ] : F [U ] → F [V ].
The functions F [σ] should further satisfy the following functorial properties:

i) for all bijections σ : U → V and τ :

V → W , F [τ • σ] = F [τ ] • F [σ],
ii) for the identity map

Id U : U → U , F [Id U ] = Id F [U ] .
Let [n] = {1, 2, . . . , n} be an n-element set, and assume that [0] = ∅. A species F of labelled structures has exponential generating function

F (z) = n≥0 |F [n]| z n n! .
For a species of unlabelled structures (i.e. structures up to isomorphism) we write F , and its generating function is a specialisation of the cycle index series, in the sense that F (z) = Z F (z, z 2 , z 3 . . . ), where the cycle index series (see [3, §1.2.3]) is defined as:

Z F (z 1 , z 2 , . . . ) = n≥0 1 n! σ∈Sn |F ix(F [σ])|z σ . Here F ix(F [σ]) is the set of elements of F [n] having F [σ] as automorphism, and z σ = z c 1 1 z c 2 2 . . . z cm m if the cycle type of σ is c(σ) = (c 1 , c 2 , . . . , c m ) (i.e. c k is the number of cycles of length k in the decomposition of σ into disjoint cycles).
Species can often be described by functional equations, as in the following example.

Example 2.5. Let A denote the species of rooted trees (i.e. trees with a distinguished vertex, or arborescences [START_REF]Une théorie combinatoire des séries formelles[END_REF]), and E the species of sets (from the French ensembles [START_REF]Une théorie combinatoire des séries formelles[END_REF]). Let Z be the singleton species with generating function Z(z) = z. Then the functional equation A = ZE(A) expresses the fact that any rooted tree with vertex labels from a finite set U can be naturally described as a root (a vertex z ∈ U ) to which is attached a set of disjoint rooted trees (on U \ {z}) which translate into equalities for generating functions; in this case we have A(z) = z exp(A(z)), where A(z) is the generating function for finite rooted labelled trees.

By using the Lagrange -Brünner inversion formula we get

A(z) = n≥2 n n-2
(n-1)! z n . This leads to Cayley's formula of n n-2 for the number of labelled trees on n vertices via the fact that the number of rooted trees on n vertices is the n-th coefficient of A(z) and each tree with n vertices rooted at 1 corresponds to (n -1)! labelled trees.

Subgroups of free products of cyclic groups

Let H r p,q (n) be the set of connected oriented rooted (p, q)-hypermaps on n darts. In this section we prove two lemmas about the correspondence between finite index subgroups of ∆ + and hypermaps. This correspondence may also be seen via arguments involving the Schreier graph of the respective subgroup (c.f. [START_REF] Stothers | Free Subgroups of Free Products of Cyclic Groups[END_REF]), however additional steps are required in order to translate the Schreier graph into the corresponding hypermap. Lemma 3.1. Let p, q > 1 be two natural numbers such that pq ≥ 6. There is a one-toone correspondence between H r p,q (n) and the set of free subgroups of index n in the group

∆ + = Z p * Z q .
Proof. Let H = D; α, ϕ be a rooted hypermap (with root 1) from H r p,q (n). Then there is an epimorphism from ∆ + = Z p * Z q ∼ = | p = ε * δ|δ q = ε to the group G(H) = α, ϕ given by → α, δ → ϕ, and ∆ + acts transitively on D via this epimorphism. Let Γ be the stabiliser subgroup of dart 1. Then [∆ + : Γ] = n and the action of ∆ + on D is equivalent to the action of ∆ + on the cosets of Γ.

Moreover, Γ cannot contain any conjugate of a non-trivial power of or δ because α and ϕ have no fixed points, and cycle structure is preserved under conjugation. Thus Γ has no torsion elements, as any torsion element in ∆ + is conjugate to some power of either or δ. By the Kurosh theorem on subgroups of free products, Γ is free.

On the other hand, a torsion-free finite index subgroup Γ < ∆ + gives rise to a combinatorial hypermap

H = D Γ ; α Γ , ϕ Γ , with D Γ = {g Γ|g ∈ ∆ + }, α Γ (gΓ) = ( g)Γ, ϕ Γ (gΓ) = (δg)Γ. The root of H corresponds to the coset εΓ.
Since Γ is torsion-free, it does not contain any conjugates of , δ, or their powers. Thus, α p Γ = ε and α k Γ = ε for 1 ≤ k < p, which implies that all disjoint cycles of α Γ have length p. Indeed, a cycle in α Γ has length d, d p, and once d < p, then α d Γ has fixed points. Thus Γ contains a conjugate of d , which is a contradiction to Γ being torsionfree. Analogously, all disjoint cycles of ϕ Γ have length q, so it follows that H ∈ H r p,q (n), where n = [∆ + : Γ]; then we use again that a torsion-free subgroup Γ < ∆ + is free.

By the definition of hypermap isomorphism, we analogously obtain the following. Lemma 3.2. Let p, q > 1 be two natural numbers such that pq ≥ 6. There is a one-toone correspondence between the set of isomorphism classes of connected oriented (p, q)hypermaps on n darts and the set of conjugacy classes of free subgroups of index n in the group ∆ + = Z p * Z q .

Counting free subgroups and hypermaps

We proceed by computing the numbers |H r p,q (n)| of connected oriented rooted (p, q)hypermaps on n darts. In order to do so we shall use species theory (see Section 2.3) and generalise the results of [START_REF] Petitot | Counting Rooted and Unrooted Triangular Maps[END_REF].

Let E be the species of sets, C i the species of cyclic permutations of length i ≥ 2, S i the species of permutations with cycles of length i only and no fixed points (assume S i [∅] = {∅}), H * the species of labelled (p, q)-hypermaps (not necessarily connected) on n darts (assume H * [∅] = {∅}), H the species of connected labelled (p, q)-hypermaps on n darts (in contrast, here H[∅] = ∅), and H • the species of connected rooted (p, q)hypermaps on n darts. Thus, an instance of species H * is a (possibly empty) disjoint union of several instances of species H, while an instance of H • is an instance of H with all but one of its labels discarded (that is, only the root has a label).

