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91405 Orsay, France

4 Department of Mathematics and Statistics, McGill
University

1005-805 rue Sherbrooke Ouest
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Abstract

We analyze Landauer’s principle for repeated interaction systems consisting of a reference quantum
system S in contact with a environment E consisting of a chain of independent quantum probes. The
system S interacts with each probe sequentially, for a given duration, and the Landauer principle
relates the energy variation of E and the decrease of entropy of S by the entropy production of the
dynamical process. We consider refinements of the Landauer bound at the level of the full statistics
(FS) associated to a two-time measurement protocol of, essentially, the energy of E . The emphasis is
put on the adiabatic regime where the environment, consisting of T � 1 probes, displays variations
of order T−1 between the successive probes, and the measurements take place initially and after
T interactions. We prove a large deviations principle and a central limit theorem as T → ∞ for
the classical random variable describing the entropy production of the process, with respect to the
FS measure. In a special case, related to a detailed balance condition, we obtain an explicit limiting
distribution of this random variable without rescaling. At the technical level, we generalize the discrete
non-unitary adiabatic theorem of [HJPR17] and analyze the spectrum of complex deformations of
families of irreducible completely positive trace-preserving maps.
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1 Introduction

The present paper studies a refinement of Landauer’s principle in terms of a two-time measurement
protocol (better known as “full counting statistics”) for repeated interaction systems, in an adiabatic
regime. We describe shortly the various elements we study.

Landauer’s principle is a universal principle for which the most common formulation is as a lower
bound for the energetic cost of erasing a bit of information in a fixed system S by interaction with
an environment E initially at thermal equilibrium. It was first stated by Landauer in [Lan61] but was
put on firm mathematical ground by [RW14], and later [JP14], who extended it to the case of infinitely
extended system. That mathematical derivation is based on the entropy balance equation, given by
∆SS + σ = β∆QE where ∆SS is the average decrease in entropy of S during the process, ∆QE the
average increase in energy of E , and β is the inverse temperature of the environment1. The term σ is
called the entropy production of the process. As it can be written as a relative entropy, the entropy
production is nonnegative which yields the inequality ∆SS ≤ β∆QE . One of the questions of interest
regarding Landauer’s principle concerns the saturation of that identity, i.e. the vanishing of σ. It is a
general physical principle that when the system–environment coupling is described by a time-dependent
Hamiltonian, the entropy production σ vanishes in the adiabatic limit; that is, when the coupling between
S and E is a slowly varying time-dependent function. More precisely, if the typical time scale of the
coupling is T , one considers the regime T →∞.

A repeated interaction system (or RIS) is a system where the environment consists of a sequence
of “probes” Ek, k = 1, . . . , T , initially in a thermal state at inverse temperature βk, and S interacts
with Ek (and only Ek) during the time interval

[
kτ, (k + 1)τ

)
. In such a situation, the entropy balance

equation becomes
∑T
k=1 ∆SS +

∑T
k=1 σk =

∑T
k=1 βk∆QE,k, where each term with index k corresponds to

the interaction between S and Ek. We describe the repeated interaction system as an “adiabatic RIS”
when the various parameters of the probes are sampled from sufficiently smooth functions on [0, 1] as the
values at times k/T , k = 1, . . . , T . This is the setup that was studied in [HJPR17]; there we showed

that the total average entropy production limT→∞
∑T
k=1 σk was finite only under the condition X(s) = 0

for all s ∈ [0, 1], where X(s) is a quantity depending on the probe parameters at time s ∈ [0, 1]. The
proof of this result relied mostly on a new discrete, non-unitary adiabatic theorem that allowed us to
control a product of T slowly varying completely positive, trace-preserving (CPTP) maps that represent
the reduced dynamics acting on S.

