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FREE SUBGROUPS OF FREE PRODUCTS AND COMBINATORIAL

HYPERMAPS

LAURA CIOBANU & ALEXANDER KOLPAKOV

Abstract. We derive a generating series for the number of free subgroups of finite
index in ∆+ = Zp ∗ Zq by using a connection between free subgroups of ∆+ and
certain hypermaps (also known as ribbon graphs or “fat” graphs), and show that this
generating series is transcendental. We provide non-linear recurrence relations for the
numbers above based on differential equations that are part of the Riccati hierarchy.

We also study the generating series for conjugacy classes of free subgroups of fi-
nite index in ∆+, which correspond to isomorphism classes of hypermaps. Asymptotic
formulas are provided for the numbers of free subgroups of given finite index, conju-
gacy classes of such subgroups, or, equivalently, various types of hypermaps and their
isomorphism classes.

2010 Mathematics Subject Classification: 14N10, 20E07, 20H10, 05E45, 33C20.

Key words: subgroup growth, growth series, free product, free group, hypermap, ribbon
graph.

1. Introduction

The main purpose of this paper is to count the number of free subgroups of finite
index in the free product of finite cyclic groups ∆+ = Zp ∗Zq, where p, q ≥ 2, and reveal
new aspects of the connection between the number of such subgroups and the number
of rooted hypermaps (also known as ribbon graphs or “fat” graphs). We also count
the conjugacy classes of free subgroups of finite index, and investigate the link between
these and isomorphism classes of hypermaps; the connections between free subgroups
(and their conjugacy classes) of finite index in certain Fuchsian triangle groups and
hypermaps have been previously exploited by [3, 19, 21, 22, 31]. Our contribution is
to give formulas and new information, such as transcendence or non-holonomy, on the
growth series of the above objects associated with ∆+, as well as new recurrence relations
and asymptotics, while also creating software that produces these numbers.

The notation ∆+ is motivated by the fact that the group in question is a (p, q,∞)
Fuchsian triangle group, a group whose relationship with hypermaps has been fruitfully
investigated in many papers, of which we mention the groundlaying paper by Jones and
Singerman [14], and a recent series of works by Breda-d’Azevedo – Mednykh – Nedela [3],
Mednykh [19], and Mednykh – Nedela [21, 22] who solved Tutte’s classification problem
for maps and hypermaps.

Our methods also provide a solution to Tutte’s problem regardless of genus, as de-
scribed in [3], although do not tackle its genus-specific case, c.f. [21, 22].

Date: August 12, 2017.
1



2 LAURA CIOBANU & ALEXANDER KOLPAKOV

General subgroup growth is the subject of the monograph [18] by Lubotzky and Segal,
and further information on counting the number of subgroups in free products of cyclic
groups of prime orders can be found in the papers by Müller and Schlage-Puchta [23,
24, 25]. There they enhance the general theory of subgroup structure in free products
of (finite and infinite) cyclic groups using representation theory, analytic number theory
and probability theory, among other tools.

In our case we use the species theory initiated by Joyal [15] (c.f. the monographs
[2, 7]) as our main computational tool, thus generalising and enhancing the results of
[28]. This technique allows us to write down the generating series for the number of free
subgroups of finite index in Theorem 4.6 (or rooted hypermaps in Theorem 4.1) and the
number of their conjugacy classes in Theorem 6.8 (or isomorphism classes of hypermaps
in Theorem 6.1) in a relatively simple form suitable for routine calculation and computer
experiments.

In Section 5 we use a hierarchy of differential equations in order to obtain certain
non-linear recurrence relation for the numbers of finite index subgroups in ∆+. This
hierarchy is known as the Riccati hierarchy c.f. [10], and appears as a simplified version
of the general phenomenon described primarily in [9, 27]. Being associated with the
classical Riccati equations gives additional information on the series concerned, as it
shows that some of the series we consider are non-holonomic (see Corollary 5.5).

Throughout the paper we give concrete formulas for several particular cases of free
products of cyclic groups, as well as for the related hypermaps as combinatorial objects,
and a SAGE code is provided in the Appendix to support our findings and to provide
illustrative examples where necessary.
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2. Preliminaries

2.1. Hypermaps and (p, q)-hypermaps. Let D = [n] be a set of n elements, called
darts. Let α, σ ∈ Sn be two permutations such that the group 〈α, σ〉 acts transitively on
D. The triple H = 〈D;α, σ〉 is called an oriented labelled (combinatorial) hypermap with
set of darts D. The orbits of σ are called vertices (σ stands for the French sommets),
the orbits of α are called hyper-edges (α for arêtes). The orbits of ϕ = σ−1 α−1 are
called hyper-faces (ϕ for faces). The size of the respective orbit determines the degree
of a vertex, hyper-edge or hyper-face. Obviously, ασ ϕ = ε and H can be equivalently
represented as the triple H = 〈D;α, ϕ〉, where appropriate.

A hypermap naturally appears in the setting of an orientable genus g surface Σg and
graph Γ embedded in Σg as ι : Γ → Σ, satisfying
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1) the complement Σg \ ι(Γ) is a union of topological discs called faces,
2) the faces are properly two-colourable (e.g. into black and white), i.e. faces of

same colour intersect only at vertices of Γ, and
3) the corners of the white faces are labelled with the numbers 1, 2, 3, . . . in some

fashion (we may think that this information is carried by the embedding map
ι), and a black face corner label is equal to the adjacent white face corner label,
when moving clockwise around their common vertex.

Then the triple H = 〈Σg; Γ, ι〉 is an oriented labelled topological hypermap.

By removing a sub-disc in the interior of each face of a hypermap we obtain a ribbon
graph or “fat” graph, which is a graph together with a cyclic ordering on the set of
half-edges incident to each vertex; the edges of the ribbon graph can be seen as small
rectangles or ribbons attached in a given cyclic order to discs glued at the vertices.

The correspondence between the topological and combinatorial definitions above is as
follows:

1) each disjoint cycle of α is obtained from recording the corner labels of a black
face in an anticlockwise direction,

2) each disjoint cycle of σ is obtained from recording the labels around a vertex in
an anticlockwise direction,

3) each disjoint cycle of ϕ is obtained from recording the corner labels of a white
face in an anticlockwise direction.

Consequently, the set of face labels becomes the set of darts of H , the white faces
become hyper-faces of H and the black faces become hyper-edges of H . Thus the com-
binatorial and topological descriptions of H agree. Indeed, each topological hypermap
produces a unique combinatorial hypermap, and given the above combinatorial infor-
mation one may assemble an oriented connected surface from a number of topological
discs, which are represented by polygons with labelled corners.

A topological hypermap H is rooted if we mark the first edge encountered while moving
clockwise around the white corner of H labelled 1, and a combinatorial hypermap is
rooted if one of its darts is marked as a root. We shall always assume that the root dart
is 1.

Example 2.1. A partial picture of a rooted hypermap is shown in Figure 1. The root
corner is marked with an arrow and numbered 1.