The following combinatorial equations describe the relations between the species:

(4)

S p = E(C p ), S q = E(C q ), H * = S p × S q .
Intuitively, this means that each permutation of S p has a unique decomposition into cycles of length p, and each hypermap is uniquely determined by a pair of permutations from S p and S q . Furthermore (5)

H * = E(H), H • = Z • H ,
where Z is the singleton species with generating function Z(z) = z, and H means species differentiation, c.f. [3, §1.4, Définition 5].

Since the generating function for the species of sets E is exp(z) [3, §1.2, Exemples 2], the respective generating functions will be [START_REF]Digital Library of Mathematical Functions[END_REF] C p (z) = z p p , C q (z) = z q q , and thus

(7) S p (z) = exp z p p = ∞ k=0 z pk p k 1 k! , (8) 
S q (z) = exp z q q = ∞ k=0 z qk q k 1 k! .
We shall use the notation p, q := lcm(p, q) and (p, q) := gcd(p, q), where lcm and gcd denote as usual the least common multiple and greatest common divisor, respectively. Identities ( 4), ( 7) and ( 8) imply that

(9) H * (z) = S p (z) S q (z) = ∞ k=0 z p,q k ( p, q k)!
p k p,q /p p,q k p ! q k p,q /q p,q k q ! , where denotes the Hadamard product of S p (z) and S q (z), and is the functional version of a Cartesian product. Note that we can express H * (z) as H * (z) = f (cz p,q ) for a suitable constant c > 0, and

f (z) = ∞ k=0 f k z k k! .
If we choose the constant c so that [START_REF] Godsil | On the number of subgroups of given index in the modular group[END_REF] c (p,q) = p, q (p-1)(q-1)-1 ,

then for k ≥ 0 (11) f k+1 f k = pq (p,q) -1 i=1 k + i(p,q) pq p (p,q) -1 i=1 k + i(p,q) p q (p,q) -1 i=1 k + i(p,q) q .
Since f (0) = 1, the series f (z) is hypergeometric, and we obtain

(12) f (z) = pq (p,q) -1 F p+q (p,q) -2 i(p,q) pq , i = 1, . . . , pq (p,q) -1 j(p,q)
p , j = 1, . . . , p (p,q) -1; j(p,q) q , j = 1, . . . , q (p,q) -1

; z .

Let us observe that whenever p or q is a divisor of i, (11) can be simplified so that q (p,q) -1 p + p (p,q) -1 q = p+q (p,q) -2 terms from both its numerator and denominator cancel out. Thus [START_REF] Grabowski | Mixed superposition rules and the Riccati hierarchy[END_REF] turns into [START_REF] Hall | Subgroups of finite index in free groups[END_REF] f

(z) = N F 0 i(p,q)
pq , i = 1, . . . , pq (p,q) -1, p i, q i . . . ; z ,

with N = 1 + (p-1)(q-1)-1 (p,q)
. Since f (z) is hypergeometric and thus holonomic, the growth function H * (z) = f (x), with x = c z p,q , is also holonomic. It is also clear that f (x) has convergence radius 0. Thus, by [14, Corollary 2], 1 f (x) is non-holonomic, and f (x) f (x) is transcendental (c.f. also [START_REF] Hillar | Solving polynomial systems with special structure[END_REF]Proposition 3.1.5]).

From [START_REF] Deryagina | On the enumeration of hypermaps which are self-equivalent with respect to reversing the colors of vertices[END_REF] we have the first equality below, and from H * (z) = f (x) the second:

(14) H • (z) = z d dz log H * (z) = p, q x f (x) f (x) .
Thus H • (z) is transcendental, and we have shown the following.

Theorem 4.1. The generating series for the number of connected rooted (p, q)hypermaps on n darts

H • (z) = ∞ n=0 |H r p,q (n)|z n
is transcendental, and the asymptotic expansion for its non-zero coefficients is

[z p,q k ]H • (z) ≈ c 0 k c 1 k+ 1 2 e c 2 k
, as k → ∞, where c 0 , c 1 , c 2 > 0 are constants that depend only on p and q.

Proof. The proof of the formula and transcendence is given above; it only remains to justify the asymptotics of [z p,q k ]H • (z). The series H • (z) has non-negative coefficients and is rapidly divergent, and thus we may apply the technique described in [7, Theorem 4.1] (see also [START_REF] Bender | An asymptotic expansion for the coefficients of some formal power series[END_REF] and [START_REF] Odlyzko | Asymptotic enumeration methods[END_REF]Theorem 7.2]). Then the coefficients of H * (z) are given by [START_REF] Hillar | Solving polynomial systems with special structure[END_REF] [

z p,q k ]H * (z) = c k k! N i=1 (a i ) k
and using the asymptotic expansion for the Pochhammer symbol in (3) we obtain the asymptotic expansion for the coefficients of log H * (z), from [START_REF] Hillar | Solving polynomial systems with special structure[END_REF] and subsequently for the coefficients of

H • (z) = z d dz log H * (z) as (16) [z p,q k ]H • (z) ≈ (2π) N -1 2 p, q i Γ(a i ) k (N -1)k-N -1 2 + i a i e (1+log c-N )k , as k → ∞,
where N = 1 + (p-1)(q-1)-1 (p,q)

, and the constants c and a i satisfy c (p,q) = p, q (p-1)(q-1)-1 , a i = i(p,q) pq , with i = 1, . . . , pq (p,q) -1, p i, q i. Also, notice that i a i = N 2 , and thus the above formula takes the required form. By Lemma 3.1, since the elements of H r p,q (n) are in bijection with free subgroups of index n in ∆ + , we obtain: Theorem 4.2. Let ∆ + = Z p * Z q be a free product of cyclic groups with p, q > 1, pq ≥ 6. Then the subgroup growth series S f (z) = ∞ n=0 s f (n)z n for the numbers s f (n) of free subgroups of index n of ∆ + coincides with H • (z).

Below, we consider several examples of the generating series H

• (z) = ∞ n=0 |H r p,q ( 
n)|z n given by formulas ( 13) -( 14) for various values of p and q. In order to facilitate computations with power series, we use the SAGE code from Appendix I.

Example 4.3. For the number of rooted triangulations on n darts we have H

• (z) = ∞ n=0 |H r
2,3 (n)|z n = 5 z 6 + 60 z 12 + 1105 z 18 + 27120 z 24 + 828250 z 30 + 30220800 z 36 + 1282031525 z 42 + 61999046400 z 48 + 3366961243750 z 54 + 202903221120000 z 60 + . . . . The coefficient sequence of H • (z) has index A062980 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF].