A refinement of the above formulation of Landauer’s principle is however possible using the so-called
full counting statistics. Full counting statistics were first introduced in the study of charge transport,
and have met with success in the study of fluctuation relations and work in quantum mechanics (see
Kurchan [Kur00] and Tasaki [Tas00]). An example of their use in improving Landauer’s principle was
given in [BFJP17]. In the present situation, the formulation of Landauer’s principle in terms of full
counting statistics can be stated by defining random variables ∆sS and ∆qEk which are outcomes of
simple physical experiments, which we now describe. In such an experiment, one initially measures the
quantity − log ρS (ρS is the state of the small system) and the energies hEk for each k (hEk is the free
Hamiltonian of Ek), then lets the system interact with the chain of probes, then measures again the same
quantities. With the right sign conventions, the changes in these quantities are random variables which we
denote ∆sS and ∆qEk . Our refinement discusses the connections between the probability distributions of
∆sS and

∑
k βk∆qEk . One can show that the expectations of these distributions are respectively ∆SS and∑

k βk∆QEk respectively; there is, therefore, more information in the distributions than in these scalar
quantities.

We consider an adiabatic repeated interaction system and study the limiting distributions of the above
random variables as T →∞. Again, we show that in the case X(s) ≡ 0 we have the expected refinement of
Landauer’s principle, which is essentially that when T →∞, one has ∆sS =

∑
k βk∆qEk almost-surely. In

the case X(s) 6≡ 0, we show that
∑
k βk∆qEk satisfies a law of large numbers, a central limit theorem, and

a large deviation principle, all of these for the time scale T , and with explicit parameters. In particular,∑
k βk∆qEk is of order T , whereas ∆sS is a bounded quantity. All results in the case X(s) 6≡ 0 can

actually be extended to the case where the probe observables measured at each step k are not simply

1we will always set the Boltzmann constant to 1, so that β = 1/Θ, Θ the temperature.
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βkhEk but a more general observable, or when the system observables are not − log ρS .
We show in addition that the random variable ςT =

∑
k βk∆qEk −∆sS can be expressed as a relative

information random variable between the probability measure describing the experiment outcomes, and
the probability measure corresponding to a backwards experiment. Since we obtain a full large deviation
principle for this random variable as T →∞, this connects these results with the appearance of the arrow
of time (see [ABL64, BJPP16]). We discuss in particular the appearance of symmetries in the moment
generating functions, and their implications in terms of Gallavotti–Cohen type symmetries.

To study the limiting distributions, we relate their moment generating functions to products of defor-
mations of the completely positive, trace-preserving maps representing the reduced dynamics. We study
the peripheral spectrum and associated spectral projector of these deformed dynamics. However, because
little can be said about the spectral data of those deformed maps, studying the asymptotics of these quan-
tities requires an improvement of our adiabatic theorem. These technical results, concerning the spectral
study of deformations of CPTP maps, and the improved discrete non-unitary adiabatic theorem, are of
independent interest, and we describe them in wider generality than required for our present endeavor.

This approach gives an improvement over [HJPR17] in various aspects. First of all, Theorem 4.2
(in the case X(s) ≡ 0) and Theorem 5.5 together with Corollary 5.7 and Theorem 5.9 (in the general
case) characterize the limiting distributions of relevant random variables, whereas in [HJPR17] we only
derived information about the behaviour of their expectations. We recover our former results (and more)

about these expectations, as Theorem 4.2 implies in particular the convergence of limT→∞
∑T
k=1 σk to an

explicit quantity when X(s) ≡ 0, and Theorem 5.9 gives the divergence of the same quantity under generic
assumptions when X(s) does not vanish identically. In addition, Corollary 3.13 gives an expression for
the adiabatic evolution of any initial state. Most of all, our adiabatic theorem can be applied to a wider
range of situations, as illustrated here by its application to deformed dynamics.

The structure of the present paper is as follows: in Section 2 we describe our general framework and
notation, and more precisely we describe repeated interaction systems, Landauer’s principle (for unitary
evolutions), and full counting statistics. We describe our full counting statistics for probe observables Yk
more general than just βkhEk , leading to random variables ∆ytot

T =
∑
k ∆yk, and we generalize ∆sS,T

(emphasising the T dependence in the notation), to random variables ∆aT as well. In Section 3 we
discuss the various properties of the full statistics random variables: we give an entropy balance equation
“at the level of trajectories”, i.e. almost-sure identities between the different random variables, relate
the moment generating functions of e.g. ∆ytot

T to deformations of reduced dynamics, and give a general
adiabatic result for products of these deformations. In Section 4 we describe the limiting distribution
of the pair (∆ytot