If we ignore the labelling (or marked root) of a hypermap, that means we con-
sider its isomorphism class. Two (combinatorial) hypermaps H1 = 〈D1;α1, σ1〉 and
H2 = 〈D2;α2, σ2〉, assumed to be neither labelled nor rooted, are isomorphic if there ex-
ists ψ ∈ Sn such that ψ α1ψ

−1 = α2 and ψ σ1ψ
−1 = σ2 . Their topological counterparts

are isomorphic if there exists a homeomorphism between the respective surfaces which
preserves the graph embedding. Two (combinatorial) rooted hypermaps are isomorphic
if their roots correspond to each other under some hypermap isomorphism. An analo-
gous definition holds in the topological case. Below we shall use the combinatorial and
topological descriptions of hypermaps interchangeably.
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Figure 1. A partial drawing of a rooted hypermap (its root is labelled 1)

A (p, q)-hypermap H is one in which α has cycles of length p only and ϕ has cycles of
length q only. In other words, all hyper-edges of H are p-gons and all hyper-faces of H
are q-gons. Given this definition, it is more convenient to represent H as H = 〈D;α, ϕ〉.

Figure 2. A (2, 3)-hypermap on a torus: the parallel sides of the rectan-
gular shape on the left are identified in accordance with the circled labels
and arrows in order to produce the torus with a hypermap on it depicted
on the right.

Example 2.2. The partial picture in Figure 1 features a (5, 6)-hypermap. A (5, 6)-
hypermap whose underlying topological surface is the sphere S2 is known as a fullerene.

Example 2.3. A triangulated surface carries a (2, 3)-hypermap all of whose bigonal
hyper-edges are collapsed into ordinary edges. We shall refer to a (2, 3)-hypermap as
a triangulation (of an orientable surface), thus allowing identification of two sides of
the same triangle. Figure 2 shows a triangulation of a torus with α = (1, 4)(2, 5)(3, 6),
σ = (5, 1, 6, 2, 4, 3), ϕ = (1, 2, 3)(5, 6, 4).

Another important class of hypermaps is the class of (2, 4)-hypermaps, or quadrangu-
lations. In general, every (2, q)-hypermap is equivalent to a map as described in [14, §2
- §3], and (once labelled) its corner labels of hyper-edges become exactly the dart labels
of the resulting map after all bigonal hyper-edges are collapsed into usual edges.
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Figure 3. A (3, 3)-hypermap on a torus: the parallel sides of the rectan-
gle on the left are identified in accordance with arrows marking them in
order to produce the torus with a hypermap on it depicted on the right.

Example 2.4. The (3, 3)-hypemaps are triangulations that admit a colouring which
is chequerboard around the vertices. We shall call (3, 3)-hypermaps bi-coloured trian-
gulations (whose dual map is a bipartite cubic graph). Figure 3 features a bicoloured
triangulation of a torus with α = σ = ϕ = (1, 2, 3).

2.2. Formal series. A hypergeometric sequence (ck)k≥0 is one for which c0 = 1 and the
ratio of consecutive terms is a rational function in k, i.e. there exist monic polynomials
P (k) and Q(k) such that

ck+1

ck
=
P (k)

Q(k)
.

If P and Q can be factored as

P (k)

Q(k)
=

(k + a1)(k + a2) . . . (k + ap)

(k + b1)(k + b2) . . . (k + bq)(k + 1)
,

then we use the notation

pFq

[
a1 . . . ap
b1 . . . bq

; z

]

for the formal series F (z) =
∑

k≥0 ckz
k, c.f. [29, §3.2]. The factor (k+1) belongs to the

denominator for historical reasons. Such a hypergeometric series satisfies the differential
equation

(1)
(
ϑ(ϑ+ b1 − 1) · · · (ϑ+ bq − 1)− z(ϑ + a1) · · · (ϑ+ ap)

)
pFq(z) = 0,

where ϑ = z d
dz
, c.f. [5, §16.8(ii)]. Among numerous differential equations related to (1)

is the classical Riccati equation, which will play an important role in this paper. It is a
first order non-linear equation with variable coefficients fi(x), of the form

(2)
dy

dx
= f1(x) + f2(x)y + f3(x)y

2.

The Pocchammer symbol is connected to hypergeometric series and defined as

(a)n = a(a+ 1) . . . (a+ n− 1).

It has asymptotic expansion

(3) (a)n ∝
√
2π

Γ(a)
e−n na+n− 1

2 ,
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where Γ(a) is the Gamma function of a, defined as Γ(a) = (a − 1)! if a is a positive
integer, and Γ(a) =

∫∞

0
xa−1e−xdx for all the non-integer real positive numbers.

A formal power series y = f(x) is said to be D-finite, or differentiably finite, or
holonomic, if there exist polynomials p0, . . . , pm (not all zero) such that pm(x)y

(m) +
· · · + p0(x)y = 0, where y(m) denotes the m-th derivative of y with respect to x. All
algebraic power series are holonomic, but not vice versa, c.f. [7, Appendix B.4].

Finally recall that the Hadamard product of two formal single-variable series A(z) =∑
n≥0 an

zn

n!
and B(z) =

∑
n≥0 bn

zn

n!
is denoted (A ⊙ B)(z) and given by (A ⊙ B)(z) :=∑

n≥0 anbn
zn

n!
.

Let λ = (n1, . . . , nm) be a partition of a natural number n ≥ 0, i.e. n =
∑

i≥1 ini.

We write λ ⊢ n and define λ! := 1n1n1!2
n2n2! . . .m

nmnm!. Let zλ := zn1
1 z

n2
2 . . . znm

m

for some collection of variables z1, z2, . . . . Then for two multi-variable series A(z) =∑
n≥0

∑
λ⊢n aλ

z
λ

λ!
andB(z) =

∑
n≥0

∑
λ⊢n bλ

z
λ

λ!
we have (A⊙B)(z) :=

∑
n≥0

∑
λ⊢n aλbλ

z
λ

λ!
.

2.3. Species theory. Species theory (théorie des espèces) is initially due to A. Joyal
[15] and is a powerful way to describe and count labelled discrete structures. Since it
requires a lengthy and formal setup, we give here only the basic ideas and refer the
reader to [2, 7] for further details.

A species of structures is a rule (or functor) F which produces

i) for each finite set U (of labels), a finite set F [U ] of structures on U ,
ii) for each bijection σ : U → V , a function F [σ] : F [U ] → F [V ].

The functions F [σ] should further satisfy the following functorial properties:

i) for all bijections σ : U → V and τ : V →W , F [τ ◦ σ] = F [τ ] ◦ F [σ],
ii) for the identity map IdU : U → U , F [IdU ] = IdF [U ].

Let [n] = {1, 2, . . . , n} be an n-element set, and assume that [0] = ∅. A species
F of labelled structures has a generating function F (z) =

∑
n≥0 cardF [n]

zn

n!
. For a

species of unlabelled structures (i.e. structures up to isomorphism) we write F̃ , and
its generating function is a specialisation of the cycle index series, in the sense that
F̃ (z) = ZF (z, z

2, z3 . . . ), where the cycle index series (see [2, §1.2.3]) is defined as:

ZF (z1, z2, . . . ) =
∑

n≥0

1

n!

∑

σ∈Sn

cardFix(F [σ]) zσ.

Here Fix(F [σ]) is the set of elements of F [n] having F [σ] as automorphism, and zσ =
zc11 z

c2
2 . . . zcmm if the cycle type of σ is c(σ) = (c1, c2, . . . , cm) (i.e. ck is the number of

cycles of length k in the decomposition of σ into disjoint cycles).

Species can often be described by functional equations, as in the following example.