Note that, in this case, if we explicitly compute all the constants in the asymptotic equality [START_REF] Imrich | On the number of subgroups of given index in SL 2 (Z)[END_REF] 

The Riccati hierarchy and recurrence relations

As we mentioned before, the generating series H • (z) cannot be algebraic. Nevertheless, it does satisfy a non-linear differential equation, and although this fact does not make H • (z) holonomic, a certain recurrence relation holds for its coefficients h p,q (n) = |H r p,q (n)|. Recall that we expressed H * (z) as H * (z) = f (x), where x = c z p,q . By (10) -( 13), the function f (x) is hypergeometric and by (1) it satisfies the hypergeometric differential equation [START_REF] Jones | Theory of maps on orientable surfaces[END_REF] ϑf

(x) = x N i=1 (ϑ + a i )f (x),
where ϑ = x d dx , and a i , i = 1, . . . , N , are the parameters of the hypergeometric function in equality [START_REF] Hall | Subgroups of finite index in free groups[END_REF], with N = 1 + (p-1)(q-1)-1 (p,q) . Let w(x) := x f (x) f (x) . Then w(x) determines the growth series H • (z) = n≥0 h p,q (n) z n since (14) leads immediately to [START_REF]Une théorie combinatoire des séries formelles[END_REF] H • (z) = p, q x f (x) f (x) = p, q w(x).

Lemma 5.1. The function w(x) satisfies

(19) w(x) = x N i=0 σ N -i (a 1 , . . . , a N ) w i (x),
where σ i is the i-th elementary symmetric function, and the functions w i (x) are defined as

(20) w 0 (x) = 1, w 1 (x) = w(x), w i (x) = x d dx w i-1 (x) + w(x)w i-1 (x), for i ≥ 2.
Proof. By ( 17)

ϑf (x) = x N i=1 (ϑ + a i )f (x) = x N i=0 σ N -i (a 1 , . . . , a N ) ϑ i f (x),
and from the definition of w(x) it follows that ϑf (x) = w(x) f (x) = w 1 (x) f (x); we will prove by induction that ϑ i f (x) = w i (x) • f (x), assuming it holds for all values up to i -1:

ϑ i f (x) = ϑ(w i-1 (x) • f (x)) = ϑw i-1 (x) • f (x) + w i-1 (x) • ϑf (x) = = x d dx w i-1 (x) + w(x)w i-1 (x) f (x) = w i (x) • f (x).
Now ( 19) -( 20) follow immediately.

The family of equations ( 19) -( 20) is indexed by the integers p, q > 1, pq ≥ 6, and the first instance has p = 2, q = 3; this turns out to be the classical Riccati equation [START_REF] Lubotzky | Subgroup Growth[END_REF] w(x) = x 2 w (x) + xw(x) + xw 2 (x) + 5 36

x.

All the equations ( 19) -( 20) constitute a part of the Riccati hierarchy (c.f. [12, Equation (7.2)]), and for fixed p, q they give rise to non-linear recurrence relations, with polynomials in n as coefficients, for the numbers h p,q (n). Such equations (and, subsequently, the associated recurrence relations) can be computed with the help of the SAGE code in Appendix II.

We would like to remark that w(x) is a solution to a single appropriate equation in the Riccati hierarchy ( 19) - [START_REF] Liskovec | On the enumeration of subgroups of a free group[END_REF], and not each of them, as one may expect by analogy to the KP hierarchy [START_REF] Goulden | The KP hierarchy, branched covers, and triangulations[END_REF][START_REF] Okounkov | Toda equations for Hurwitz numbers[END_REF].

Example 5.2. If we consider the formal series expansion w(x) = ∞ n=0 w n x n , then by the Riccati equation ( 21) we obtain

w n+1 = (n + 1) w n + n i=0 w i w n-i , for n ≥ 2,
with initial conditions w 0 = 0 and w 1 = 5 36 (c.f. [START_REF] Petitot | Counting Rooted and Unrooted Triangular Maps[END_REF]). Thus

(22) h 2,3 (6n + 6) = 6(n + 1) h 2,3 (6n) + n i=0 h 2,3 (6i) h 2,3 (6n -6i), for n ≥ 2,
with h 2,3 (0) = 0, h 2,3 (6) = 5, and h 2,3 (d) = 0 for any non-zero d = 0 mod 6. This is a recurrence relation for the number of rooted triangulations on n darts (equivalently, n/3 triangles). The corresponding number sequence can be also expressed as the S(6, -8, 1) sequence from [START_REF] Martin | An exactly solvable self-convolutive recurrence[END_REF].

Example 5.3. In the case p = 2, q = 4 we arrive at the following equation for w(x):

(23) w(x) = x 2 w (x) + xw(x) + xw 2 (x) + 3 16 x,
which is also a classical Riccati equation. It gives rise to the following relation between the coefficients of the series w(x) = ∞ n=0 w n x n :

w n+1 = (n + 1) w n + n i=0 w i w n-i , for n ≥ 2,
with initial conditions w 0 = 0 and w 1 = 3 16 . Thus

(24) h 2,4 (4n + 4) = 4(n + 1) h 2,4 (4n) + n i=0 h 2,4 (4i) h 2,4 (4n -4i), for n ≥ 2,
with h 2,4 (0) = 0, h 2,4 (4) = 3, and h 2,4 (d) = 0 for any non-zero d = 0 mod 4, and we obtained a recurrence for the number of rooted quadrangulations on n darts (equivalently, n/4 squares). The corresponding number sequence can be also expressed as the S(4, -6, 1) sequence from [START_REF] Martin | An exactly solvable self-convolutive recurrence[END_REF].