T ,∆sS,T ) as T → ∞ in the case Y = βhE when X(s) ≡ 0. In Section 5 we derive a
large deviation principle for ∆ytot

T in the general case, which in turn implies a law of large numbers and
a central limit theorem. Our technical results regarding the peripheral spectrum and associated spectral
projectors of deformations of completely positive, trace-preserving maps are given in Appendix A. Our
improved discrete, non-unitary adiabatic theorem is given in Appendix B. Various proofs are collected in
Appendix C.
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and the Cantab Capital Insitute for the Mathematics of Information (CCIMI). The research of Y.P. was
supported by ANR contract ANR-14-CE25-0003-0. The research of R.R. was partly supported by NSERC,
FRQNT and ANR project RMTQIT ANR-12-IS01-0001-01. R.R. would like to thank the Institut Fourier,
where part of this research was carried, for its support and hospitality. E.H. and R.R. would like to also
thank the organizers of the Stochastic Methods in Quantum Mechanics summer school (Autrans, July
2017) for the informative and hospitable event. All four authors would like to thank Vojkan Jakšić for
stimulating discussions regarding this project.

2 General framework

In this section we will introduce our general framework. We will use the following notational conven-
tions: for X a Banach space, we denote by B(X) the space of bounded linear operators on X and by Id
the identity on X. For H a Hilbert space, we denote by I1(H) the space of trace-class, linear operators
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on H, and by D(H) the set of of density matrices on H, i.e. elements of I1(H) which are nonnegative op-
erators with trace one. We will freely use the word “state” for an element ρ ∈ D(H), therefore identifying
the density matrix and the linear map X 7→ ρ(X). We say that a state is faithful if the density matrix
ρ is positive-definite. Scalar products will generally be denoted by 〈φ, ψ〉 and are respectively linear and
antilinear in the right and left variable. We denote by |ψ〉〈φ| the map on the Hilbert space defined by
κ 7→ 〈φ, κ〉ψ.

2.1 Repeated interaction systems

A quantum repeated interaction system (RIS) consists of a system S and a chain E1, E2, . . . of probes (or
environments). We will describe the quantum system S by a finite-dimensional Hilbert space HS , a (time-
independent) Hamiltonian hS = h∗S ∈ B(HS), and an initial state ρi ∈ D(HS). Likewise, the kth quantum
probe Ek will be described by a finite dimensional Hilbert space HE,k, Hamiltonian hEk = h∗Ek ∈ B(HE,k),

and initial state ξi
k ∈ D(HE,k). We will assume the probe Hilbert spaces HE,k are all identical, HE,k ≡ HE ,

and that the initial state of each probe is a Gibbs state at inverse temperature βk > 0:

ξi
k =

e−βkhEk

Tr(e−βkhEk )
.

We will at times use Zβ,k to denote the trace Tr(e−βkhEk ).
The state of the system S evolves by interacting with each probe, one at a time, as follows. Assume

that after interacting with the first k−1 probes the state of the system is ρk−1. Then the system and the
kth probe, with joint initial state ρk−1 ⊗ ξi

k, evolve for a time τ via the free Hamiltonian plus interaction
vk according to the unitary operator

Uk := exp
(
−iτ(hS ⊗ Id + Id⊗ hEk + vk)

)
,

yielding a joint final state Uk(ρk−1 ⊗ ξi
k)U∗k . The probe Ek is traced out, resulting in the system state

ρk := TrE
(
Uk(ρk−1 ⊗ ξi

k)U∗k
)
,

where TrE is the partial trace over HE , mapping I1(HS ⊗HE) to I1(HS), with TrE(X ⊗ Y ) = Tr(Y )X.
We define similarly TrS , the partial trace over HS and, for later use, also introduce ξf

k := TrS
(
Uk(ρk−1 ⊗

ξi
k)U∗k

)
. The evolution of the system S during the kth step is given by the reduced dynamics

Lk : I1(HS)→ I1(HS)

η 7→ TrE
(
Uk(η ⊗ ξi

k)U∗k
)
, (2.1)

that is ρk = Lk(ρk−1); remark that Lk maps D(HS) to D(HS). By iterating this evolution, we find that
the state of the system S after k steps is given by the composition

ρk = (Lk ◦ · · · ◦ L1)(ρi). (2.2)

We will often omit the parentheses and composition symbols. For more details about the dynamics of RIS
processes in various regimes, see [BJM14,HJPR17]. We now turn to energetic and entropic considerations
on RIS, at the root of Landauer’s principle.