Example 2.5. Let A denote the species of rooted trees (i.e. trees with a distinguished
vertex, or arborescences [15]), and E the species of sets (from the French ensembles
[15]). Let Z be the singleton species with generating function Z(z) = z. Then the
functional equation A = ZE(A) expresses the fact that any rooted tree with vertex
labels from a finite set U can be naturally described as a root (a vertex z ∈ U) to which
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is attached a set of disjoint rooted trees (on U \ {z}) which translate into equalities
for generating functions; in this case we have A(z) = z exp(A(z)), where A(z) is the
generating function for finite rooted labelled trees.

By using the Lagrange-Brünner inversion formula we get A(z) =
∑

n≥2
nn−2

(n−1)!
zn. This

leads to Cayley’s formula of nn−2 for the number of labelled trees on n vertices via the
fact that the number of rooted trees on n vertices is the n-th coefficient of A(z) and
each tree with n vertices rooted at 1 corresponds to (n− 1)! labelled trees.

3. Subgroups of free products of cyclic groups

In this section we prove the following two lemmas.

Lemma 3.1. Let p, q be two natural numbers, pq ≥ 6. There is a one-to-one correspon-
dence between the set of connected oriented rooted (p, q)-hypermaps Hr

p,q(n) on n darts
and the set of free subgroups of index n in the group ∆+ = Zp ∗ Zq.

Proof. LetH = 〈D;α, ϕ〉 be a rooted hypermap (with root 1) from Hr
p,q(n). Then there is

an epimorphism from ∆+ = Zp ∗Zq
∼= 〈̺|̺p = ε〉∗〈δ|δq = ε〉 to the group G(H) = 〈α, ϕ〉

given by ̺ 7→ α, δ 7→ ϕ, and ∆+ acts transitively on D via this epimorphism. Let
Γ := Stab(1). Then [∆+ : Γ] = n and the action of ∆+ on D is equivalent to the action
of ∆+ on the cosets of Γ.

Moreover, Γ cannot contain any conjugate of a nontrivial power of ̺ or δ because α
and ϕ have no fixed points, and cycle structure is preserved under conjugation. Thus
Γ has no torsion elements, as any torsion element in ∆+ is conjugate to some power of
either ̺ or δ. By the Kurosh theorem on subgroups of free products, Γ is free.

On the other hand, a torsion-free finite index subgroup Γ < ∆+ gives rise to a com-
binatorial hypermap H = 〈DΓ;αΓ, ϕΓ〉, with DΓ = {g Γ|g ∈ ∆+}, αΓ(gΓ) = (̺g)Γ,
ϕΓ(gΓ) = (δg)Γ. The root of H corresponds to the coset εΓ.

Since Γ is torsion-free, it does not contain any conjugates of ̺, δ, or their powers.
Thus, αp

Γ = ε and αk
Γ 6= ε for 1 ≤ k < p, which implies that all disjoint cycles of αΓ

have length p. Indeed, a cycle in αΓ has length d, d ∤ p, and once d < p, then αd
Γ has

fixed points. Thus Γ contains a conjugate of ̺d, which is a contradiction to Γ being
torsion-free. Analogously, all disjoint cycles of ϕΓ have length q. Finally, it follows that
H ∈ Hr

p,q(n), with n = [∆+ : Γ]. Again, a torsion-free subgroup Γ < ∆+ is actually
free. �

By recalling the definition of hypermap isomorphism, we easily arrive at the following
lemma.

Lemma 3.2. Let p, q be two natural numbers, pq ≥ 6. There is a one-to-one corre-
spondence between the set of isomorphism classes of connected oriented (p, q)-hypermaps
Hp,q(n) on n darts and the set of conjugacy classes of free subgroups of index n in the
group ∆+ = Zp ∗ Zq.

Proof. Analogous to the proof of Lemma 3.1. �
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4. Counting free subgroups and hypermaps

We proceed by computing the numbers cardHr
p,q(n) of connected oriented rooted (p, q)-

hypermaps on n darts. In order to do so we shall use species theory (see Section 2.3)
and generalise the results of [28].

Let E be the species of sets, Ci be the species of cyclic permutations of length i ≥ 2,
Si be the species of permutations with cycles of length exactly i without fixed points (we
assume that Si[∅] = {∅}), H∗ be the species of labelled (p, q)-hypermaps (not necessarily
connected) on n darts (we also assume H∗[∅] = {∅}), H be the species of connected
labelled (p, q)-hypermaps on n darts (in contrast, here H [∅] = ∅), and H◦ be the species
of connected rooted (p, q)-hypermaps on n darts.

The following combinatorial equations describe the relations between the species:

(4) Sp = E(Cp), Sq = E(Cq), H
∗ = Sp × Sq.

Intuitively, this means that each permutation of Sp has a unique decomposition into
cycles of length p, and each hypermap is uniquely determined by a pair of permutations
from Sp and Sq. Furthermore

(5) H∗ = E(H), H◦ = Z ·H ′,

where Z is the singleton species with generating function Z(z) = z, and H ′ means
species differentiation.

The respective generating functions will be

(6) Cp(z) =
zp

p
, Cq(z) =

zq

q
,

and thus

(7) Sp(z) = exp

(
zp

p

)
=

∞∑

k=0

zpk

pk
1

k!
,

(8) Sq(z) = exp

(
zq

q

)
=

∞∑

k=0

zqk

qk
1

k!
.

We shall use the notation

〈p, q〉 := lcm(p, q) and (p, q) := gcd(p, q),

where lcm and gcd denote as usual the least common multiple and greatest common
divisor, respectively.

Identities (4), (7) and (8) imply that

(9) H∗(z) = Sp ⊙ Sq(z) =

∞∑

k=0

z〈p,q〉k
(〈p, q〉k)!

pk〈p,q〉/p
(

〈p,q〉k
p

)
! qk〈p,q〉/q

(
〈p,q〉k

q

)
!
,

where ⊙ denotes the Hadamard product of Sp(z) and Sq(z). For convenience, we express

H∗(z) as H∗(z) = f(cz〈p,q〉) with a suitable constant c > 0, and let f(z) =
∑∞

k=0 fk
zk

k!
.

First we prove that f(z) is a divergent (i.e. with convergence radius 0) hypergeometric
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series, and then focus on the properties of its logarithmic derivative f ′(z)
f(z)

through which

the series for H◦(z) can be expressed.

Let us choose the constant c so that

(10) c(p,q) = 〈p, q〉(p−1)(q−1)−1.

Then for k ≥ 0

(11)
fk+1

fk
=

∏ pq

(p,q)
−1

i=1

(
k + i(p,q)

pq

)

∏ p

(p,q)
−1

i=1

(
k + i(p,q)

p

) ∏ q

(p,q)
−1

i=1

(
k + i(p,q)

q

) ,

which, since f(0) = 1, implies that the series f(z) is hypergeometric; we obtain

(12) f(z) = pq

(p,q)
−1F p+q

(p,q)
−2

[
i(p,q)
pq

, i = 1, . . . , pq
(p,q)

− 1
j(p,q)

p
, j = 1, . . . , p

(p,q)
− 1; j(p,q)

q
, j = 1, . . . , q

(p,q)
− 1

; z

]
.

However, every time p or q divides i, (11) can be simplified and
⌊

q
(p,q)

− 1
p

⌋
+

⌊
p

(p,q)
− 1

q

⌋
= p+q

(p,q)
− 2 terms from both numerator and denominator can be removed.

