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Finite element algorithms for thermoelastic wear problems
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In the present paper three algorithms are applied to a finite element model of two thermoelastic bodies in frictional wearing 
contact. All three algorithms utilize a modification of a Newton method for B-differentiable equations as non-linear equation 
solver. In the first algorithm the fully-coupled system of thermomechanical equations is solved directly using the modified 
method, while in the other two algorithms the equation system is decoupled in one mechanical part and another thermal part 
which are solved using an iterative strategy of Gauss–Seidel type. The two iterative algorithms differ in which order the parts 
are solved. The numerical performance of the algorithms are investigated for two two-dimensional examples. Based on these 
numerical results, the behaviour of the model is also discussed. It is found that the iterative approach where the thermal 
subproblem is solved first is slightly more efficient for both examples. Furthermore, it is shown numerically how the predicted 
wear gap is influenced by the bulk properties of the contacting bodies, in particular how it is influenced by thermal dilatation. 

Keywords:Thermomechanical contact; Numerical methods; Friction; Wear; Semi-smooth equations; Pang’s Newton method

1. Introduction

The present paper concerns the numerical treatment of the thermoelastic model of contact, friction and wear developed
in (Strömberg et al., 1996). A first attempt in this direction is reported in (Strömberg, 1998), where a nonsmooth Newton
method was used to solve the discretized problem directly without any splitting of the problem in mechanical and thermal
parts. However, that work was restricted to one body only in frictional wearing contact with a rigid support. The present work
extends this approach to the case oftwo-body contact, which introduces additional considerations concerning heat flow across
the contact interface and how heat generated by friction and wear is divided between the two bodies. In addition, the direct use
of the Newton method to solve the fully-coupled thermoelastic problem is compared to two strategies of Gauss–Seidel type,
where the mechanical and thermal problems are solved uncoupled from each other. The two iterative strategies differ in which
order the mechanical and the thermal problems are solved. The efficiency of the three approaches, i.e. the direct approach and
the two iterative strategies, is investigated. For the two examples presented in this work it is found that the performance of the
algorithms is very similar. The iterative approach where the thermal subproblem is solved first is slightly more efficient than
the other two and the ranking between the direct approach and the iterative strategy where the mechanical subproblem is solved
first seems to depend on the type of boundary conditions.

A possible drawback with the direct use of the Newton method is the numerical difficulties reported in (Strömberg, 1998).
In that paper, these problems were solved by eliminating the temperature algebraically before the Newton step was performed.
However, in order to extend the method to contact between two thermoelastic bodies, involving heat flow across the contact
interface, these numerical difficulties have to be overcome in a different way, since elimination of the temperature is not possible
when two-body contact is treated. Fortunately, this was resolved simply by using a different solver for the system of linear
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equations appearing in the Newton method. By solving the same problem as in (Strömberg, 1998), with the temperature as an
explicit variable, it was concluded that there were no numerical problems in a different implementation of the algorithm.

The numerical methods suggested in this work are very much based on the papers by Alart and Curnier (1991) and Klarbring
(1992). Alart and Curnier derived an equation system for frictional contact from an augmented Lagrangian which in turn
was solved using a Newton method without line-search. Klarbring derived the same equation system by using the approach
of projections, i.e. deriving equivalent equations from the variational inequalities of Signorini and Coulomb. Furthermore,
Klarbring also suggested that this equation system can be solved using a Newton method for B-differentiable equations
(B for Bouligand) proposed by Pang (1990). A function which is Lipschitz continuous and directionally differentiable is
B-differentiable. Both Alart and Curnier, and Klarbring obtained the Lipschitz continuity of the projection corresponding to
Coulomb’s law, needed for establishing the B-differentiability, by replacing the normal force with the projection corresponding
to Signorini’s condition. In (Strömberg, 1997) this was instead obtained by simply replacing the normal force,N , by max(0,N).
This approach simplify the frictional formulation, especially when wear is included in the formulation.

A modification of Pang’s Newton method was introduced in (Strömberg, 1997) to solve the augmented Lagrangian
formulation of frictional contact (including wear). A draw-back of Pang’s method is the non-linearity introduced by the
directional derivative at non-differentiable states. This draw-back was overcome in (Strömberg, 1997) by just determining the
directional derivative for one arbitrary direction at non-differentiable states, and then letting this particular derivative represent
the directional derivative in all the other directions at the corresponding state. In such manner the step of solving the search
direction is linearized. This approach of modifying Pang’s Newton method has proven numerically to be very successful for
solving both friction problems as well as wear problems. For instance in (Christensen et al., 1998) it was proven that this method
is superior to an interior point method; in (Strömberg, 1999) three-dimensional wear problems were solved successfully; and,
recently, the transmission error in spur gears was studied using this method (Lundvall and Klarbring, 2000). Furthermore, in
(Johansson and Klarbring, 2000) impact problems were solved using the same idea, and most recently in (Christensen, 2000)
elastoplastic friction problems were solved using this approach.

In this work, the augmented Lagrangian approach outlined above is adopted for solving two-dimensional thermoelastic wear
problems. Similar problems were solved by Johansson and Klarbring (1993) by splitting the problem into one mechanical part
and one thermal part. Wear was not included in their work. Another example of work concerning finite element treatment of
thermomechanical friction problems, also excluding wear, is by Wriggers and Miehe (1994). In their work, the problem was
also decoupled in one mechanical part and one thermal part.

The contents of the present study is as follows: in Section 2 the governing equations for the unilateral frictional wearing
contact between two thermoelastic bodies are given. In Section 3 the governing equations are put together to an initial boundary
value problem, which is discretized in space using finite element approximations and in time using Euler backward finite
differences. Furthermore, the contact conditions are rewritten as equations by means of projections. The result is a system of
semismooth equations. A function is said to be semismooth if a certain limit of the B-derivative is satisfied. Thus, a semismooth
function is B-differentiable. Recently, Christensen and Pang (1998) proved that the nonsmooth projections of Signorini and
Coulomb are semismooth. This is also true when wear is included in the projections. In Section 4, three algorithms for treating
the resulting system of equations are presented. The first algorithm is a direct approach for solving the system of semismooth
equations, while the two other algorithms utilizes an iterative approach of Gauss–Seidel type. All algorithms involve the use of
a modification of Pang’s Newton method, which is described in general terms. Furthermore modifified directional derivatives,
leading to the modification of Pang’s method, are presented. In Section 5, two example problems are defined and solved using
the different algorithms and with different constitutive settings. The performance of the algorithms are discussed as well as the
behaviour of the model based on the numerical results.

2. Governing equations

In this section we present the governing equations of a model for thermoelastic frictional wearing contact. The equations
are: (i) for the bulk material of the two bodies: the equilibrium equations, the constitutive law of isotropic linear elasticity
including thermal expansion and Fourier’s law of heat conduction; and (ii) for the contact interface: the law of action and
reaction, Signorini’s law of contact, Coulomb’s law of friction, Archard’s law of wear and the energy balance combined with
constitutive equations of contact heat transfer.