2.2 Landauer’s principle and the adiabatic limit

In what follows, for η, ζ in D(H), S(η) denotes the von Neumann entropy of the state η and S(η|ζ)
denotes the relative entropy between the states η and ζ:

S(η) = −Tr(η log η), S(η|ζ) = Tr
(
η(log η − log ζ)

)
. (2.3)

We recall that S(η) ≥ 0 and S(η|ζ) ≥ 0. For each step k of the RIS process, we define the quantities

∆Sk := S(ρk−1)− S(ρk),
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∆Qk := TrE(hEkξ
f
k)− TrE(hEkξ

i
k),

that represent the decrease in entropy of the small system, and the increase in energy of probe k,
respectively, and

σk := S
(
Uk(ρk−1 ⊗ ξi

k)U∗k |ρk ⊗ ξi
k

)
, (2.4)

the entropy production of step k. For notational simplicity, we at times omit the “i” superscript in ξi
k.

Also, we omit tensored identities for operators acting trivially on the environment or on the system,
whenever the context is clear.

These quantities are related through the entropy balance equation

∆Sk + σk = βk∆Qk, (2.5)

(see e.g. [RW14] for this computation). This equation, together with σk ≥ 0, i.e. the nonnegativity of the
entropy production term, encapsulates the more general Landauer principle: when a system undergoes
a state transformation by interacting with a thermal bath, the average increase in energy of the bath
is bounded below by β−1 times the average decrease in entropy of the system. This principle was first
presented in 1961 by Landauer [Lan61] and its saturation in quantum systems has more recently been
investigated by Reeb and Wolf [RW14] and Jakšić and Pillet [JP14], the latter providing a treatment of
the case of infinitely extended quantum systems.

In [HJPR17], the present authors analyzed the Landauer principle in the framework of an adiabatic
limit of RIS that we briefly recall here. We introduce the adiabatic parameter T ∈ N and consider a
repeated interaction process with T probes, such that the parameters governing the kth probe and its
interaction with S, namely (hEk , βk, vk), are chosen by sampling sufficiently smooth functions. In the
former work, this is described by the following assumption. Below, f ∈ C2([0, 1]) means f ∈ C2(]0, 1[),
and f and its first two derivatives admit limits at 0+, 1−.

ADRIS We are given a family of RIS processes indexed by an adiabatic parameter T ∈ N such that
there exist C2 functions s 7→ hE(s), β(s), v(s) on [0, 1] for which

hEk = hE( kT ), βk = β( kT ), vk = v( kT ), ∀k = 1, . . . , T,

when the adiabatic parameter has value T .

In this case, we may define

U(s) = exp
(
−iτ

(
hE(s) +⊗hE(s) + v(s)

))
,

L(s) = TrE
(
U(s)

(
· ⊗ ξ(s)

)
U(s)∗

)
,

(2.6)

where ξ(s) is the Gibbs state at inverse temperature β(s) for the Hamiltonian hE(s). Then, [0, 1] 3 s 7→
L(s) is a B(I1(HS))-valued C2 function, and Lk = L( kT ) when the adiabatic parameter has value T .
Note that for each s ∈ [0, 1], the map L(s) is completely positive (CP) and trace preserving (TP). For
some results, we will need to make some extra hypotheses on the family (L(s))s∈[0,1]. We introduce such
conditions:

Irr For each s ∈ [0, 1], the map L(s) is irreducible, meaning that it has (up to a multiplicative constant)
a unique invariant, which is a faithful state.

Prim For each s ∈ [0, 1], the map L(s) is primitive, meaning that it is irreducible and 1 is its only
eigenvalue of modulus one.

We recall in Appendix A equivalent definitions and implications of these assumptions. We recall in
particular that the peripheral spectrum of an irreducible completely positive, trace-preserving map is a
subgroup of the unit circle. We denote by z(s) the order of that subgroup for L(s).