Thus (12) turns into

(13) f(z) =
1+

(p−1)(q−1)−1
(p,q)

F0

[ i(p,q)
pq

, i = 1, . . . , pq
(p,q)

− 1, p ∤ i, q ∤ i

. . .
; z

]
.

Since f(z) is hypergeometric and thus holonomic, the growth function H∗(z) = f(ξ),
with ξ = c z〈p,q〉, is also holonomic. It is also clear that f(ξ) has convergence radius 0.

Thus, by [12, Corollary 2], 1
f(ξ)

is non-holonomic, and f ′(ξ)
f(ξ)

is transcendental (c.f. also

[13, Proposition 3.1.5]).

From (5) we have the first equality below, and from H∗(z) = f(ξ) the second:

(14) H◦(z) = z
d

dz
logH∗(z) = 〈p, q〉 ξ f

′(ξ)

f(ξ)
.

Thus H◦(z) is transcendental, and we have shown

Theorem 4.1. The growth series H◦(z) =
∑∞

n=0 cardH
r
p,q(n) · zn is transcendental and

the following asymptotic formula holds for its non-zero coefficients:

[z〈p,q〉k]H◦(z) ∝ (2π)
N−1

2 〈p, q〉∏
i Γ(ai)

k(N−1)k−N−1
2

+
∑

i ai e(1+log c−N)k, as k → ∞,

where N = 1 + (p−1)(q−1)−1
(p,q)

, and the constants c and ai satisfy c
(p,q) = 〈p, q〉(p−1)(q−1)−1,

ai =
i(p,q)
pq

, with i = 1, . . . , pq
(p,q)

− 1, p ∤ i, q ∤ i.

Proof. The proof of the formula and transcendence is given above; it only remains to
justify the asymptotics of [z〈p,q〉k]H◦(z). The series H◦(z) is rapidly divergent, and
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thus we may apply the techinique provided in [6, Theorem 4.1], see also [1] and [26,
Theorem 7.2]. Then the coefficients of H∗(z) are given by

(15) [z〈p,q〉k]H∗(z) =
ck

k!

N∏

i=1

(ai)k

and using the asymptotic expansion for the Pocchammer symbol in (3) we immediately
obtain an asymptotic expansion for the coefficients of logH∗(z), and subsequently for
the coefficients of H◦(z) = z d

dz
logH∗(z). �

Corollary 4.2. The following asymptotic formula holds for the non-zero coefficients of
H◦(z):

[z〈p,q〉k]H◦(z) ∝ Ck(N−1)k−c0 ec1k, as k → ∞,

where N,C, c0 and c1 are constants that depend only on p and q.

Example 4.3. For the number of rooted triangulations on n darts we have H◦(z) =∑∞
n=0 cardH

r
2,3(n) · zn = 5z6 + 60z12 + 1105z18 + 27120z24 + 828250z30 + 30220800z36 +

1282031525z42 + 61999046400z48 + 3366961243750z54 + 202903221120000z60 + . . . . The
coefficient sequence of H◦(z) has number A062980 in the OEIS [30].

Example 4.4. For the number of rooted quadrangulations on n darts we have H◦(z) =∑∞
n=0 cardH

r
2,4(n) · zn = 3z4 + 24z8 + 297z12 + 4896z16 + 100278z20 + 2450304z24 +

69533397z28 + 2247492096z32 + 81528066378z36 ++3280382613504z40 + . . . .

Example 4.5. For the number of rooted bi-coloured triangulations on n darts we have
H◦(z) =

∑∞
n=0 cardH

r
3,3(n) · zn = 2z3+12z6+112z9+1392z12+21472z15+394752z18+

8421632z21 + 204525312z24 + 5572091392z27 + 168331164672z30 + . . . .

By reformulating the above results in group-theoretic terms we obtain

Theorem 4.6. Let ∆+ = Zp ∗ Zq be a free product of cyclic groups with pq ≥ 6. Then
the subgroup growth series Sf(z) =

∑∞
n=0 sf (n)z

n, for the number sf (n) of index n free
subgroups of ∆+, coincides with H◦(z).

Proof. By Lemma 3.1, we have that Sf (z) = H◦(z), since the elements of Hr
p,q(n) are in

bijection with free subgroups of index n in ∆+. �

Example 4.7. The growth series counting the finite index free subgroups in Z2 ∗ Z3,
Z2 ∗ Z4 and Z3 ∗ Z3 are given in Examples 4.3, 4.4 and 4.5, respectively.

5. The Riccati hierarchy and recurrence relations

As we mentioned before, the generating series H◦(z) cannot be algebraic. Nev-
ertheless, it does satisfy a non-linear differential equation; and although this fact
does not make H◦(z) holonomic, a certain recurrence relation holds for its coefficients
hp,q(n) = cardHr

p,q(n).

Recall that we expressed H∗(z) as H∗(z) = f(ξ), where ξ = c z〈p,q〉. By (10) – (13),
the function f(ξ) is hypergeometric and by (1) it satisfies the hypergeometric differential
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equation

(16) ϑf(ξ) = ξ

N∏

i=1

(ϑ+ ai)f(ξ),

where ϑ = ξ d
dξ
, and ai, i = 1, . . . , N , are the parameters of the hypergeometric function

in equality (13) with N = 1 + (p−1)(q−1)−1
(p,q)

.

Let w(ξ) := ξ f ′(ξ)
f(ξ)

. Then w(ξ) determines the growth series H◦(z) =
∑

n≥0 hp,q(n) z
n

since (14) leads immediately to

(17) H◦(z) = 〈p, q〉 ξ f
′(ξ)

f(ξ)
= 〈p, q〉 w(ξ).

Lemma 5.1. The function w(ξ) satisfies

(18) w(ξ) = ξ
N∑

i=0

σN−i(a1, . . . , aN )wi(ξ),

where σi is the i-th symmetric polynomial, and the functions wi(ξ) are defined as

(19) w0(ξ) = 1, w1(ξ) = w(ξ), wi(ξ) = ξ
d

dξ
wi−1(ξ) + w(ξ)wi−1(ξ), for i ≥ 2.

Proof. By (16)

ϑf(ξ) = ξ

N∏

i=1

(ϑ+ ai)f(ξ) = ξ

N∑

i=0

σN−i(a1, . . . , aN)ϑ
if(ξ),

and from the definition of w(ξ) it follows that ϑf(ξ) = w(ξ) f(ξ) = w1(ξ) f(ξ); we will
prove by induction that ϑif(ξ) = wi(ξ) ·f(ξ), assuming it holds for all values up to i−1:

ϑif(ξ) = ϑ(wi−1(ξ) · f(ξ)) = ϑwi−1(ξ) · f(ξ) + wi−1(ξ) · ϑf(ξ) =

=

(
ξ
d

dξ
wi−1(ξ) + w(ξ)wi−1(ξ)

)
f(ξ) = wi(ξ) · f(ξ).

Now (18) – (19) follow immediately. �

The family of equations (18) – (19) is indexed by the integers p, q, pq ≥ 6, and the
first instance has p = 2, q = 3; this turns out to be the classical Riccati equation

(20) w(ξ) = ξ2w′(ξ) + ξw(ξ) + ξw2(ξ) +
5

36
ξ.

All the identities (18) – (19) constitute a part of the Riccati hierarchy (c.f. [10,
Equation (7.2)]), and for fixed p, q the corresponding equation gives rise to a non-linear
recurrence relation, with polynomials in n as coefficients, for the numbers hp,q(n). For
relatively small values of p and q such a recurrence relation can be easily computed.