The model has been derived in detail from a thermodynamic generalized standard model concept in (Johansson and
Klarbring, 1993; Strömberg et al., 1996).

Let us consider the two bodiesΩl (l = 1,2) shown in Fig. 1. The boundary of each body∂Ωl is divided into three disjoint
parts:Γ lt ⊂ ∂Ωl on which tractionŝt l are prescribed,Γ lu ⊂ ∂Ωl with prescribed displacementsû andΓ lc ⊂ ∂Ωl representing
the potential contact surfaces. It is possible for heat to flow through these contact surfaces and, in addition, there may be a part,
Γ lT of the boundary of each body, respectively, withΓ lT ∩ Γ lc = ∅, where the temperaturêT is prescribed.
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Fig. 1. Two thermoelastic bodies in frictional wearing contact.

The boundariesΓ lc have outward unit normal vectorsnlc. For the case of small displacement problems we are considering,
these boundaries are almost coinciding and consequently the corresponding normal vectors are almost identical, i.e.Γ 1

c � Γ 2
c

andn1
c �−n2

c . This is utilized to define a common contact surfaceΓc � Γ 1
c � Γ 2

c with a normal vectornc � n1
c �−n2

c .
The equilibrium equations for the bodies and the law of action and reaction read

divσ = 0 in Ω1∪Ω2, (1)

σn = t̂ onΓ 1
t ∪ Γ 2

t , (2)

σ1nc = −σ2nc =−p onΓc, (3)

whereσ is the Cauchy stress tensor, div represents the divergence of a tensor,n is the unit normal vector onΓ 1
t ∪ Γ 2

t andp is
the contact traction vector. Superscripts 1 and 2 are used to denote quantities related toΩ1 andΩ2, respectively.

Established constitutive assumptions of isotropic thermoelasticity are utilized for the bodies. These constitutive assumptions
are formulated as

σ = λ̃ tr(ε)I + 2µ̃ε − (
3λ̃+ 2µ̃

)
α(T − T0)I , (4)

whereI is the identity tensor,̃λ and µ̃ are the Lamé coefficients,α is the coefficient of thermal dilatation,T0 is a reference
temperature, tr stands for the trace of a tensor1 andε = ε(u) is the infinitesimal strain tensor defined by

ε(u)= 1

2

(∇u+∇uT)
,

whereu is the displacement vector and∇ denotes the gradient of a scalar or vector.
For the potential contact interface, Signorini’s contact conditions, Coulomb’s law of friction and Archard’s law of wear are

assumed to be valid locally at each pointx ∈ Γc .
Signorini’s contact conditions may be stated as the following variational inequality:

pn ∈Kn:
(
p′n − pn

)
(wn − ω− g)� 0, ∀p′n ∈Kn, (5)

wherepn = p ·nc , Kn = {pn: pn � 0},wn =w ·nc , g is the initial gap between the bodies,ω is the additional gap due to wear
andw= u1−u2 is the relative displacement of points onΓc . The variational inequality (5) is equivalent to the complementarity
conditions

pn � 0, wn − ω− g � 0, pn(wn − ω− g)= 0,

which indicate that the contact pressure is restricted in sign, the bodies can not penetrate and action at a distance is not allowed.

1 tr(a⊗ b)= a · b, (a⊗ b)c= (b · c)a, ∀c anda · b is the scalar product of two geometric vectors.
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Coulomb’s law of friction is formulated as the following principle of maximum dissipation:

pt ∈F(pn): ẇt ·
(
p′t − pt

)
� 0, ∀p′t ∈F(pn), (6)

whereF(pn)= {pt : |pt |� µ(pn)+},µ is the coefficient of friction,(x)+ =max(0, x) andwt andpt are the projections ofw
andp onto the contact tangent plane, i.e.wt = (I − nc ⊗ nc)w andpt = (I − nc ⊗ nc)p. A superposed dot denotes the time
derivative. The variational inequality (6) implies that ifẇt = 0, then|pt |� µ(pn)+, and ifẇt �= 0, thenpt = µ(pn)+ẇt /|ẇt |.

The evolution of the wear gap is assumed to be governed by Archard’s law of wear:

ω̇= k(pn)+|ẇt |, (7)

wherek is the wear coefficient.
Furthermore, the temperature fields inside the bodies are governed by the classical equation of heat conduction, representing

the balance of energy and Fourier’s law of heat diffusion:

ρcṪ = kt div∇T in Ω1∪Ω2, (8)

whereρ is the density,c is the specific heat capacity andkt is the thermal conductivity.
The following expression, derived from the general energy balance of the contact interface, an assumption of zero heat

capacity of the interface, Coulombs law of friction and Archard’s law of wear, represents the balance of energy for the contact
interface:

(
k(pn)

2+ +µ(pn)+
)|ẇt | + 2∑

l=1

q l · nlc = 0 onΓc, (9)

whereq l are the heat flux vectors. The thermal contact conditions are given by

ql · nlc = ϑl(pn)+
(
T l − T 0)

, l = 1,2, (10)

whereϑl are thermal contact conductances, see, e.g., Fried (1969), andT 0 is the intrinsic temperature ofΓc . Notice, that this
constitutive setting also includes an assumption that the overall contact conductance depends linearly on the contact pressure.
The relations in (9) and (10) were derived in a framework of continuum thermodynamics in Strömberg et al. (1996).

By combining (9) and (10) it is possible to eliminate the intrinsic temperature

T 0= ϑ
1T 1+ ϑ2T 2

ϑ1+ ϑ2
+ 1

ϑ1+ ϑ2

(
k(pn)+ +µ

)|ẇt | (11)

and obtaining the following expressions for the heat flux across the contact interface:
q1 · n1

c =
ϑ1ϑ2

ϑ1+ ϑ2
(pn)+

(
T 1− T 2)− ϑ1

ϑ1+ ϑ2

(
k(pn)

2+ +µ(pn)+
)|ẇt |,

q2 · n2
c =

ϑ1ϑ2

ϑ1+ ϑ2
(pn)+

(
T 2− T 1)− ϑ2

ϑ1+ ϑ2

(
k(pn)

2+ +µ(pn)+
)|ẇt |. (12)

The first term of (12) corresponds to the heat conduction across the interface and the second term corresponds to the amount of
heat generated by friction and wear that flows into each body respectively. Expressions similar to (12) for the frictional heating
problem without wear were derived in (Johansson and Klarbring, 1993).

The problem to be solved can now be summarized as follows: for a given time history of boundary conditions and permissible
initial conditions, find the time history of displacement, stresses, contact tractions and temperature such that (1)–(8) and (12)
are satisfied.