Example 5.4. In the case p = q = 3 we arrive at yet another Riccati equation for w(x):

(25) w(x) = x 2 w (x) + xw(x) + xw 2 (x) + 2 9
x, which gives rise to the recurrence relation for the number of rooted bi-coloured triangulations on n darts (equivalently, with n/3 triangles):

(26) h 3,3 (3n + 3) = 3(n + 1) h 3,3 (3n) + n i=0 h 3,3 (3i) h 3,3 (3n -3i), for n ≥ 2, with h 3,3 (0) = 0, h 3,3 (3) = 2, and h 3,3 (d) = 0 for any non-zero d = 0 mod 3. The corresponding sequence can be also expressed as the S(3, -5, 1) sequence from [START_REF] Martin | An exactly solvable self-convolutive recurrence[END_REF]. Now consider the generating function H • (z) for any family of (p, q)-hypermaps associated with the classical Riccati equation, that is, the case when N = 2 in ( 19) -( 20), or equivalently, when p and q satisfy the identity (p -1) (q -1) = (p, q) + 1.

An easy calculation shows that the only possible values are (i) p = 2, q = 3, (ii) p = 2, q = 4 and (iii) p = 3, q = 3, which correspond to Examples 5.2, 5.3 and 5.4, respectively. These are exactly the cases when our approach produces recurrence relations similar to [START_REF] Stothers | Free Subgroups of Free Products of Cyclic Groups[END_REF]Formula 9]. In each case the Riccati equation has the form [START_REF] Müller | Classification and statistics of finite index subgroups in free products[END_REF] w

(x) = w(x) -xw(x) -xw 2 (x) -kx x 2 ,
where k is a constant. This is the form of the equation in [START_REF] Klazar | Irreducible and Connected Permutations[END_REF]Theorem 5.2] of Klazar, so one can easily deduce the following:

Corollary 5.5. The generating function H • (z) for any family of (p, q)-hypermaps associated with the classical Riccati equation is non-holonomic.

Question 5.6. Are the generating functions H • (z) associated with higher-order equations in the Riccati hierarchy also non-holonomic?

All the above results and questions easily translate into the language of subgroup generating functions for the number of free subgroups of finite index in Z p * Z q .

Subgroup conjugacy and hypermap isomorphism

In order to count the conjugacy classes of index n free subgroups in ∆ + , we shall use Lemma 3.2 and first compute the number |H p,q (n)| of isomorphism classes of (p, q)hypermaps on n darts.

We first recall the equations that hold for the species H * of labelled (not necessarily connected) (p, q)-hypermaps and the species H of labelled connected (p, q)-hypermaps. As before, let S i be the species of permutations acting on the set of darts D = [n], with cycles of length i ≥ 2 only and without fixed points. Then ( 28)

H * = S p × S q , H * = E(H).
Let C p and C q be the species of p-and q-cycles, respectively, with their corresponding cycle indices

(29) Z Cp (z 1 , z 2 , . . . , z p ) = 1 p d|p φ(d) z p/d d , Z Cq (z 1 , z 2 , . . . , z q ) = 1 q d|q φ(d) z q/d d ,
where φ(d) is the Euler totient function.

The species E of sets has cycle index

(30) Z E (z 1 , z 2 , . . . ) = exp k≥1 z k k .
Then, according to [3, §1.4, Théorème 2 (c)], the cycle index of S p becomes

(31) Z Sp (z 1 , z 2 , . . . ) = Z E   1 p d|p φ(d) z p/d d , 1 p d|p φ(d) z p/d 2d , 1 p d|p φ(d) z p/d 3d , . . .   = (32) = exp   k≥1 1 pk d|p φ(d) z p/d kd   = exp   k≥1 d|p 1 pk φ(d) z p/d kd   = (33) = exp   ∞ n=1 d|(n,p) d np φ(d) z p/d n   = ∞ n=1 exp   1 np d|(n,p) d φ(d) z p/d n   ,
where the last identity is obtained by setting n = kd, and (n, p) denotes the greatest common divisor of n and p. An analogous expression holds for the cycle index Z Sq (z 1 , z 2 , . . . ) of the species S q (up to the substitution of q in place of p).

Let us set (34

) P n (z n ) = exp   1 np d|(n,p) d φ(d) z p/d n   , Q n (z n ) = exp   1 nq d|(n,q) d φ(d) z q/d n   . Then (35) Z Sp (z 1 , . . . , z p ) = ∞ n=1 P n (z n ), Z Sq (z 1 , . . . , z q ) = ∞ n=1 Q n (z n ).
By ( 34) -( 35), the cycle indices Z Sp and Z Sq are separable, c.f. [START_REF] Petitot | Counting Rooted and Unrooted Triangular Maps[END_REF]Section A.3.3], which means that the cycle index Z H * can be expressed as ( 36)

Z H * (z 1 , z 2 , . . . ) = ∞ n=1 P n (z n ) Q n (z n ).
Given that two species A and B satisfy A = E(B), by [3, §1.4, Exercice 9] we can obtain a formula for Z B from Z A . In particular, the cycle index Z H is

(37) Z H (z 1 , z 2 , . . . ) = ∞ n=1 µ(n) n log Z H * (z n , z 2n , z 3n , . . . ),
where µ(n) is the Möbius function. According to [3, §1.2, Théorème 8 (b)], the generating function

H(z) = n≥0 |H p,q (n)|z n satisfies (38) H(z) = Z H (z, z 2 , z 3 , . . . ) = ∞ n=1 µ(n) n log Z H * (z n , z 2n , z 3n , . . . ) = (39) = ∞ n=1 µ(n) n ∞ k=1 log(P n Q n )(z n )| zn=z nk .
Thus we arrive at the following theorem:

Theorem 6.1. Let H(z) = ∞ n=0 |H p,q ( 
n)|z n be the growth series for the number of isomorphism classes of (p, q)-hypermaps on n darts.

(i) Then the following formula holds:

H(z) = ∞ n=1 µ(n) n ∞ k=1 log(P n Q n )(z n )| zn=z nk , with P n (z n ) = exp   1 np d|(n,p) d φ(d) z p/d n   , Q n (z n ) = exp   1 nq d|(n,q) d φ(d) z q/d n   .
(ii) The asymptotic expansion for its non-zero coefficients is

[z p,q k ] H(z) ≈ c 0 k c 1 k-1 2 e c 2 k
, as k → ∞, where c 0 , c 1 , c 2 > 0 are constants that depend only on p and q.

Proof. Most of the proof has already been provided above. The remaining part is the asymptotic behaviour of [z n ] H(z), as n → ∞.