We would like to remark that w(ξ) is a solution to one of the possible equations (18)
– (19), and not the whole Riccati hierarchy.
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Example 5.2. If we consider the formal series expansion w(ξ) =
∑∞

n=0wn ξ
n, then by

the Riccati equation (20) we obtain

wn+1 = (n+ 1)wn +
n∑

i=0

wiwn−i, for n ≥ 2,

with initial conditions w0 = 0 and w1 =
5
36

(c.f. [28]). Thus

(21) h2,3(6n+ 6) = 6(n + 1) h2,3(6n) +
n∑

i=0

h2,3(6i) h2,3(6n− 6i), for n ≥ 2,

with h2,3(0) = 0, h2,3(6) = 5, and h2,3(d) = 0 for any non-zero d 6= 0 mod 6.

This is a recurrence relation for the number of rooted triangulations with n darts
(equivalently, n/3 triangles).

Example 5.3. In the case p = 2, q = 4 we arrive at the following equation for w(ξ):

(22) w(ξ) = ξ2w′(ξ) + ξw(ξ) + ξw2(ξ) +
3

16
ξ,

which is also a classical Riccati equation. It gives rise to the following relation between
the coefficients of the series w(ξ) =

∑∞
n=0wn ξ

n:

wn+1 = (n+ 1)wn +
n∑

i=0

wiwn−i, for n ≥ 2,

with initial conditions w0 = 0 and w1 =
3
16
. Thus

(23) h2,4(4n+ 4) = 4(n + 1) h2,4(4n) +
n∑

i=0

h2,4(4i) h2,4(4n− 4i), for n ≥ 2,

with h2,4(0) = 0, h2,4(4) = 3, and h2,4(d) = 0 for any non-zero d 6= 0 mod 4, and we
obtained a recurrence for the number of rooted quadrangulations with n darts (equiva-
lently, n/4 squares).

Example 5.4. In the case p = q = 3 we arrive at yet another Riccati equation for w(ξ):

(24) w(ξ) = ξ2w′(ξ) + ξw(ξ) + ξw2(ξ) +
2

9
ξ,

which gives rise to the recurrence relation for the number of rooted bi-coloured triangu-
lations with n darts (equivalently, with n/3 triangles):

(25) h3,3(3n+ 3) = 3(n + 1) h3,3(3n) +

n∑

i=0

h3,3(3i) h3,3(3n− 3i), for n ≥ 2,

with h3,3(0) = 0, h3,3(3) = 2, and h3,3(d) = 0 for any non-zero d 6= 0 mod 3.

Now consider the generating function H◦(z) for any family of (p, q)-hypermaps asso-
ciated with the classical Riccati equation, that is, the case when N = 2 in (18) – (19),
or equivalently, when p and q satisfy the identity

(p− 1) (q − 1) = (p, q) + 1.
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An easy calculation shows that the only possible values are (i) p = 2, q = 3, (ii) p = 2, q =
4 and (iii) p = 3, q = 3, which correspond to Examples 5.2, 5.3 and 5.4, respectively. In
each case the Riccati equation has the form

(26) w′(ξ) =
w(ξ)− ξw(ξ)− ξw2(ξ)− k

ξ2
,

where k is a constant. This is the form of the equation in [16, Theorem 5.2] of Klazar,
so one can easily deduce the following:

Corollary 5.5. The generating function H◦(z) for any family of (p, q)-hypermaps as-
sociated with the classical Riccati equation is non-holonomic.

Question 5.6. Are the generating functions H◦(z) associated with higher-order equa-
tions in the Riccati hierarchy also non-holonomic?

All the above results and questions easily translate into the language of subgroup
generating functions for the number of free subgroups of finite index in Zp ∗ Zq.

6. Subgroup conjugacy and hypermap isomorphism

In order to count the conjugacy classes of index n free subgroups in ∆+, we shall
use Lemma 3.2 and first compute the number cardHp,q(n) of isomorphism classes of
(p, q)-hypermaps with n darts.

We first recall the equations that hold for the species H∗ of labelled (not necessarily
connected) (p, q)-hypermaps and the species H of labelled connected (p, q)-hypermaps.
Let Sp and Sq be the species of permutations (acting on the same set of darts) with only
p and q cycles, respectively. Then

(27) H∗ = Sp × Sq, H
∗ = E(H).

Let Cp and Cq be the species of p- and q-cycles, respectively, with their corresponding
cycle indices

(28) ZCp
(z1, z2, . . . , zp) =

1

p

∑

d|p

φ(d) z
p/d
d , ZCq

(z1, z2, . . . , zq) =
1

q

∑

d|q

φ(d) z
q/d
d ,

where φ(d) is the Euler totient function.

The species E of sets has cycle index

(29) ZE(z1, z2, . . . ) = exp

(
∑

k≥1

zk
k

)
.

Then, the cycle index of Sp becomes

(30) ZSp
(z1, z2, . . . ) = ZE


1

p

∑

d|p

φ(d) z
p/d
d ,

1

p

∑

d|p

φ(d) z
p/d
2d ,

1

p

∑

d|p

φ(d) z
p/d
3d , . . .


 =
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(31) = exp



∑

k≥1

1

pk

∑

d|p

φ(d) z
p/d
kd


 = exp



∑

k≥1

∑

d|p

1

pk
φ(d) z

p/d
kd


 =

(32) = exp




∞∑

n=1

∑

d|(n,p)

d

np
φ(d) zp/dn


 =

∞∏

n=1

exp


 1

np

∑

d|(n,p)

d φ(d) zp/dn


 ,

where the last identity is obtained by setting n = kd, and (n, p) denotes the greatest com-
mon divisor of n and p. An analogous expression holds for the cycle index ZSq

(z1, z2, . . . )
of the species Sq (up to the substitution of q in place of p).

Let us set

(33) Pn(zn) = exp



 1

np

∑

d|(n,p)

d φ(d) zp/dn



 , Qn(zn) = exp



 1

nq

∑

d|(n,q)

d φ(d) zq/dn



 .

Then

(34) ZSp
(z1, . . . , zp) =

∞∏

n=1

Pn(zn), ZSq
(z1, . . . , zq) =

∞∏

n=1

Qn(zn).

The cycle indices ZSp
and ZSq

are separable as defined in [28, Section A.3.3]. Thus,
the cycle index ZH∗ can be expressed as

(35) ZH∗(z1, z2, . . . ) =

∞∏

n=1

Pn(zn)⊙Qn(zn).

Anytime two species A and B satisfy A = E(B), by [2, §1.4, Exercice 9] we can obtain
a formula for ZB from ZA. In particular, the cycle index ZH is

(36) ZH(z1, z2, . . . ) =
∞∑

n=1

µ(n)

n
logZH∗(zn, z2n, z3n, . . . ),

where µ(n) is the Möbius function. The generating function H̃(z) =
∑

n≥0 cardHp,q(n)z
n

satisfies

(37) H̃(z) = ZH(z, z
2, z3, . . . ) =

∞∑

n=1

µ(n)

n
logZH∗(zn, z2n, z3n, . . . ) =

(38) =

∞∑

n=1

µ(n)

n

∞∑

k=1

log(Pn ⊙Qn)(zn)|zn=znk .