3. The system of discrete equations

In this section we derive a discrete approximation to the thermoelastic wear problem presented above. The derivation may be
outlined as follows: (i) weak forms of the governing equations are introduced and put together to form an initial boundary value
problem (IBVP); (ii) the IBVP is discretizied in space using finite element approximations and in time using Euler backward
finite differences; and (iii) the discrete versions of the variational inequalities representing Signorini’s contact conditions and
Coulomb’s law of friction are stated as equations by using the approach of projections (Klarbring, 1992).

The final result is a system of semismooth equations, which is solved in the next sections.
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3.1. Variational formulation

The IBVP reads: given proper initial conditions and a history of boundary conditionst̂(t), û(t) andT̂ (t) on a time interval
[0, τ ], find u : [0, τ ] → V , T : [0, τ ] → T , pn ∈ {pn: pn(x) ∈Kn, x ∈ Γc} andpt ∈ {pt : pt (x) ∈ F(pn), x ∈ Γc} such that
for eacht ∈ [0, τ ]∫

Ω1∪Ω2

(
λ̃ tr ε(u)I + 2µ̃ε(u)

) : ε(v)dV − ∫
Ω1∪Ω2

(
3λ̃+ 2µ̃

)
α(T − T0)I : ε(v)dV

=
∫

Γ 1
t ∪Γ 2

t

t̂ · v dA−
∫
Γc

p · (v1− v2)dA ∀v ∈ V0, (13)

∫
Ω1∪Ω2

ρcṪ ϕ dV +
∫

Ω1∪Ω2

kt∇T · ∇ϕ dV = −
∫
Γc

ϑ1ϑ2

ϑ1+ ϑ2
(pn)+

(
T 1− T 2)(

ϕ1− ϕ2)
dA

+
∫
Γc

(
ϑ1ϕ1

ϑ1+ ϑ2
+ ϑ2ϕ2

ϑ1+ ϑ2

)(
k(pn)

2+ +µ(pn)+
)|ẇt |dA ∀ϕ ∈ T0,

(14)

and weak forms of the tribological laws in (5)–(7) are satisfied, see (Strömberg, 1997). Here we use the following notations for
function spaces:

V = {
v: v(x)= û, x ∈ Γu

}
, V0=

{
v: v(x)= 0, x ∈ Γu

}
,

T = {
T : T (x)= T̂ , x ∈ ΓT

}
, T0=

{
T : T (x)= 0, x ∈ ΓT

}
.

Equation (13) is the weak form of the equilibrium equations (1)–(3) with the assumption of isotropic thermoelasticity (4)
inserted. The inner product of two tensors is defined byA : B = tr(ATB). Equation (14) is the weak form of the balance of
energy for the bodies (8) and for the interface (12) put together using Fourier’s law of heat diffusion. Here, it is also observed
that (14) remains valid forT substituted byT − T0, i.e. for the deviation from the reference temperature.

3.2. Space discretization

In the following we specialize the treatment to two-dimensional problems. The IBVP stated above is discretizied by
introducing finite-dimensional approximations to the function spaces. Integrals over the contact interfaceΓc are evaluated
by using an appropriate quadrature rule of the form∫

Γc

f (x)dA�
∑
M∈ηc

IMf
(
xM

)
, (15)

whereIM are weight factors andηc is the set of integration points, denotedxM , on Γc. In case of bilinear elements, the
trapezoidal rule is a possible realization of (15) that experience has shown to work well. In the following, in agreement with
the assumption of small displacements, we assume that the space discretization is performed such that node to node contact is
obtained, i.e. each node on one side of the potential contact interface forms a pair with one almost coinciding node on the other
side of the potential contact interface. Then, when using the trapezoidal rule and bilinear elements, it is possible to choose the
integration points onΓc such that they coincide with nodal pairs of the displacement elements.

Performing the space discretization outlined above, one obtains the following discrete equilibrium equations:

�K1d1− K̂1T 1−F1+CT
nP n +CT

t P t = 0, (16)

�K2d2− K̂2T 2−F2−CT
nP n −CT

t P t = 0 (17)

and discrete balance of energy for each body respectively:

Ml Ṫ l +OlT l −Ll
(
ḋ1, ḋ2,P n,T 1,T 2

)= 0 (l = 1,2), (18)

where subscriptl indicates body 1 or 2. Matrices and vectors involved in the above expressions are
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�K l =
[�KBAip ]

l
, �KBAip =

∫
Ωl

(
λ̃δij δpq + µ̃(δipδjq + δiq δjp)

)∂NA
∂xq

∂NB

∂xj
dV,

K̂ l =
[
K̂BAi

]
l
, K̂BAi =

∫
Ωl

α
(
3λ̃+ 2µ̃

)
NA
∂NB

∂xi
dV, F l =

{
FBi

}
l
, FBi =

∫
Γ lt

tiN
B dA,

Cn =
[
CMBni

]
, CMBni =NB (

xM
)
nci

(
xM

)
, Ct =

[
CMBti

]
, CMBti =NB (

xM
)
nti

(
xM

)
,

P n =
{
PMn

}
, PMn = IMpn

(
xM

)
, P t =

{
PMt

}
, PMt = IMpt

(
xM

)
,

Ml =
[
MBA

]
l
, MBA =

∫
Ωl

ρcNANB dV, Ol =
[
OBA

]
l
, OBA =

∫
Ωl

kt
∂NA

∂xi

∂NB

∂xi
dV,

where vectors and tensors have been expressed in a Cartesian frame,NA represents finite element shape functions,δij is
the Kronecker delta,nt is the unit tangent vector of the potential contact surface and the summation convention is applied to
repeated indices. Furthermore,d l = {dAk }l are vectors of nodal displacements andT l = {T A}l are vectors of nodal temperatures,
interpreted as the deviation from the reference temperature. Assuming that nodal values are ordered such that the indices
corresponding to contact nodes are put first, the vectorsLl , corresponding to the discretization of the right-hand side of (14),
has the formLl = (Lcl ,0) and typical entries ofLc1 andLc2, respectively, are given by

LM1 = ϑ1ϑ2

ϑ1+ ϑ2

(
PMn

)
+

(
TM2 − T M1

)+ ϑ1

ϑ1+ ϑ2

(
k

IM

(
PMn

)2
+ +µ

(
PMn

)
+

)∣∣ẇMt ∣∣ and (19)

LM2 = ϑ1ϑ2

ϑ1+ ϑ2

(
PMn

)
+

(
TM1 − T M2

)+ ϑ2

ϑ1+ ϑ2

(
k

IM

(
PMn

)2
+ +µ

(
PMn

)
+

)∣∣ẇMt ∣∣, (20)

where{wMt } =Ct (d1− d2) and the fact that

NB
(
xM

)= {
1 if B =M ,
0 if B �=M ,

when using bilinear elements and the trapezoidal rule as outlined above is used.
The space discretization of the tribological laws are obtained by assuming that (5)–(7) are valid in each integration point

M ∈ ηc, i.e. for the two-dimensional case:

PMn ∈Khn :
(
PM′n − PMn

)(
wMn −ωM − gM

)
� 0 ∀PM′n ∈Khn, (21)

PMt ∈Fh
(
PMn

)
: ẇMt

(
PM′t − PMt

)
� 0 ∀PM′t ∈Fh

(
PMn

)
, (22)

ω̇M = k

IM

(
PMn

)
+

∣∣ẇMt ∣∣, (23)

whereKhn = {PMn : PMn � 0}, Fh(PMn )= {PMt : |PMt |� µ(PMn )+}, ωM = ω(xM), gM = g(xM) and{wMn } =Cn(d1−d2).
The relations (21)–(23) were derived in (Strömberg, 1997) from weak forms of (5)–(7) using the integration rule in (15).