Since most of the (p, q)-hypermaps on n darts are asymmetric (one can adapt the argument from [START_REF] Drmota | Asymptotic enumeration of reversible maps regardless of genus[END_REF]Section 7.1] in order to show this), we have that |H p,q (n)| ≈ 1 n |H r p,q (n)|, as n → ∞. Then we apply Theorem 4.1 to obtain the required asymptotic formula:

[z p,q k ] H(z) ≈ (2π) N -1 2 i Γ(a i ) k (N -1)k-1 2 e (1+log c-N )k , as k → ∞,
where N = 1 + (p-1)(q-1)-1 (p,q)

, and the constants c and a i satisfy c (p,q) = p, q (p-1)(q-1)-1 , a i = i(p,q) pq , with i = 1, . . . , pq (p,q) -1, p i, q i.

Again, we can reformulate our result in group-theoretic terms via Lemma 3.2.

Theorem 6.2. Let ∆ + = Z p * Z q be a free product of cyclic groups with p, q > 1, pq ≥ 6. Then the conjugacy growth series

C f (z) = ∞ n=0 c f (n)z n for the numbers c f (n) of conjugacy classes of free subgroups of index n in ∆ + coincides with H(z).

Below we consider several examples of the generating series

H(z) = ∞ n=0 |H p,q ( 
n)|z n from Theorem 6.1 for various values of p and q. In order to facilitate computations with power series, we use the SAGE code from Appendix III. To the best of our knowledge, the following questions remain at the moment unsettled. Question 6.8. Is the growth series H(z) in Theorem 6.1 algebraic or transcendental? Question 6.9. Is H(z) a solution to any differential-algebraic equation or system of such equations? Is there a recurrence relation of any sort that the coefficients of H(z) satisfy?

Other free products and their free subgroups

As we mentioned in the introduction, the group ∆ + = Z p * Z q is also known as the (p, q, ∞)-triangle group, a Fuchsian group with rich geometry. With the above technique we can also count the number of free subgroups of finite index and their conjugacy classes in ∆ + = Z p * Z and ∆ + = Z * Z, which are the (p, ∞, ∞)-and (∞, ∞, ∞)-triangle groups, respectively. These two groups have been fruitfully used by Breda d'Azevedo -Menykh -Nedela [START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF] and later on by Mednykh -Nedela [START_REF] Mednykh | Enumeration of unrooted hypermaps[END_REF][START_REF] Mednykh | Enumeration of unrooted maps of a given genus[END_REF][START_REF] Mednykh | Enumeration of unrooted hypermaps of a given genus[END_REF] for counting hypermaps: ∆ + = Z 2 * Z was used for counting maps without semiedges, and ∆ + = Z * Z was used for counting general hypermaps (both rooted hypermaps and their isomorphism classes).

Since most of the study has been already done in [START_REF] Breda | Enumeration of maps regardless of genus. Geometric approach[END_REF][START_REF] Mednykh | Enumeration of unrooted hypermaps[END_REF][START_REF] Mednykh | Enumeration of unrooted maps of a given genus[END_REF][START_REF] Mednykh | Enumeration of unrooted hypermaps of a given genus[END_REF], we briefly formulate the necessary statements below without a proof. Where necessary, we give more details. 7.1. Free subgroups of Z p * Z. If ∆ + = Z p * Z, then its free subgroups of index n are in bijection with the elements of H r p (n), which is the set of rooted connected hypermaps on n darts with p-gonal hyperedges. The conjugacy classes of free index n subgroups in ∆ + are in bijection with the elements of H p (n), which is the set of isomorphism classes of rooted connected hypermaps on n darts with p-gonal hyperedges. We shall call such hypermaps rooted, resp. unrooted, (p, ∞)-hypermaps.

Let us first define the species H • by the following equations (40)

H • = Z • H , H * = E(H), and 
H * = S p × S,
analogous to equations ( 4) -( 5), where S is the species of all permutations, H * is the species of labelled, not necessarily connected, (p, ∞)-hypermaps, H is the species of labelled connected (p, ∞)-hypermaps, and H • of rooted ones. Thus, we have that

H r p (n) = H • [n]. Using the fact that (41) S p (z) = ∞ k=0 z pk p k k! , S(z) = 1 1 -z , we obtain (42) H * (z) = (S p S)(z) = ∞ k=0 (pk)! p k k! z pk .
Then, analogous to Section 2.1, H * (z) = f (p p-1 z p ), where f (x) is a hypergeometric function:

(43) f (x) = p F 0 1 p , . . . , p-1 p , 1 . . . ; x .
We also have that H • (z) = px f (x) f (x) = pw(x), with x = p p-1 z p , and w(x) is a solution to an equation from the Riccati hierarchy with N = p, and a i = i p , for i = 1, . . . , p, c.f. Section 5.

Example 7.1. If p = 2, then H * (z) enumerates labelled oriented pre-maps (without semi-edges and, in general, disconnected) on n darts or, equivalently, with n/2 edges, n = 1, 2, . . . , so that the odd coefficients of H * (z) vanish. We also have that H • (z) = ∞ n=0 h(n)z n enumerates oriented rooted maps on n darts. All the odd coefficients of H • (z) vanish as well. Finally, H • (z) = 2w(x), where x = 2z 2 and w(x) satisfies the following Riccati equation (c.f. also [START_REF] Arquès | Rooted maps on orientable surfaces, Riccati's equation and continued fractions[END_REF]):

w(x) = x 2 w (x) + 3 2 xw(x) + xw 2 (x) + 1 2 x.
Thus the coefficients of the series w(x) = ∞ n=0 w n z n satisfy w 0 = 0, w 1 = 1 2 and

w n+1 = n + 3 2 w n + n i=0 w i w n-i , n ≥ 1.
This implies

h(2n + 2) = (2n + 3)h(2n) + n i=0 h(2i)h(2n -2i), n ≥ 1,
with h(0) = 0, h(2) = 2, and h(2n + 1) = 0 for all natural n ≥ 0.

By analogy to Theorems 4.1 and 4.2 the following holds.

Theorem 7.2. The growth series H • (z) = ∞ n=0 |H r p (n)|z n is transcendental and the following asymptotic formula holds for its non-zero coefficients:

[z pk ]H • (z) ≈ (2π) p-1 2 p p i=1 Γ i p k (p-1
)k+ 1 2 e (p-1)(log p-1)k , as k → ∞.