Thus we arrive at the following theorem:

Theorem 6.1. The growth series H̃(z) =
∑∞

n=0 cardHp,q(n) · zn is given by the formula

H̃(z) =

∞∑

n=1

µ(n)

n

∞∑

k=1

log(Pn ⊙Qn)(zn)|zn=znk ,
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with

Pn(zn) = exp



 1

np

∑

d|(n,p)

d φ(d) zp/dn



 , Qn(zn) = exp



 1

nq

∑

d|(n,q)

d φ(d) zq/dn



 .

Its non-zero coefficients have the following asymptotic expansion:

[z〈p,q〉k]H̃(z) ∝ (2π)
N−1

2∏
i Γ(ai)

k(N−1)k−N+1
2

+
∑

i ai e(1+log c−N)k, as k → ∞,

where N = 1 + (p−1)(q−1)−1
(p,q)

, and the constants c and ai satisfy c
(p,q) = 〈p, q〉(p−1)(q−1)−1,

ai =
i(p,q)
pq

, with i = 1, . . . , pq
(p,q)

− 1, p ∤ i, q ∤ i.

Proof. Most of the proof has been already provided above. The remaining part is the

asymptotic behaviour of [zn]H̃(z), as n → ∞. Since most of the (p, q)-hypermaps on
n darts are asymmetric (one can adapt the argument from [6, Section 7.1] in order to
show this), we have that cardHp,q(n) ∝ 1

n
cardHr

p,q(n), as n → ∞. Then we apply
Theorem 4.1 to obtain the required asymptotic formula. �

Corollary 6.2. The following asymptotic formula holds for the non-zero coefficients of

H̃(z):

[z〈p,q〉k]H̃(z) ∝ Ck(N−1)k−c0 ec1k, as k → ∞,

where N,C, c0 and c1 are constants that depend only on p and q.

Example 6.3. For the number of isomorphism classes of triangulations on n darts we

have H̃(z) =
∑∞

n=0 cardH2,3 ·zn = 3z6+11z12+81z18+1228z24+28174z30+843186z36+
30551755z42+1291861997z48+62352938720z54+3381736322813z60+. . . . The coefficient
sequence of H̃(z) has number A129114 in the OEIS [30].

Example 6.4. For the number of isomorphism classes of quadrangulations on n darts

we have H̃(z) =
∑∞

n=0 cardH2,4 ·zn = 2z4+7z8+36z12+365z16+5250z20+103801z24+
2492164z28 + 70304018z32 + 2265110191z36 + 82013270998z40 + . . . .

Example 6.5. For the number of isomorphism classes of bi-coloured triangulations on
n darts we have H̃(z) =

∑∞
n=0 cardH3,3 · zn = 2z3 + 3z6 + 16z9 + 133z12 + 1440z15 +

22076z18 + 401200z21 + 8523946z24 + 206375088z27 + 5611089408z30 + . . . .

To the best of our knowledge, the following questions remain at the moment unsettled.

Question 6.6. Is the growth series H̃(z) given in Theorem 6.1 algebraic or transcen-
dental?

Question 6.7. Is H̃(z) a solution to any differential equation or system of equations?

Is there a recurrence relation of any sort that the coefficients of H̃(z) satisfy?

Again, we can reformulate our result in group-theoretic terms via Lemma 3.2.

Theorem 6.8. Let ∆+ = Zp ∗ Zq be a free product of cyclic groups with pq ≥ 6. Then
the conjugacy growth series Cf(z) =

∑∞
n=0 cf (n)z

n, for the number cf (n) of conjugacy

classes of index n free subgroups in ∆+, coincides with H̃(z).
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Example 6.9. The conjugacy growth series for free subgroups in Z2 ∗ Z3, Z2 ∗ Z4 and
Z3∗Z3 are given in Examples 6.3, 6.4 and 6.5, respectively. An independent computation
with GAP [8] by issuing LowIndexSubgroupsFPGroup command gives matching results.

7. Other free products and their free subgroups

As we mentioned in the introduction, the group ∆+ = Zp ∗ Zq is also known as the
(p, q,∞)-triangle group, a Fuchsian group with rich geometry. With the above technique
we can also count the number of free subgroups of finite index and their conjugacy classes
in ∆+ = Zp ∗ Z and ∆+ = Z ∗ Z, which are the (p,∞,∞)- and (∞,∞,∞)-triangle
groups, respectively. These two groups have been fruitfully used by Breda d’Azevedo
– Menykh – Nedela [3] and later on by Mednykh [19], Mednykh – Nedela [21, 22] for
counting hypermaps: ∆+ = Z2 ∗ Z was used for counting maps without semiedges, and
∆+ = Z∗Z was used for counting general hypermaps (both rooted hypermaps and their
isomorphism classes).

Since most of the study has been already done in [3, 19, 21, 22], we briefly formulate
the necessary statements below without a proof. Where necessary, we give more details.

7.1. Free subgroups of Zp ∗Z. If ∆+ = Zp ∗Z, then its free subgroups of index n are
in bijection with the elements of Hr

p(n), which is the set of rooted connected hypermaps
on n darts with p-gonal hyperedges. The conjugacy classes of free index n subgroups in
∆+ are in bijection with the elements of Hp(n), which is the set of isomorphism classes
of rooted connected hypermaps on n darts with p-gonal hyperedges. We shall call such
hypermaps rooted, resp. unrooted, (p,∞)-hypermaps.

Let us first define the species H◦ by the following equations

(39) H◦ = Z ·H ′, H∗ = E(H), and H∗ = Sp × S,

analogous to equations (4) – (5), where S is the species of all permutations, H∗ is
the species of labelled, not necessarily connected, (p,∞)-hypermaps, H is the species
of labelled connected (p,∞)-hypermaps, and H◦ of rooted ones. Thus, we have that
Hr

p(n) = H◦[n].

Using the fact that

(40) Sp(z) =
∞∑

k=0

zpk

pkk!
, S(z) =

1

1− z
,

we obtain

(41) H∗(z) = (Sp ⊙ S)(z) =

∞∑

k=0

(pk)!

pkk!
zpk.

Then, analogous to Section 2.1, H∗(z) = f(pp−1zp), where f(ξ) is a hypergeometric
function:

(42) f(ξ) = pF0

[
1
p
, . . . , p−1

p
, 1

. . .
; ξ

]
.
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We also have that H◦(z) = pξ f ′(ξ)
f(ξ)

= pw(ξ), with ξ = pp−1zp, and w(ξ) is a solution

to an equation from the Riccati hierarchy with N = p, and ai =
i
p
, for i = 1, . . . , p, c.f.

Section 5.

Example 7.1. If p = 2, then H∗(z) enumerates labelled sensed pre-maps (without
semi-edges) on n darts or, equivalently, with n/2 edges, n = 1, 2, . . . , so that the odd
coefficients of H∗(z) vanish. We also have that H◦(z) =

∑∞
n=0 h(n)z

n enumerates sensed
rooted maps on n darts. All the odd coefficients of H◦(z) vanish as well. Finally,
H◦(z) = 2w(ξ), where ξ = 2z2 and w(ξ) satisfies the following Riccati equation:

w(ξ) = ξ2w′(ξ) +
3

2
ξw(ξ) + ξw2(ξ) +

1

2
ξ.

Thus the coefficients of the series w(ξ) =
∑∞

n=0wnz
n satisfy w0 = 0, w1 =

1
2
and

wn+1 =

(
n+

3

2

)
wn +

n∑

i=0

wiwn−i, n ≥ 1.