3.3. Time discretization

The time rates appearing in (18), (22) and (23) are approximated by an Euler backward discretization:

Ṫ l (tk+1) � T l(tk+1)− T l (tk)
tk+1− tk , (24)

ẇMt (tk+1) � wMt (tk+1)−wMt (tk)
tk+1− tk , (25)

ω̇M(tk+1) � ωM(tk+1)−ωM(tk)
tk+1− tk . (26)

By inserting (24) and (25) in (18)–(20), the following form of the equations governing the temperature fields are obtained for
each body(l = 1,2), respectively:(

M l + (tk+1− tk)Ol
)
T l −Ql −�Ll (d1,d2,P n,T 1,T 2)= 0, (27)
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whereQl =M lT l (tk) and typical entries of�Lcl are given by

�LM1 = ϑ1ϑ2

ϑ1+ ϑ2

(
PMn

)
+

(
TM2 − T M1

)
(tk+1− tk)+ ϑ1

ϑ1+ ϑ2

(
k

IM

(
PMn

)2
+ +µ

(
PMn

)
+

)∣∣�wMt ∣∣ and (28)

�LM2 = ϑ1ϑ2

ϑ1+ ϑ2

(
PMn

)
+

(
TM1 − T M2

)
(tk+1− tk)+ ϑ2

ϑ1+ ϑ2

(
k

IM

(
PMn

)2
+ +µ

(
PMn

)
+

)∣∣�wMt ∣∣, (29)

where�wMt =wMt (tk+1)−wMt (tk). Furthermore, inserting (25) in (22) gives

PMt ∈Fh
(
PMn

)
: �wMt

(
PM

′
t − PMt

)
� 0, ∀PM ′t ∈Fh

(
PMn

)
. (30)

Finally, inserting (25) and (26) in (23) gives

ωM(tk+1)= ωM0 + k

IM

(
PMn

)
+

∣∣�wMt ∣∣, whereωM0 = ωM(tk). (31)

3.4. Projections

The last step in order to obtain a formulation suitable for numerical treatment is to rewrite the variational inequalities in (21)
and (30) as equations by means of projections (Klarbring, 1992).

By multiplying (21) byr > 0 and adding and subtractingPMn , the variational inequality equivalent to Signorini’s contact
conditions takes the form: findPMn ∈Khn such that(

PMn − (
PMn + r(wMn − ωM − gM)))(

PM
′

n − PMn
)
� 0, ∀PM ′n ∈Khn. (32)

Equation (32) states thatPMn is the projection ofPMn + r(wMn − ωM − gM) ontoKhn , i.e., on using (31),

PMn =
(
PMn + r

(
wMn −ωM0 − k

IM

(
PMn

)
+

∣∣�wMt ∣∣− gM))
+
. (33)

In the same manner (30) is rephrased: findPMt ∈Fh(PMn ) such that(
PMt − (

PMt + r�wMt
))(
PM

′
t −PMt

)
� 0, ∀PM ′t ∈Fh

(
PMn

)
. (34)

Thus,PMt is the projection ofPMt + r�wMt ontoFh(PMn ), i.e.

PMt =
{
PMt + r�wMt , if

∣∣PMt + r�wMt
∣∣ � µ

(
PMn

)
+,

µ
(
PMn

)
+ sgn

(
PMt + r�wMt

)
, otherwise.

(35)

3.5. System of semismooth equations

The discrete IBVP to be solved is defined by Eqs. (16), (17), (27), (33) and (35). These equations form a system of
semismooth equations which is solved using three different algorithms presented in the next section. Before applying the
algorithms the equation system is rewritten by performing static condensation such that only variables on the contact surface is
treated. This is presented in detail in the appendix, ending up in the following system of semismooth equations:

HC(yC)=



κ̄ d̄ − κ̂1T
c
1− κ̂2T

c
2−R +�C

T
nP n +�CT

t P t

Ac1T
c
1− �Q

c
1− L̂c1

(
d̄,P n,P t ,T

c
1,T

c
2

)
Ac2T

c
2− �Q

c
2− L̂c2

(
d̄,P n,P t ,T

c
1,T

c
2

)
−P n +Πn

(
d̄,P n

)
−P t +Πt

(
d̄,P n,P t

)


= 0, (36)

whereyC = (d̄,P n,P t ,T c1,T c2) and

d̄ = dc1− dc2, κ̄ = �Kc1− �Kc1E−1�Kc1, κ̂1= K̂c1− �Kc1E−1K̂
c
1, κ̂2=−�Kc1E−1K̂

c
2,

R = �F c1− �Kc1E−1(�F c1+ �F c2)
, E = �Kc1+ �Kc2, Al =M l + (tk+1− tk)Ol , l = 1,2.

Furthermore,Πn andΠt denote the projections defined by (33) and (35), respectively. Superscriptc denotes a condensed entity.
�Cn and�Ct is obtained by deleting columns with zeros corresponding to non-contact nodes inCn andCt , respectively. The
functionsL̂1 andL̂2 are the same as�L1 and�L2 defined by (28) and (29), respectively, except that the dependency ond1 andd2
is replaced by a dependency ond̄.
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The formulation derived in (Strömberg, 1998) is obtained as a special case of (36) by settingκ̄ = �Kc, κ̂1 = K̂c , R = �F c ,
ϑ1= 1 and all quantities related tol = 2 to zero.

4. Algorithms

The IBVP defined in the previous section can now be treated by solving a sequence of discrete semismooth equations defined
in (36). In this section we present Pang’s Newton algorithm for B-differentiable equations in general terms, followed by two
different approaches for using it to solve (36). These are: (i) to solve (36) directly using a modification of Pang’s Newton
method and (ii) to split (36) into a mechanical and a thermal part and to use an iterative technique where, in each iteration, the
mechanical part is solved using the modification of Pang’s Newton method introduced in approach (i) and the thermal part is
simply a system of linear equations.

The second approach is in turn divided into two different strategies, differing in the order the mechanical and the thermal
parts are solved.