Example 7.3. For the case of oriented maps on n darts without semi-edges (i.e. oriented connected (2, ∞)-hypermaps), we have that H • (z) = ∞ n=0 |H r 2 (n)|z n = 2 z 2 + 10 z 4 + 74 z 6 + 706 z 8 + 8162 z 10 + 110410 z 12 + 1708394 z 14 + 29752066 z 16 + 576037442 z 18 + 12277827850 z 20 + . . . by using the SAGE code from Appendix IV. The coefficient sequence of H • (z) has index A000698 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF]. Since H • (z) satisfies a classical Riccati equation, by Corollary 5.5 this sequence is non-holonomic. This is also the S(2, -3, 1) sequence from [START_REF] Martin | An exactly solvable self-convolutive recurrence[END_REF]. The number of isomorphism classes of hypermaps or, equivalently, the number of conjugacy classes of free subgroups in ∆ + , are given in the two theorems below.

Theorem 7.6. The growth series H(z) = ∞ n=0 |H p (n)|z n is given by the formula

H(z) = ∞ n=1 µ(n) n ∞ k=1 log(P n Q n )(z n )| zn=z nk , with P n (z n ) = exp   1 np d|(n,p) d φ(d) z p/d n   , Q n (z n ) = ∞ d=1 z d n = 1 1 -z n .
Its non-zero coefficients have the asymptotic expansion 

[z pk ] H(z) ≈ (2π) p-1 2 p i=1 Γ i p k (p-1)k-1 2 e (p-
(z) = ∞ n=0 c f (n)z n
, for the number c f (n) of conjugacy classes of index n free subgroups in ∆ + , coincides with H(z).

Example 7.9. For ∆ + = Z 2 * Z, the conjugacy counting function C f (z) coincides with H(z) from Example 7.7. This can be verified by an independent computation using GAP's LowIndexSubgroupsFPGroup command [START_REF]GAP -Groups, Algorithms, Programming -a System for Computational Discrete Algebra[END_REF]. 7.2. Free subgroups of Z * Z. If ∆ + = Z * Z ∼ = F 2 , the free group on two generators, then all of its index n subgroups are free, and correspond bijectively to the elements of the set H r (n) of rooted hypermaps on n darts. The conjugacy classes of index n subgroups in ∆ + are in bijection with the elements of H(n), which is the set of isomorphism classes of hypermaps on n darts. In this case, the formulas for the number of index n subgroups in ∆ + and their conjugacy classes are given by multiple authors including, respectively, Hall [START_REF] Hall | Subgroups of finite index in free groups[END_REF], for the former, and Liskovec [START_REF] Liskovec | On the enumeration of subgroups of a free group[END_REF], Mednykh [START_REF] Mednykh | Counting conjugacy classes of subgroups in a finitely generated group[END_REF], for the latter. The advantage of a species theory approach is that the proof turns out to be much simpler and shorter. Initially, we have that

(44) H * (z) = (S S)(z) = ∞ n=0 n! • z n , and (45) 
H • (z) = z d dz log H * (z) = ∞ n=0 s n • z n ,
where s n is given by the recurrence relation (c.f. [START_REF] Hall | Subgroups of finite index in free groups[END_REF])

(46) s n = n • n! - n-1 k=1 k! • s n-k
, and s 0 = 0, s 1 = 1. mult = 1; for i in range(1, lcm(p,q)): if (not(i%p==0) and not(i%q==0)): mult = mult*(k-1+i/lcm(p,q)); coeff = coeff*mult; f = f + coeff*power(z,k)/factorial(k);

We shall also need the constant c for the substitution x = cz p,q .

# defining the constant c c = power(lcm(p,q), (p*q -p -q)/gcd(p,q));

Finally, H • (z) can be computed.

# computing H^\circ Hcirc = lcm(p,q)*z*derivative(f)/f; Hcirc.substitute(z = c*power(z,lcm(p,q))).truncate(n); >202903221120000*z^60 + 3366961243750*z^54 + 61999046400*z^48 + 1282031525*z^42 + 30220800*z^36 + 828250*z^30 + 27120*z^24 + 1105*z^18 + 60*z^12 + 5*z^6 II. Finding a generalised Riccati equation for w(x). First we define p and q, and then compute the number of terms in equation [START_REF] Klazar | Irreducible and Connected Permutations[END_REF].

# defining p, q (can be any positive integers such that p, q > 1, # p*q \geq 6) p = 2; q = 3; # computing N N = 1 + (p*q -p -q)/gcd(p,q); N; >2 Next we prepare all the ingredients for formula [START_REF] Klazar | Irreducible and Connected Permutations[END_REF], starting with the symmetric functions on the a i 's, then computing the w i (x)'s, and finally the equation itself. Below we use Z instead of x in the SAGE code throughout.

# defining symmetric functions e = SymmetricFunctions(QQ).elementary(); # creating the list of a_i's a_val = []; for i in range(1,lcm(p,q)):

if (not(i%p==0) and not(i%q==0)): a_val.append(i/lcm(p,q)); III. Counting free conjugacy classes in Z p * Z q . We start by defining the parameters: p, q, and n, and the polynomial ring that we shall use. Although cycle indices are multivariate polynomials, we need only one variable z to present the final result of computation as H(z).

# computing the number of conjugacy classes of # free subgroups in Z_p*Z_q of index < n # or: computing the number of isomorphism classes # of (p,q)-hypermaps on < n darts # defining p, q (can be any positive integers such that p, q > 1, # p*q \geq 6) p = 2; q = 3; # defining n, which has to be a multiple of lcm(p,q) n = 66;

# defining power series ring over \mathbb{Q} R.<z> = PowerSeriesRing(QQ, default_prec=2*n);

Next we define the auxiliary functions P m (z m ) and Q m (z m ). Note that we use z as a variable instead of z m (computing series in a single variable is usually faster in SAGE). # computing the number of free subgroups in Z_p*Z of index < n # or: computing the number of rooted (p,\infty)-hypermaps on < n darts # defining p (can be any integer \geq 2) p = 2; # defining n, which has to be a multiple of p n = 42; # defining the power series ring R.<z> = PowerSeriesRing(QQ, default_prec=2*n);

The auxiliary function f (x) is defined, where x = p p-1 z p . Analogous to Appendix I, we have that H * (z) = f (p p-1 z p ) and H • (z) = p p-1 z p f For instance, computing the number conjugacy classes of free subgroups in Z p * Z of index < n with p = 2 and n = 42 produces the following output which is consistent with [4, Computing the number of subgroups in Z * Z ∼ = F 2 can be achieved by using Hall's recursive formula [START_REF] Hall | Subgroups of finite index in free groups[END_REF].