This implies

h(2n + 2) = (2n+ 3)h(2n) +

n∑

i=0

h(2i)h(2n− 2i), n ≥ 1,

with h(0) = 0, h(2) = 2, and h(2n+ 1) = 0 for all natural n ≥ 0.

By analogy to Theorems 4.1 and 4.6 the following holds.

Theorem 7.2. The growth series H◦(z) =
∑∞

n=0 cardH
r
p(n) · zn is transcendental and

the following asymptotic formula holds for its non-zero coefficients:

[zpk]H◦(z) ∝ (2π)
p−1
2 p

∏p
i=1 Γ

(
i
p

) k(p−1)k+1 e(p−1)(log p−1)k, as k → ∞.

Example 7.3. For the case of sensed maps on n darts without semi-edges (i.e. ori-
entable connected (2,∞)-hypermaps), we have that H◦(z) =

∑∞
n=0 cardH

r
2(n) · zn =

2z2+10z4+74z6+706z8+8162z10+110410z12+1708394z14+29752066z16+576037442z18+
12277827850z20 + . . . . The coefficient sequence of H◦(z) has number A000698 in the
OEIS [30]. Since H◦(z) satisfies a classical Riccati equation, by Corollary 5.5 this se-
quence is non-holonomic.

Theorem 7.4. Let ∆+ = Zp ∗ Z. Then the subgroup growth series Sf(z) =∑∞
n=0 sf(n)z

n, for the number sf(n) of index n free subgroups of ∆+, coincides with
H◦(z).

Example 7.5. For ∆+ = Z2 ∗ Z, the free subgroup growth series Sf(z) is given in
Example 7.3.

The number of isomorphism classes of hypermaps or, equivalently, the number of
conjugacy classes of free subgroups in ∆+, are given in the two theorems below.
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Theorem 7.6. The growth series H̃(z) =
∑∞

n=0 cardHp,q(n) · zn is given by the formula

H̃(z) =
∞∑

n=1

µ(n)

n

∞∑

k=1

log(Pn ⊙Qn)(zn)|zn=znk ,

with

Pn(zn) = exp


 1

np

∑

d|(n,p)

d φ(d) zp/dn


 , Qn(zn) =

∞∑

d=1

zdn =
1

1− zn
.

Its non-zero coefficients have the following asymptotic expansion:

[zpk]H◦(z) ∝ (2π)
p−1
2

∏p
i=1 Γ

(
i
p

) k(p−1)k e(p−1)(log p−1)k, as k → ∞.

Example 7.7. For the case of isomorphism classes of sensed maps on n darts (i.e.

isomorphism classes of orientable connected (2,∞)-hypermaps), we have that H̃(z) =∑∞
n=0 cardH2(n) · zn = 2z2 + 5z4 + 20z6 + 107z8 + 870z10 + 9436z12 + 122840z14 +

1863359z16 + 32019826z18 + 613981447z20 + . . . . The coefficient sequence of H̃(z) has
number A170946 in the OEIS [30].

Theorem 7.8. Let ∆+ = Zp ∗ Z be a free product of cyclic groups with pq ≥ 6. Then
the conjugacy growth series Cf(z) =

∑∞
n=0 cf (n)z

n, for the number cf (n) of conjugacy

classes of index n free subgroups in ∆+, coincides with H̃(z).

Example 7.9. For ∆+ = Z2 ∗ Z, the conjugacy counting function Cf(z) coincides with

H̃(z) from Example 7.7. This can be verified by an independent computation using
GAP’s LowIndexSubgroupsFPGroup command [8].

7.2. Free subgroups of Z ∗ Z. If ∆+ = Z ∗ Z ∼= F2, the free group on two generators,
then all of its index n subgroups are free, and correspond bijectively to the elements of the
set Hr(n) of rooted hypermaps on n darts. The conjugacy classes of index n subgroups
in ∆+ are in bijection with the elements of H(n), which is the set of isomorphism classes
of hypermaps on n darts. In this case, the formulas for the number of index n subgroups
in ∆+ and their conjugacy classes are given by multiple authors including, respectively,
Hall [11], for the former, and Liskovec [17], Mednykh [20], for the latter. The advantage
of a species theory approach is that the proof turns out to be much simpler and shorter.
Initially, we have that

(43) H∗(z) = (S ⊙ S)(z) =
∞∑

n=0

n! · zn,

and

(44) H◦(z) = z
d

dz
logH∗(z) =

∞∑

n=0

sn · zn,

where sn is given by the recurrence relation (c.f. [11])

(45) sn = n · n!−
n−1∑

k=1

k! · sn−k, and s0 = 0, s1 = 1.
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The sequence (45) is known to be non-holonomic due to Klazar (c.f. discussion after
[16, Proposition 5.1]).

Also,

(46) ZH∗(z1, z2, . . . ) =

∞∏

n=1

(
∞∑

i=0

i! · ni · zin

)

and

(47) H̃(z) =
∞∑

k=1

µ(k)

k
logZH∗(zk, z2k, . . . ) =

∞∑

k=1

µ(k)

k

∞∑

n=1

log

(
∞∑

i=0

i! · ni · zikn
)
.

By using the fact that log (
∑∞

i=0 i!z
i) =

∑∞
i=1

si
i
zi (already used in formulas (43)-(44)),

and substitution z → n · zkn we may simplify formula (47) down to

(48) H̃(z) =
∞∑

n=1

zn · 1
n

∑

i|n

si
∑

m|n
i

µ
( n

im

)
·mi+1 =

(49) =

∞∑

n=1

zn · 1
n

∑

ℓ|n

sn/ℓ ϕn/ℓ+1(ℓ),

where ϕm(ℓ) =
∑

d|ℓ µ
(
ℓ
d

)
dm is the Jordan totient function. The coefficient [zn]H̃(z) in

(49) coincides with the one given in [4, Proposition 2.1], [17] or [20, Theorem 2].

Appendix

I. Counting free subgroups in Zp ∗Zq. First we define the necessary parameters: p,
q, and n, the index up to which we shall count the number of free subgroups in Zp ∗Zq.

#computing the number of free subgroups in Z_p*Z_q of index < n

#or: computing the number of rooted (p,q)-hypermaps on < n darts

#defining p, q

p = 2; q = 3;

#defining n

n = 36;

#defining power series ring over \mathbb{Q}

R.<z> = PowerSeriesRing(QQ, default_prec = 2*n);

Then we define the auxiliary function f(ξ).

#defining f(z), such that H^\ast(z) = f(c*z^lcm(p,q))

f = 1; coeff = 1;

for k in range(1,n):

mult = 1;

for i in range(1, lcm(p,q)):
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if (not(i%p==0) and not(i%q==0)):

mult = mult*(k-1+i/lcm(p,q));

coeff = coeff*mult;

f = f + coeff*power(z,k)/factorial(k);

We shall also need the constant c for the substitution ξ = cz〈p,q〉.

#defining the constant c

c = power(lcm(p,q), (p*q - p - q)/gcd(p,q));

Finally, H◦(z) can be computed.

#computing H^\circ

Hcirc = lcm(p,q)*z*derivative(f)/f;

Hcirc.substitute(z = c*power(z,lcm(p,q))).truncate(n);

>828250*z^30 + 27120*z^24 + 1105*z^18 + 60*z^12 + 5*z^6

II. Finding a generalised Riccati equation for w(ξ). First we define p and q, and
then compute the number of terms in equation (18).