4.1. Semismoothness

The directional derivative of a functionf atx in a directionh is defined by

f ′(x;h)= lim
t↓0

f (x + th)− f (x)
t

.

A functionf is said to be directionally differentiable atx if the above limit exists for all directionsh. A functionf is said to
be B-differentiable atx if it is directionally differentiable atx and Lipschitz continuous in a neighborhood ofx. A functionf
is said to be semismooth atx if it is B-differentiable atx and the following limit holds

lim
h→0

f ′(x + h;h)− f ′(x;h)
‖h‖ = 0.

A continuous functionf is said to be piecewise smooth atx if there exist an open neighborhoodW of x and a finite family
of smooth functionsfi onW such thatf (x̃)= fi(x̃) for eachx̃ onW and for some integeri. A piecewise smooth function is
semismooth. Letf andg be piecewise smooth functions, then the following functions are also piecewise smooth:f +g, f −g,
fg, max(f, g), min(f, g) and|f | (Chaney, 1990).

Except for the functionŝLcl , Πn andΠt the equation system in (36) is smooth. A smooth functionf is indeed piecewise
smooth, semismooth and B-differentiable,f ′(x;h) = (∇f (x))h. In Strömberg (1997) it was shown thatΠn andΠt are
B-differentiable. It can also be shown that these functions are semismooth. This was proved for the frictional case in (Christensen
and Pang, 1998). The additional term appearing inΠn when wear is included does not destroy this property ofΠn. In fact, by
applying the rules for piecewise smooth function presented above, it can be shown thatΠn is piecewise smooth. This is also
true forL̂cl . Thus, the system of equations in (36) is semismooth and consequently B-differentiable.

4.2. Pang’s Newton method

The algorithm below for solvingH (y)= 0, whereH (y) is B-differentiable was suggested by (Pang, 1990).

Algorithm BN: Let β, γ andε be given scalars withβ ∈ (0,1), γ ∈ (0,1/2) andε small. Repeat the following steps for each
time incrementk+ 1:

(0) Lety0 be given from the previous time stepk and setj = 0.
(1) Find a search directionz such that

H
(
yj

)+H ′(yj ;z)= 0, (37)

whereH ′(yj ;z) is the directional derivative.
(2) Letαj = βmj , wheremj is the smallest integerm� 0 for which the following decrease criterion holds:

φ
(
yj + βmz) �

(
1− 2γβm

)
φ
(
yj

)
, φ(y)= 1

2
HT(y)H (y).

(3) Setyj+1= yj + αj z.
(4) If φ(yj+1)� ε, then terminate withyj+1 as an approximate zero ofH (y).

Otherwise, replacej by j + 1 and return to step 1.
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4.3. Direct approach – modified Newton method

The system of equations to be solved in (37) forH (y) defined by (36), is non-linear due to the non-linearity of the directional
derivative. In order to increase the effectiveness of solving this step an appropriate modification of the directional derivative
H ′(y;z) is introduced such that (37) becomes linear at non-differentiable states. At points whereH (y) is smooth, Eq. (37) is
of course linear asH ′(y;z)=∇H (y)z.

At non-differentiable states the directional derivative is modified by choosing one of the possible directions, here expressed
by z̄, and definingJ (y) by the corresponding directional derivative in the following manner:

J (y)z̄=H ′(y; z̄)
and then replacing the directional derivative in all the other directions by

H ′(y;z)� J (y)z.
In such a manner (37) becomes linear for alla possible states. This approach was first adopted in (Strömberg, 1997) and has
since then proven to work well in many other works, see, e.g., (Christensen et al., 1998; Strömberg, 1998, 1999; Johansson and
Klarbring, 2000; Lundvall and Klarbring, 2000). Thus, following this approach, Algorithm BN is modified by replacing (37)
with

H
(
yj

)+ J (
yj

)
z= 0, (38)

whereJ (y)= ∇H (y) at states whereH (y) is smooth and at non-differentiable statesJ (y) is defined by using the approach
outlined above. The modification of Algorithm BN done in (38), together with an additional upper bound�m onmj in step 2 of
Algorithm BN, is denoted Algorithm MBN. The upper bound�m prevents the algorithm from stalling.

After convergence in each time step of Algorithm MBN,ωM is updated using (31) and the state of tangential slipwMt is
stored. Furthermore,T 1 andT 2 are calculated using (A.3) in Appendix A in order to obtain new values ofQ1 andQ2 by using
Ql =M lT l (tk).

4.4. Modified directional derivatives

The modification of the directional derivativeH ′C(yC;z) definingJC(yC) at non-differentiable states are presented here.

Except for the functionŝLcl , Πn andΠt the equation system in (36) is smooth. Thus, it is only the directional derivatives of
these functions which are needed to be modified according to the approach outlined above.

The modification of the directional derivatives ofL̂c1 andL̂c2 are given by

L̂
c′
1

(
d̄,P n,T

c
1,T

c
2;zd ,zn,zT 1,zT 2

)
�


0, M ∈ ηc1
ϑ1ϑ2

ϑ1+ ϑ2
(tk+1− tk)

(
PMn

(
zM
T 2− zMT 1

)+ (
TM2 − T M1

)
zMn

)
, M ∈ ηc2


+


0, M ∈ ηc3
ϑ1

ϑ1+ ϑ2

((
2k

IM
PMn +µ

)∣∣�wMt ∣∣zMn +(
k

IM
PMn +µ

)
PMn sgn

(�wMt )
zMwt

)
, M ∈ ηc4


and

L̂
c′
2

(
d̄,P n,T

c
1,T

c
2;zd ,zn,zT 1,zT 2

)
�


0, M ∈ ηc1
ϑ1ϑ2

ϑ1+ ϑ2
(tk+1− tk)

(
PMn

(
zM
T 1− zMT 2

)+ (
TM1 − T M2

)
zMn

)
, M ∈ ηc2


+


0, M ∈ ηc3
ϑ2

ϑ1+ ϑ2

((
2k

IM
PMn +µ

)∣∣�wMt ∣∣zMn +(
k
IM
PMn +µ

)
PMn sgn

(�wMt )
zMwt

)
, M ∈ ηc4

 ,
where

ηc1=
{
M : PMn � 0

}
, ηc2=

{
M : PMn > 0

}
, ηc3=

{
M : PMn

∣∣�wMt ∣∣ � 0
}
, ηc4=

{
M : PMn

∣∣�wMt ∣∣> 0
}
,

andzwt = �Ctzd .
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Modified directional derivatives ofΠn andΠt are derived in (Strömberg, 1998). These are:

Π′n
(
d̄,P n;zd ,zn

)�


0, M ∈ ηc5
zMn + rzMwn, M ∈ ηc6
zMn + r

(
zMwn −

k

IM

∣∣�wMt ∣∣zMn − k

IM
PMn sgn

(�wMt )
zMwt

)
, M ∈ ηc7

 and

Π′t
(
d̄,P n,P t ;zd ,zn,zt

)�


0, M ∈ ηc1
zMt + rzMwt , M ∈ ηc8
µzMn sgn

(
PMt + r�wMt

)
, M ∈ ηc9

 ,
where

ηc5=
{
M : PMn + r

(
wMn − ωM0 − k

IM

(
PMn

)
+

∣∣�wMt ∣∣− gM)
� 0

}
,

ηc6=
{
M : PMn

∣∣�wMt ∣∣ � 0,PMn + r
(
wMn − ωM0 − k

IM

(
PMn

)
+

∣∣�wMt ∣∣− gM)
> 0

}
,

ηc7=
{
M : PMn

∣∣�wMt ∣∣> 0,PMn + r
(
wMn −ωM0 − k

IM

(
PMn

)
+

∣∣�wMt ∣∣− gM)
> 0

}
,

ηc8=
{
M : PMn > 0,

∣∣PMt + r�wMt
∣∣ � µPMn

}
, ηc9=

{
M : PMn > 0,

∣∣PMt + r�wMt
∣∣>µPMn }

,

andzwn =Cnzd .

4.5. Iterative strategy

Instead of solving (36) directly using Algorithm MBN, one can adopt an iterative strategy, which from an algorithmic point
of view is a method of Gauss–Seidel type, see, e.g., (Ortega and Reinboldt, 1970).

The strategy is adopted by first splitting (36) into the two parts:

HM(yM,yT )=


κ̄ d̄ − κ̂1T

c
1− κ̂2T

c
2−R +�C

T
nP n +�CT

t P t

−P n +Πn
−P t +Πt

= 0 and

HT (yM,yT )=
{
Ac1T

c
1− �Q

c
1− L̂c1

Ac2T
c
2− �Q

c
2− L̂c2

}
= 0,

whereyM = (d̄,P n,P t ) andyT = (T c1,T c2). These equations are then treated by either of the following two algorithms:

Algorithm GSMT: Repeat the following steps for each time incrementk+ 1:

(0) Setyi=0
T = yT (tk).

(1) SolveH̃M(y
i+1
M
)=HM(yi+1

M
,yi
T
)= 0 to getyi+1

M
.

(2) SolveH̃T(y
i+1
T )=HT (yi+1

M ,yi+1
T )= 0 to getyi+1

T .

(3) Terminate if(1/2)HT
C(y

i+1
C )HC(y

i+1
C )� ε. Otherwise replacei by i + 1 and return to step 1.

Algorithm GSTM: Repeat the following steps for each time incrementk+ 1:

(0) Setyi=0
T = yT (tk).

(1) Solve�HT (yi+1
t )=H T (yiM ,yi+1

T )= 0 to getyi+1
T .

(2) Solve�HM(yi+1
M
)=HM(yi+1

M
,yi+1
T
)= 0 to getyi+1

M
.

(3) Terminate if(1/2)HT
C(y

i+1
C )HC(y

i+1
C )� ε. Otherwise replacei by i + 1 and return to step 1.

Thus, the only difference between the algorithms GSMT and GSTM is in which order the mechanical and the thermal
problems are solved. When using the algorithms above,H̃M(yM) = 0 or �HM(yM) = 0 is solved by using algorithm MBN
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andH̃T (yT )= 0 or �HT (yT )= 0 is a system of linear equations. After convergence in each time step is achieved,ωM , wMt ,
Q1 andQ2 are updated.

5. Numerical tests

The three algorithms presented above are implemented in MATLAB, version 5.3. The problems are scaled such that the
length unit (mm) is used everywhere andr = 105 is chosen in the projections. The parametersβ, γ and �m appearing in
Algorithm MBN are set toβ = 0.9, γ = 0.1 and�m = 22. Furthermore, observe that1

2H
T
C(yC)HC(yC) � ε is used as a

stopping criterion in all algorithms, whereε is set to 10−10.
The algorithms have been used to solve a number of two-dimensional problems. For instance, the examples that were solved

in (Strömberg, 1998) were solved here using Algorithm MBN, without any of the numerically difficulties that were reported by
Strömberg, see the introduction.

In this section two other examples are defined and solved. The examples are referred to Examples 1 and 2, respectively.
The examples differ in the boundary conditions and tribological parameters. The major difference is the type of load history; in
Example 1 the load history is governed by prescribed displacements and in Example 2 by prescribed temperatures. Furthermore,
the examples are solved for two different settings of bulk properties, corresponding to steel and aluminum. Results from
numerical tests are presented and discussed from two different points of view: (i) the numerical performance of the three
algorithms, and (ii) the behaviour of the model based on the numerical solution.

5.1. The two examples

Consider two thermoelastic bodies as shown in Fig. 2. The upper body is denoted punch and the lower body is denoted
foundation. The potential contact surface is defined by the lower end of the punch.

The dimensions of the punch are 20× 4 (mm2) and the dimensions of the foundation are 40× 20 (mm2). The properties
of the punch is approximated using 40× 8 bilinear elements and the foundation using 60× 20 bilinear elements. Plane strain
is assumed and the thickness is set to 1 (mm). The potential contact surface is divided into 40 contact elements such that node
to node contact is obtained between the punch and the foundation.

In both examples the upper end of the punch is subjected to uniformly distributed tractionst̂(t)=−200e2 (N/mm2). The
load t̂ is applied in an initial set of 20 time steps. Furthermore, the lower end of the foundation is locked in thee2-direction and
the midpoint is also locked in thee1-direction, see Fig. 2.

Moreover, the thermal contact conductances are assumed to be equal for the two contact surfaces and set to beϑ1= ϑ2=
10−3 (W/N · K). This is a value for steel which was adapted from experimental curves given in (Fried, 1969) by (Johansson and
Klarbring, 1993). A consequence of this assumption is that the heat generated by friction and wear is divided equally between
the two bodies, see Eq. (12). The initial contact gap is set tog(x) = 0.0005x2, wherex is the coordinate along the contact
surface with its origin at the midpoint of the contact surface.

Fig. 2. Geometry and boundary conditions of Examples 1 and 2.
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Table 1
Bulk properties of the two different materials

Steel Aluminum

λ̃ [Pa] 1.1885· 1011 4.0384· 1010

µ̃ [Pa] 7.9231· 1010 2.6923· 1010

α [1/K] 12 · 10−6 24· 10−6

ρ [kg/m3] 7800 2750
c [J/kg · K] 460 960
kt [W/m · K] 46 170

Fig. 3. One cycle of the prescribed displacement and temperature, respectively.

The two sets of constitutive parameters, defining the two different bulk materials, corresponding to steel and aluminum,
respectively, are given in Table 1.