In order to compute the number of conjugacy classes of subgroups in Z * Z ∼ = F 2 , we again use the SAGE code from Appendix III while setting P m (z m ) and Q m (z m ) to be This produces the following output (as before we keep n = 42): The coefficient sequence of the above series has index A057005 in the OEIS [START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF].
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Figure 1 .

 1 Figure 1. A partial drawing of a rooted hypermap (its root is labelled 1)

Figure 2 .

 2 Figure2. A (2, 3)-hypermap on a torus: the parallel sides of the rectangular shape on the left are identified in accordance with the circled labels and arrows in order to produce the torus with a hypermap on it depicted on the right.

Figure 3 .

 3 Figure 3. A (3, 3)-hypermap on a torus: the parallel sides of the rectangle on the left are identified according to the arrows marking them in order to produce the torus with a hypermap on it depicted on the right.

Example 4 . 6 .

 46 For the number of rooted fullerene hypermaps on n darts we haveH • (z) = ∞ n=0 |H r 5,6(n)|z n = 758038579710193926144 z 30 + 194568955255295107105 14063909668515373421277741056000 z 60 +8904485565951809034397866445591191272830 319687215549893902610979100158748795888625254400 z 90 + . . . . Example 4.7. The growth series counting the finite index free subgroups in Z 2 * Z 3 , Z 2 * Z 4 , Z 3 * Z 3 and Z 5 * Z 6 are given in Examples 4.3, 4.4, 4.5 and 4.6, respectively.

Example 6 . 3 .Example 6 . 4 .Example 6 . 6 .Example 6 . 7 .

 63646667 For the number of isomorphism classes of triangulations on n darts we have H(z) = ∞ n=0 |H 2,3 (n)|z n = 3 z 6 + 11 z 12 + 81 z 18 + 1228 z 24 + 28174 z 30 + 843186 z 36 + 30551755 z 42 + 1291861997 z 48 + 62352938720 z 54 + 3381736322813 z 60 + . . . . The coefficient sequence of H(z) has index A129114 in the OEIS[START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF]. For the number of isomorphism classes of quadrangulations on n darts we haveH(z) = ∞ n=0 |H 2,4 (n)|z n = 2 z 4 +7 z 8 + 36 z 12 + 365 z 16 + 5250 z 20 + 103801 z 24 + 2492164 z 28 + 70304018 z 32 + 2265110191 z 36 + 82013270998 z 40 + . . . . The coefficient sequence of H(z) has index A292206 in the OEIS [35]. Example 6.5. For the number of isomorphism classes of bi-coloured triangulations on n darts we have H(z) = ∞ n=0 |H 3,3 (n)|z n = 2 z 3 + 3 z 6 + 16 z 9 + 133 z 12 + 1440 z 15 + 22076 z 18 +401200 z 21 +8523946 z 24 +206375088 z 27 +5611089408 z 30 +. . . . The coefficient sequence of H(z) has index A292207 in the OEIS [35]. For the number of isomorphism classes of fullerene hypermaps on n darts we have H(z) = ∞ n=0 |H 5,6 (n)|z n = 25267952661607723932 z 30 + 3242815920921585 11841901090716554032993726622535664 z 60 +9893872851057565593775407161767990303 1448011824448933765884797305927298614859862448800 z 90 + . . . . The conjugacy growth series for free subgroups in Z 2 * Z 3 , Z 2 * Z 4 , Z 3 * Z 3 and Z 5 * Z 6 are given in Examples 6.3, 6.4, 6.5 and 6.6, respectively. An independent computation with GAP [9] by issuing LowIndexSubgroupsFPGroup command gives matching results.

Theorem 7 . 4 .

 74 Let ∆ + = Z p * Z. Then the subgroup growth series S f (z) = ∞ n=0 s f (n)z n , for the number s f (n) of index n free subgroups of ∆ + , is equal to H • (z).Example 7.5. For ∆ + = Z 2 * Z, the free subgroup growth series S f (z) is given in Example 7.3.

#

  defining the symmetric function \sigma_k(a_1,\dots,a_N) def sym_coeff(k): coeff = e([k]).expand(int(N), alphabet='a'); return coeff(*a_val); # defining x and w as a function of x var('Z'); w = function('w')(Z); w; >Z >w(Z) # defining w_i(x) for i = 1,\dots,N w_lst = [1,w]; for i in range(1,N): w_lst.append(Z*w_lst[i].derivative(Z) + w*w_lst[i]); # defining the list of symmetric coefficients of the equation coeff_lst = [sym_coeff(i) for i in range(N+1)]; Now we compose the equation itself, and view the output. # composing the equation eqn = expand(w -Z*sum([a*b \\ for a,b in zip(reversed(coeff_lst), w_lst)])); # and viewing it view(eqn); > -Z*w(Z)^2 -Z^2*D[0](w)(Z) -Z*w(Z) -5/36*Z + w(Z)

  def P(m): sum = 0; for d in divisors(gcd(m,p)): sum = sum + d*euler_phi(d)*power(z, p//d); sum = sum/(m*p); return sum.exp(2*n); def Q(m): sum = 0; for d in divisors(gcd(m,q)): sum = sum + d*euler_phi(d)*power(z, q//d); sum = sum/(m*q); return sum.exp(2*n); Next we define the Hadamard product of P m (z m ) and Q m (z m ) def h_prod_PQ(m): prod = 0; P_coeff = P(m).dict(); Q_coeff = Q(m).dict(); for k in Set(P_coeff.keys()).intersection(Set(Q_coeff.keys())): prod = prod \\ + power(z,k)*P_coeff[k]*Q_coeff[k]*factorial(k)*power(m,k); return prod; and its logarithm log(P m Q m )(z m ) upon the substitution z m = z km def log_h_prod_PQ(m,k): return log(h_prod_PQ(m)).substitute(z=power(z,m*k)); Finally, we define the general term of the double sum in Theorem 6.1 @parallel def term(m,k): return moebius(k)/k*log_h_prod_PQ(m,k); in a way that allows parallel computing in order to speed up the computation. The function H(z) is the double sum of the terms term(m,k) above. We define it, and compute its output. # defining H_tilde(n): def H_tilde(n): return sum([t[1] for t in list(term([(m,k) for m in range(1,n) \\ for k in range(1,n)]))]).truncate(n); # and computing it: H_tilde(n); >3381736322813*z^60 + 62352938720*z^54 + 1291861997*z^48 + 30551755*z^42 + 843186*z^36 + 28174*z^30 + 1228*z^24 + 81*z^18 + 11*z^12 + 3*z^6IV. Free products Z p * Z and Z * Z. In order to compute the subgroup growth series for the number of free subgroups having index < n in Z p * Z we use essentially the same code as in Appendix I.