#defining p, q

p = 2;

q = 3;

#computing N

N = 1 + (p*q - p - q)/gcd(p,q);

N;

>2

Next we prepare all the ingredients for formula (18), starting with the symmetric
functions on the ai’s, then computing the wi(ξ)’s, and finally the equation itself. Below
we use Z instead of ξ in the SAGE code throughout.

#defining symmetric functions

e = SymmetricFunctions(QQ).elementary();

#creating the list of a_i’s

a_val = [];

for i in range(1,lcm(p,q)):

if (not(i%p==0) and not(i%q==0)):

a_val.append(i/lcm(p,q));

#defining the symmetric coefficient \sigma_k(a_1,\dots,a_N)

def sym_coeff(k):

coeff = e([k]).expand(int(N), alphabet=’a’);

return coeff(*a_val);

#defining \xi and w as a function of \xi

var(’Z’); w = function(’w’)(Z); w;

>Z

>w(Z)
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#defining w_i(\xi) for i = 1,\dots,N

w_lst = [1,w];

for i in range(1,N):

w_lst.append(Z*w_lst[i].derivative(Z) + w*w_lst[i]);

#defining the list of symmetric coefficients of the equation

coeff_lst = [sym_coeff(i) for i in range(N+1)];

Now we compose the equation itself, and view the output.

#composing the equation

eqn = expand(w - Z*sum([a*b for a,b in zip(reversed(coeff_lst), w_lst)]));

#and viewing it

view(eqn);

> - Z*w(Z)^2 - Z^2*D[0](w)(Z) - Z*w(Z) - 5/36*Z + w(Z)

III. Counting free conjugacy classes in Zp∗Zq. We start by defining the parameters:
p, q, and n, and the polynomial ring that we shall use. Although cycle indices are
multivariate polynomials, we need only one variable z to present the final result of

computation as H̃(z).

#computing the number of conjugacy classes of

# free subgroups in Z_p*Z_q of index < n

#or: computing the number of isomorphism classes

# of (p,q)-hypermaps on < n darts

#defining p, q

p = 2;

q = 3;

#defining n

n = 36;

#defining power series ring over \mathbb{Q}

R.<z> = PowerSeriesRing(QQ, default_prec=2*n);

Next we define the auxiliary functions Pm(zm) and Qm(zm). Note that we use z as a
variable instead of zm (computing series in a single variable is usually faster in SAGE).

def P(m):

sum = 0;

for d in divisors(gcd(m,p)):

sum = sum + d*euler_phi(d)*power(z, p//d);

sum = sum/(m*p);

return sum.exp(2*n);

def Q(m):

sum = 0;

for d in divisors(gcd(m,q)):
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sum = sum + d*euler_phi(d)*power(z, q//d);

sum = sum/(m*q);

return sum.exp(2*n);

Next we define the Hadamard product of Pm(zm) and Qm(zm)

def h_prod_PQ(m):

prod = 0;

P_coeff = P(m).dict();

Q_coeff = Q(m).dict();

for k in Set(P_coeff.keys()).intersection(Set(Q_coeff.keys())):

prod = prod \\

+ power(z,k)*P_coeff[k]*Q_coeff[k]*factorial(k)*power(m,k);

return prod;

and its logarithm log(Pm ⊙Qm)(zm) upon the substitution zm = zkm

def log_h_prod_PQ(m,k):

return log(h_prod_PQ(m)).substitute(z=power(z,m*k));

Finally, we define the general term of the double sum in Theorem 6.1

@parallel

def term(m,k):

return moebius(k)/k*log_h_prod_PQ(m,k);

in a way that allows parallel computing in order to speed up the computation.

The function H̃(z) is the double sum of the terms term(m,k) above. We define it,
and compute its output.

#defining H_tilde(n):

def H_tilde(n):

return sum([t[1] for t in list(term([(m,k) for m in range(1,n) \\

for k in range(1,n)]))]).truncate(n);

#and computing it:

H_tilde(n);

>28174*z^30 + 1228*z^24 + 81*z^18 + 11*z^12 + 3*z^6

IV. Free products Zp ∗Z and Z ∗Z. In order to compute the subgroup growth series
for the number of free subgroups having index < n in Zp ∗Z we use essentially the same
code as in Appendix I.

#computing the number of free subgroups in Z_p*Z of index < n

#or: computing the number of rooted (p,\infty)-hypermaps on < n darts

#defining p

p = 2;

#defining n

n = 22;
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#defining the power series ring

R.<z> = PowerSeriesRing(QQ, default_prec=2*n);

The auxiliary function f(ξ) is defined, where ξ = pp−1 zp. Analogous to Appendix I,

we have that H∗(z) = f(pp−1 zp) and H◦(z) = pp−1zp f ′(z)
f(z)

.

#defining the auxiliary function f(\xi)

f = sum( [ factorial(p*k)/power(p, p*k)*power(z, k)/factorial(k) \\

for k in range(n) ] );

#computing H^\circ

Hcirc = p*z*derivative(f)/f;

Hcirc.substitute(z=power(p,p-1)*power(z,p)).truncate(n);

>12277827850*z^20 + 576037442*z^18 + 29752066*z^16 + 1708394*z^14 +

110410*z^12 + 8162*z^10 + 706*z^8 + 74*z^6 + 10*z^4 + 2*z^2

Similarly we use our SAGE code from Appendix III in order to compute the number of
conjugacy classes of free subgroups in Zp ∗Z. The only change that we need to perform
is setting

def P(m):

sum = 0;

for d in divisors(gcd(m,p)):

sum = sum + d*euler_phi(d)*power(z, p//d);

sum = sum/(m*p);

return sum.exp(2*n);

def Q(m):

return sum([power(z,k) for k in range(2*n)]);

For instance, computing the number conjugacy classes of free subgroups in Zp ∗ Z of
index < n with p = 2 and n = 22 produces the following output which is consistent with
[3, Table 1].

H_tilde(n);

>613981447*z^20 + 32019826*z^18 + 1863359*z^16 + 122840*z^14 + 9436*z^12

+ 870*z^10 + 107*z^8 + 20*z^6 + 5*z^4 + 2*z^2

Computing the number of subgroups in Z ∗ Z ∼= F2 can be achieved by using Hall’s
recursive formula [11].

In order to compute the number of conjugacy classes of subgroups in Z ∗ Z ∼= F2, we
again use the SAGE code from Appendix III while setting Pm(zm) and Qm(zm) to be

def P(m):

return sum([power(z,k) for k in range(2*n)]);

and

def Q(m):

return sum([power(z,k) for k in range(2*n)]);

This produces the following output (as before we keep n = 22):
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> 48509766592893402121*z^21 +

2303332664693034476*z^20 + 114794574818830735*z^19 +

6019770408287089*z^18 + 333041104402877*z^17 + 19496955286194*z^16 +

1211781910755*z^15 + 80257406982*z^14 + 5687955737*z^13 + 433460014*z^12

+ 35704007*z^11 + 3202839*z^10 + 314493*z^9 + 34470*z^8 + 4163*z^7 +

624*z^6 + 97*z^5 + 26*z^4 + 7*z^3 + 3*z^2 + z

The coefficient sequence of the above series has number A057005 in the OEIS [30].
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