Given such a family, we are interested in the T -dependence of the expected total entropy production

σtot
T :=

T∑

k=1

σk, (2.7)
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(note that the terms in the sum are T -dependent through ADRIS). It appears in the total entropy balance
equation

∆SS,T + σtot
T =

T∑

k=1

βk∆Qk, (2.8)

obtained by summing (2.5) over k = 1, . . . , T , where ∆SS,T = S(ρi) − S(ρf) and ρf = ρT is the state
of S after the final step of the RIS process (see (2.2)). In [HJPR17], the present authors used a suitable
adiabatic theorem to characterize the large T behaviour of the total entropy production term (2.7),
which monitors the saturation of the Landauer bound in the adiabatic limit. Briefly, under suitable
assumptions, convergence of σtot

T is characterized by the fact that the term X(s) defined in (3.6) below
vanishes identically.

2.3 Full statistics of two-time measurement protocols

We now describe a two-time measurement protocol for repeated interaction systems with T probes.
The outcome of this protocol is random, and we will relate its expectation to the quantities involved in the
balance equation (2.8). Note that a similar protocol was considered in [HP13] (see also [BJPP16,BCJ+17]).

For the purpose of defining the full statistics measure for an RIS, we will consider observables to be
measured on both the system S and the probes Ek, k ∈ N.

First, we assume we are given two observables Ai and Af with spectral decomposition

Ai =
∑

ai

ai πi
ai , Af =

∑

af

af πf
af

in B(HS) where ai, af run over the distinct eigenvalues of Ai, Af respectively, and πi
ai , πf

af denote the
corresponding spectral projectors. When we consider increasing the number of probes T , we assume the
observable Ai is independent of T (as we measure it on S before the system interacts with any number
of probes), but allow Af to depend on T , as long as the family (Af)∞T=1 is uniformly bounded in T .

On the chain, we consider probe observables Yk ∈ B(HE) to be measured on the probe Ek. We require
that each observable commutes with the corresponding probe Hamiltonian:

[Yk, hEk ] = 0.

We write the spectral decomposition of each Yk as

Yk =
∑

ik

yikΠ
(k)
ik
.

If the kth probe is initially in the state ξ, a measurement of Yk before the time evolution will yield yik
with probability Tr(ξΠ

(k)
ik

).
When assuming ADRIS and discussing measured observables Y , we will always assume

Comm There is a twice continuously differentiable B(HE)-valued function s 7→ Y (s) on [0, 1] such
that [Y (s), hE(s)] = 0 at all s ∈ [0, 1] for which, when the adiabatic parameter has value T ,

Yk = Y ( kT ), k = 1, . . . , T.

The family of probe Hamiltonians themselves Y (s) = hE(s) are suitable, but in our applications to
Landauer’s principle, we will be particularly interested in Y (s) = β(s)hE(s).

Associated to the observables Ai, Af and (Yk)Tk=1 and the state ρi, we define two processes: the forward
process, and the backward process.
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The forward process The system S starts in some initial state ρi ∈ D(HS) and the probe Ek starts in

initial Gibbs state ξk ∈ D(HEk); we write the state of the chain of T probes Ξ =
⊗T

k=1 ξk. We measure Ai

on S and measure Yk on Ek for each k = 1, . . . , T . We obtain results ai and ~ı = (ik)Tk=1 with probability

Tr
(
(ρi ⊗ Ξ)(πi

ai ⊗Π~ı)
)
,

where Π~ı :=
⊗T

k=1 Π
(k)
ik

. Then the system interacts with each probe, one at a time, starting at k = 1 until
k = T , via the time evolution

Uk := exp
(
− iτ(hS + hEk + vk)

)
.

Next, we measure Af on the system and measure Yk on Ek for each k = 1, . . . , T , yielding outcomes af

and ~ = (jk)Tk=1. Using the rules of measurement in quantum mechanics and conditional probabilities, the
quantum mechanical probability of measuring the sequence (ai, af,~ı,~) of outcomes is given by

Tr
(
UT · · ·U1(πi

ai ⊗Π~ı)(ρ
i ⊗ Ξ)(πi

ai ⊗Π~ı)U
∗
1 · · ·U∗T (πf

af ⊗Π~)
)
.