  (z) f (z) . # defining the auxiliary function f(x) f = sum( [ factorial(p*k)/power(p, p*k)*power(z, k)/factorial(k) \\ for k in range(n) ] ); # computing H^\circ Hcirc = p*z*derivative(f)/f; Hcirc.substitute(z=power(p,p-1)*power(z,p)).truncate(n); >12444051435099603489508546*z^40 + 302625067295157128042954*z^38 + 7734158085942678174730*z^36 + 208256802758892355202*z^34 + 5925085744543837186*z^32 + 178676789473121834*z^30 + 5731249477826890*z^28 + 196316804255522*z^26 + 7213364729026*z^24 + 285764591114*z^22 + 12277827850*z^20 + 576037442*z^18 + 29752066*z^16 + 1708394*z^14 + 110410*z^12 + 8162*z^10 + 706*z^8 + 74*z^6 + 10*z^4 + 2*z^2 Similarly we use our SAGE code from Appendix III to compute the number of conjugacy classes of free subgroups in Z p * Z. The only change that we perform is setting def P(m): sum = 0; for d in divisors(gcd(m,p)): sum = sum + d*euler_phi(d)*power(z, p//d); sum = sum/(m*p); return sum.exp(2*n); def Q(m): return sum([power(z,k) for k in range(2*n)]);

  def P(m): return sum([power(z,k) for k in range(2*n)]); and def Q(m): return sum([power(z,k) for k in range(2*n)]);

  from the proof of Theorem 4.1, then |H r 2,3 (6k)| ≈ C 6 k e k k k-1 2 . The latter coincides with the formula for free subgroups of index 6k in the modular group from[37, p. 1277], after applying Stirling's approximation. Example 4.4. For the number of rooted quadrangulations on n darts we have H • (z) = ∞ n=0 |H r 2,4 (n)|z n = 3 z 4 + 24 z 8 + 297 z 12 + 4896 z 16 + 100278 z 20 + 2450304 z 24 + 69533397 z 28 + 2247492096 z 32 + 81528066378 z 36 + 3280382613504 z 40 + . . . . The coefficient sequence of H • (z) has index A292186 in the OEIS [35]. Example 4.5. For the number of rooted bi-coloured triangulations on n darts we have H • (z) = ∞ n=0 |H r 3,3 (n)|z n = 2 z 3 + 12 z 6 + 112 z 9 + 1392 z 12 + 21472 z 15 + 394752 z 18 + 8421632 z 21 + 204525312 z 24 + 5572091392 z 27 + 168331164672 z 30 + . . . . The coefficient sequence of H • (z) has index A292187 in the OEIS [35].

  1)(log p-1)k , as k → ∞.Example 7.7. For the case of isomorphism classes of oriented maps on n darts (i.e. isomorphism classes of oriented connected (2, ∞)-hypermaps), we have thatH(z) = ∞ n=0 |H 2 (n)|z n = 2 z 2 +5 z 4 +20 z 6 +107 z 8 +870 z 10 +9436 z 12 +122840 z 14 +1863359 z16 + 32019826 z 18 + 613981447 z 20 + . . . by using the SAGE code from Appendix IV. The coefficient sequence of H(z) has index A170946 in the OEIS[START_REF] Sloane | The On-line Encyclopaedia of Integer Sequences[END_REF].Theorem 7.8. Let ∆ + = Z p * Z be a free product of cyclic groups with p ≥ 2. Then the conjugacy growth series C f

Table 1

 1 ].

	H_tilde(n);
	>311101285883236139915989*z^40 + 7963817561236130021156*z^38 +
	214837724735760642773*z^36 + 6125200100394894738*z^34 +
	185158932576089787*z^32 + 5955893472990664*z^30 + 204687564072918*z^28 +
	7550660328494*z^26 + 300559406027*z^24 + 12989756316*z^22 +
	613981447*z^20 + 32019826*z^18 + 1863359*z^16 + 122840*z^14 + 9436*z^12
	+ 870*z^10 + 107*z^8 + 20*z^6 + 5*z^4 + 2*z^2
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The sequence (46) is known to be non-holonomic due to Klazar (c.f. discussion after [START_REF] Klazar | Irreducible and Connected Permutations[END_REF]Proposition 5.1]). Also, (47)

(48)

By using the fact that log (

i z i (already used in formulas ( 44)-( 45)), and substitution z → n • z kn we may simplify formula (48) down to ( 49)

where 50) coincides with the one in [5, Proposition 2.1], [START_REF] Liskovec | On the enumeration of subgroups of a free group[END_REF] or [START_REF] Mednykh | Counting conjugacy classes of subgroups in a finitely generated group[END_REF]Theorem 2] and can be easily computed, for reasonable values of n, by using the SAGE code from Appendix IV.

Appendix

I. Counting free subgroups in Z p * Z q . First we define the necessary parameters: p, q, and n, the index up to which we shall count the number of free subgroups in Z p * Z q .

# computing the number of free subgroups in Z_p*Z_q of index < n # or: computing the number of rooted (p,q)-hypermaps on < n darts # defining p, q (can be any positive integers such that p, q > 1, # p*q \geq 6) p = 2; q = 3; # defining n, which has to be a multiple of lcm(p,q) n = 66; # defining power series ring over \mathbb{Q} R.<z> = PowerSeriesRing(QQ, default_prec = 2*n);

Then we define the auxiliary function f (x).

# defining f(z), such that H^\ast(z) = f(c*z^lcm(p,q)) f = 1; coeff = 1; for k in range(1,n):