In Example 1, the upper end of the punch is in addition subjected to the prescribed displacement given byû(t) =
0.15ξ(t)e1 (mm), where one cycle ofξ(t) is given in Fig. 3. The displacement cycle is divided into 8 time steps. Furthermore,
all boundaries except for the contact surfaces are assumed to be thermally insulated. In this example the friction coefficient is
set toµ= 0.3 and the wear coefficient tok = 10−11 (mm2/N).

In Example 2, the upper end of the punch is fixed in the directione1. In addition, the upper end is also subjected to
a prescribed cyclic deviation from the reference temperature,T̂ (t) = 400η(t) (K), according to Fig. 3 and zero prescribed
deviation from the reference temperature at the lower end of the foundation. All the other boundaries except the contact surfaces
are thermally insulated. The temperature cycle is divided into 24 time steps. In this example the friction coefficient is set to
µ= 0.2 and the wear coefficient tok = 10−9 (mm2/N).

Although it could be argued that the assumptions of quasi-statics, small displacements, node to node contact and small
deviations from a reference temperature are violated in the examples defined above, we believe that they serve the purpose to
compare the performance of the different algorithms and to show some interesting aspects of the thermoelastic model of contact,
friction and wear.

5.2. Comparison of the three algorithms

In this subsection we compare the numerical performance of the three algorithms based on execution statistics from 100
cycles for the two example problems defined above using steel as bulk properties.

Tables 2 and 3 show the average values over 100 cycles of the number of Gauss–Seidel iterations per time increment
(GS/inc.), the number of Newton iterations per time increment (Newt./inc.), the number of line-searches per Newton iteration
(Arm./Newt.) and the measured CPU-time per time increment (CPU/inc.) normalized to the CPU-time obtained using
Algorithm MBN.

The execution statistics in Tables 2 and 3 indicate that algorithm GSTM is always more efficient than Algorithm MBN. This
can be concluded partly from the fact that the size of the linear system of equations to be solved at each Newton iteration of the
mechanical subproblem is 2/3 of the size of the corresponding system of equations in the direct approach. Furthermore, due
to the linearity of the thermal equations, these are only solved once in each Gauss–Seidel iteration and it is found that often
only one Newton iteration is needed the second time the mechanical subproblem is solved. This means that efficiency is gained
by using an iterative approach as long as the number of Gauss–Seidel iterations is small. When the number of Gauss–Seidel
iterations becomes large compared to the number of Newton iterations in the direct approach this gain might be lost. This is the
case for Algorithm GSMT in Example 2.
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Table 2
Execution statistics for Example 1

Algorithm GS/inc. Newt./inc. Arm./Newt. CPU/inc.

MBN – 5.27 1.46 1.00
GSMT 3.80 8.92 1.27 0.98
GSTM 3.85 8.92 1.27 0.97

Table 3
Execution statistics for Example 2

Algorithm GS/inc. Newt./inc. Arm./Newt. CPU/inc.

MBN – 3.98 1.04 1.00
GSMT 3.81 7.53 1.14 1.13
GSTM 3.52 6.43 1.11 0.98

Table 4
Execution statistics for Example 1 without wear

Algorithm GS/inc. Newt./inc. Arm./Newt. CPU/inc.

MBN – 6.08 1.40 1.00
GSMT 3.61 7.86 1.41 0.70
GSTM 3.61 7.87 1.37 0.69

Table 5
Execution statistics for Example 1 with 81 contact nodes

Algorithm GS/inc. Newt./inc. Arm./Newt. CPU/inc.

MBN – 5.34 2.00 1.00
GSMT 3.84 9.17 1.58 0.84
GSTM 3.87 9.12 1.59 0.84

Table 6
Execution statistics for Example 2 with 81 contact nodes

Algorithm GS/inc. Newt./inc. Arm./Newt. CPU/inc.

MBN – 4.75 1.15 1.00
GSMT 3.77 8.84 1.30 0.93
GSTM 3.54 7.41 1.21 0.80

One should also note that the performance of the two iterative strategies depends on the type of boundary conditions. For
Example 1 GSMT and GSTM performs equally, while for Example 2 it is slightly better to solve the thermal subproblems first,
i.e. using Algorithm GSTM.

The pattern indicated above is essentially the same when the number of time steps, the number of contact nodes or the
tolerance in the stop criterion is changed. One might note that the difference between the direct approach (MBN) and the
iterative approaches (GSMT and GSTM) is decreased when the number of time steps is increased while the difference is
increased when the number of contact nodes is increased, whenε is assigned a higher value or when wear is excluded from the
model. For instance, if wear is excluded from the model the execution satistics in Table 4 is obtained for Example 1.

Futhermore, if the number of contact nodes is doubled the execution statistics in Tables 5 and 6 are obtained for Example 1
and Example 2, respectively. By comparing these statistics by those presented in Tables 2 and 3, respectively, it is seen that this
clearly follows the trend outlined above. Hence, it seems that algorithm GSTM is the preferable one with respect to computing
time.

5.3. Results for different constitutive settings

In this subsection we present and discuss some numerical results for the example problems. Let us first consider Example 1.
In Table 7 twelve different settings of the problem is defined, differing in bulk properties of the bodies and whether wear and
thermal effects are included or not.
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Table 7
Different constitutive settings

Punch Found. Thermal Wear

Steel Steel yes no
Steel Steel yes yes
Steel Steel no yes
Steel Alum. yes no
Steel Alum. yes yes
Steel Alum. no yes
Alum. Steel yes no
Alum. Steel yes yes
Alum. Steel no yes
Alum. Alum. yes no
Alum. Alum. yes yes
Alum. Alum. no yes

Fig. 4. Wear gap after 100 cycles when thermal effects are included (solid line) and excluded (dashed line).

Figure 4 shows the wear gap after 100 cycles when thermal effects are included in the model (solid line) or not (dashed line),
for each combination of bulk materials. In the same fashion Fig. 5 shows the intrinsic temperature, see Eq. (11), of the potential
contact surface, when wear is included in the model (solid line) or not (dashed line). The major point illustrated by Fig. 4 is
that the calculated wear gap might be quite different in shape as well as in maximum depth, depending only on whether thermal
dilatation of the bodies are taken into account or not. One might also conclude from Fig. 4 that less material is worn away when
the foundation is made of aluminum. This is due to larger elastic deformations of the foundation compared to the cases when
the foundation is made of steel. Thus, the difference must not be explained by a different wear coefficient. This fact should
be taken in account when wear coefficients are experimentally determined. Figure 5 shows that the temperature of the contact
surface is much lower for the cases when the foundation is made of aluminum. This is due to smaller dissipation because of
the larger elastic deformations but is also influenced by the faster transport of heat in aluminum than in steel. This also has the
effect that the influence of wear on the temperature is less pronounced when the foundation is made of aluminum.