We emphasize that the outcomes are labelled by (ai, af,~ı,~) which refers to the eigenprojectors of the
operators involved, but not to the corresponding eigenvalues which only need to be distinct. Also, we may
write the second measurement projector πf

af ⊗Π~ only once by cyclicity of the trace.

The backward process The system starts in state

ρf
T := TrE

(
UT · · ·U1(ρi ⊗ Ξ)U∗1 · · ·U∗T

)
,

and the probe Ek starts in the state ξk. We measure observable Af on S and Yk on Ek for each k = 1, . . . , T ,
yielding outcomes af and (jk)Tk=1. Then the system interacts with each probe, one at a time, starting
with k = T until k = 1, via the time evolution

U∗k = exp
(
iτ(hS + hEk + vk)

)
.

Then we measure Ai on S and Yk on Ek for each k = 1, . . . , T , yielding outcomes ai and (ik)Tk=1. The
probability of these outcomes is given by

Tr
(
U∗1 · · ·U∗T (πf

af ⊗Π~)(ρ
f
T ⊗ Ξ)(πf

af ⊗Π~)UT · · ·U1(πi
ai ⊗Π~ı)

)
.

The full statistics associated to the two-step measurement process For notational simplicity,
we assume that the cardinality of spY (s) does not depend on k. We can therefore use the same index
set I for all eigenvalue sets: spYk = (yik)ik∈I for all k = 1, . . . , T . We define the space

ΩT := spAi × spAf × IT × IT

and equip it with the maximal σ-algebra P(ΩT ). We will refer to elements (ai, af,~ı,~) of ΩT as trajectories,
and denote them by the letter ω.

Definition 2.1. On ΩT , we call the law of the outcomes for the forward process,

PFT (ai, af,~ı,~) := Tr
(
UT · · ·U1(πi

ai ⊗Π~ı)(ρ
i ⊗ Ξ)(πi

ai ⊗Π~ı)U
∗
1 · · ·U∗T (πf

af ⊗Π~)
)
, (2.9)

the forward full statistics measure. We denote by ET the expectation with respect to PFT . We also consider
the backward full statistics measure

PBT (ai, af,~ı,~) := Tr
(
U∗1 · · ·U∗T (πf

af ⊗Π~)(ρ
f
T ⊗ Ξ)(πf

af ⊗Π~)UT · · ·U1(πi
ai ⊗Π~ı)

)
(2.10)

which is the law of the outcomes for the backward process. Let us emphasize here that PFT and PBT
depend on the spectral projectors (πi

ai)ai of Ai, (πf
af)af of Af, and (Π~ı) of the (Yk)k, and not on the

spectral values these operators. In particular, the probabilities PFT and PBT associated with two families
of observables (Y (s))s∈[0,1], (Y ′(s))s∈[0,1] that have the same spectral projectors (as e.g. Y (s) = β(s)hE(s)
and Y ′(s) = hE(s)) will be the same.
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To (Yk)Tk=1, Ai, and Af, we associate two generic classical random variables on (ΩT ,P(ΩT )):

∆aT (ai, af,~ı,~) := ai − af, (2.11)

∆ytot
T (ai, af,~ı,~) :=

T∑

k=1

(y
(k)
jk
− y(k)

ik
). (2.12)

Note that the choice of defining ∆aT as ai−af, i.e. as the decrease of the quantity a, is consistent with
the standard formulation of Landauer’s principle as given in Section 2.2. Additionally, the assumption
that (Af)∞T=1 has uniformly bounded norm yields that the random variable ∆aT has L∞ norm uniformly
bounded in T .

Remark 2.2. When we work with an ADRIS, the dependence in T of the Uk (remember that in this
case Uk is of the form U(k/T )) prevents the family (PFT )T from being consistent. The PFT are therefore
a priori not the restrictions of a probability PF on the space Ω∞, as is the case in [BJPP16] where the
environments Ek and the parameters hEk , βk and vk do not depend on k.

3 Properties of the full statistics

In the present section we obtain a relation between classical random variables arising from the protocol
defined in Subsection 2.3, and the quantity (2.8). We study the relevant properties of the distributions PFT
and PBT , their relative information variable, and its moment generating function.