We finish this subsection by presenting some numerical results for Example 2, where the constitutive parameters for steel
have been used for both the punch and the foundation. In this problem we have a situation of stick-slip fretting induced by
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Fig. 5. The intrinsic temperature of the punch after 100 cycles when wear is included (solid line) and excluded (dashed line).

Fig. 6. Initial contact gap (dashed line) and contact gap after 100 cycles (solid line) for Example 2.

thermal boundary conditions. Figure 6 shows the initial contact gap (dashed line) and the contact gap after 100 cycles (solid
line) for Example 2. Figure 7 shows the normal contact traction (solid line) and the tangential contact traction (dashed line)
after 0, 1, 10 and 100 cycles, respectively. Although the amount of wear might seem small, it still has a major influence on the
normal contact pressure.

In (Ciavarella and Hills, 1999) it was shown for similar geometries that the region of stick remains unchanged if a prescribed
tangential load varies between two fixed limits, even when wear is developed in the slip region. They also showed that under
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Fig. 7. Normal (solid line) and tangential (dashed line) contact traction after 0, 1, 10 and 100 cycles.

these conditions wear will develope such that a steady-state of full stick is reached. In our example we have no prescribed
tangential load. However, one can see that the effect of prescribed temperature varying between two fixed limits is the same as
described in (Ciavarella and Hills, 1999).

6. Concluding remarks

In the present work a finite-element model for treating unilateral frictional wearing contact between two isotropic linearly
thermoelastic bodies is presented. Two approaches to handle the resulting system of semismooth equations are suggested. The
first approach is a direct use of a modified Newton method for B-differentiable equations on the fully-coupled problem, while
in the second approach the mechanical and thermal problems are solved uncoupled from each other using an iterative strategy.
The latter approach might be viewed as a strategy of Gauss–Seidel type. This approach is applied in two different ways, either
by solving the mechanical problem first or the thermal problem first.

It is found that the iterative approach where the thermal subproblem is solved first seems always more efficient than the
direct approach and at least as efficient as the iterative approach where the mechanical subproblem is solved first, no matter if
the problem is controlled by a varying prescribed displacement or a varying prescribed temperature. It is also found that the gain
in efficiency by using an iterative approach is increased with increasing number of contact nodes. Based on these observations it
is conluded that the iterative strategy where the thermal subproblem is solved first is prefeable, with respect to computing time.

Furthermore, some results that shows some interesting aspects of the behaviour of the model is presented. It is shown
numerically that the wear gap might be quite different depending on whether thermal dilatation is taken into account or not. It
is also shown how the wear gap and the temperature at the contact surface is influenced by the bulk properties of the contacting
bodies. For instance, it is shown that if only the material in the support is switched from steel to aluminum, keeping all other
parameters fixed, the amount of wear is decreased. Thus, the difference in wear rate is not explained by a difference in wear
coefficient, but instead is explained by a difference in elastic response.
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Appendix A. Static condensation

The equilibrium equations (16), (17) and the balance of energy, Eq. (27), may be written, for each body, respectively, as[�Kccl �Kcrl
�Krcl �Krrl

]{
dcl
dr
l

}
−

[
K̂
cc
l K̂

cr
l

K̂
rc
l K̂

rr
l

]{
T cl
T r
l

}
−

{
F cl
F r
l

}
+

{
P l
0

}
=

{
0
0

}
(l = 1,2) and (A.1)[

Acc
l

Acr
l

Arc
l

Arr
l

]{
T c
l

T r
l

}
−

{
Qc
l

Qr
l

}
−

{�Lcl
0

}
=

{
0
0

}
(l = 1,2), (A.2)

whereP 1 = −P 2 = �CT
nP n + �CT

t P t , Al = M l + (tk+1 − tk)Ol , superscriptsc denotes degrees of freedom onΓc and
superscriptsr denotes degrees of freedom to be reduced.

Solving the second equation of (A.2) forT r
l

yields

T rl =
(
Arrl

)−1(
Qrl −Arcl T cl

)
. (A.3)

By inserting (A.3) into the first equation of (A.2) one finds

Acl T
c
l − �Qcl −�Lcl = 0, where Acl =Accl −Acrl

(
Arrl

)−1
Arcl and �Qcl =Qcl −Acrl

(
Arrl

)−1
Qrl . (A.4)

Solving the second equation of (A.1) fordr
l

yields

drl =
(�Krrl )−1(−�Krcdcl + K̂rcl T cl + K̂rrl T rl +F rl ). (A.5)

By inserting (A.3) and (A.5) into the first equation of (A.1) one finds that

�Kcl dcl − K̂cl T cl − �F cl +P l = 0, where (A.6)

�Kcl = �Kccl − �Kcrl
(�Krrl )−1�Krcl ,

K̂
c
l = K̂ccl − �Kcrl

(�Krrl )−1
K̂
rc
l + �Kcrl

(�Krrl )−1
K̂
rr
l

(
Arrl

)−1
Arcl − K̂rcl

(
Arrl

)−1
Arcl and

�F cl = F cl − �Kcrl
(�Krrl )−1

F rl + K̂crl
(
Arrl

)−1
Qrl .

In order to further reduce the number of unknowns we introduce the relative displacementd̄ = dc1−dc2. Equation (A.6) may
now be written as[�Kc1 �Kc1

0 �Kc2

]{
d̄

dc2

}
−

[
K̂
c
1 0

0 K̂
c
2

]{
T c1
T c2

}
−

{�F c1
�F c2

}
+

{
P

−P
}
=

{
0
0

}
, where (A.7){

dc1
dc2

}
=

[
I I

0 I

]{
d̄

dc2

}
andP = P 1=−P 2 have been used, and, finally,I is an identity matrix of appropriate size.

By adding the first equation of (A.7) to the second, one finds that[�Kc1 �Kc1
�Kc1 �Kc1+ �Kc2

]{
d̄

dc2

}
−

[
K̂
c
1 0

K̂
c
1 K̂

c
2

]{
T c1
T c2

}
+

{ �F c1
�F c1+ �F c2

}
+

{
P

0

}
=

{
0
0

}
. (A.8)

Solving the second equation of (A.8) fordc2 yields

dc2=
(�Kc1+ �Kc2)−1(−�Kc1d̄ + K̂c1T c1+ K̂c2T c2+�F c1+ �F c1)

.

By inserting this into the first equation of (A.8) one finds that

κ̄ d̄ − κ̂1T
c
1− κ̂2T

c
2−R +P = 0, where (A.9)

κ̄ = �Kc1− �Kc1
(�Kc1+ �Kc2)−1�Kc1, κ̂1= K̂c1− �Kc1

(�Kc1+ �Kc2)−1
K̂
c
1, κ̂2=−�Kc1

(�Kc1+ �Kc2)−1
K̂
c
2 and

R = �F c1− �Kc1
(�Kc1+ �Kc2)−1(�F c1+�F c2).
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