3.1 Entropy production and entropy balance on the level of trajectories

We turn to obtaining an analogue of (2.8) for random variables on (ΩT ,P(ΩT ),PFT ). Remark first that
PFT (ai, af,~ı,~) and PBT (ai, af,~ı,~) are of the form

PFT (ai, af,~ı,~) = Tr
(
(ρi ⊗ Ξ)S∗S

)
PBT (ai, af,~ı,~) = Tr

(
(ρf
T ⊗ Ξ)SS∗

)

Under the assumption that ρi and ρf
T are faithful we therefore have

PFT (ai, af,~ı,~) = 0 if and only if PBT (ai, af,~ı,~) = 0.

Since the image of a faithful state by an irreducible CPTP map is faithful (see the discussion following
Definition A.1 below), ρi and ρf

T will be faithful as soon as ρi is faithful and assumption Irr holds.
This allows us to give the following definition:

Definition 3.1. If ρi and ρf
T are faithful, we define the classical random variable

ςT (ai, af,~ı,~) := log
PFT (ai, af,~ı,~)

PBT (ai, af,~ı,~)
,

on (ΩT ,P(ΩT ),PFT ), which we call the entropy production of the repeated interaction system associated
to the trajectory ω = (ai, af,~ı,~).

Note that the random variable ςT is the logarithm of the ratio of likelihoods, also known as the
relative information random variable between PFT and PBT . It is well-known that the distribution of such
a random variable is related to the distinguishability of the two distributions (here PFT and PBT ): see
e.g. [BD15]. Distinguishing between PFT and PBT amounts to testing the arrow of time; we refer the reader
to [JOPS12,BJPP16] for a further discussion of this idea.

We have the following result, essentially present in [HP13], whose proof is given in Appendix C.

Lemma 3.2. Assume ρi and ρf
T are faithful. If

i. πi
aiρiπi

ai =
Tr(ρiπi

ai )

dimπi
ai

πi
ai for each ai,
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ii. πf
afρ

f
Tπ

f
af =

Tr(ρf
Tπ

f

af )

dimπf

af

πf
af for each af,

iii. for each k = 1, . . . , T , the state ξk (or equivalently hEk) is a function of Yk,

then

ςT (ai, af,~ı,~) = log
( Tr(πi

aiρi)

Tr(πf
afρ

f
T )

dimπf
af

dimπi
ai

)
+

T∑

k=1

βk(E
(k)
jk
− E(k)

ik
), (3.1)

where E
(k)
ik

=
Tr(hEkΠ

(k)
ik

)

dim Π
(k)
ik

are the energy levels of the kth probe.

Remark 3.3. The first two hypotheses are automatically satisfied if, for example, Ai and Af are non-
degenerate (all their spectral projectors are rank-one). All three hypotheses are automatically satisfied
if, for example, ρi, ρf

T and ξk can be written as functions of Ai, Af and Yk (for each k = 1, . . . , T )
respectively.

Again, ςT depends on the spectral projectors of the observables Ai, Af and (Yk)Tk=1, but not on their
eigenvalues. However, with the choices Ai = − log ρi, Af = − log ρf

T (for which we check the uniform
boundedness assumption in Remark 3.14) and Y (s) = β(s)hE(s), and writing the spectral decompositions
ρi =

∑
ri
aπ

i
a, ρf

T =
∑
rf
aπ

f
a, the relation (3.1) takes the simpler form of a sum of differences of the obtained

eigenvalues (measurement results):

ςT (ω) = (− log rf
a)− (− log ri

a) +

T∑

k=1

βk(E
(k)
jk
− E(k)

ik
),

which is the random variable introduced earlier as −∆aT + ∆ytot
T (ω) (again, in the case Y = βhE). In this

case, ∆aT = (− log ri
a)− (− log rf

a) is a classical random variable that is the difference of measurements of

entropy observables on the system S, which we call ∆sS,T (ω). On the other hand,
∑T
k=1 βk(E

(k)
jk
−E(k)

ik
) is

a classical random variable that encapsulates Clausius’ notion of the entropy increase of the chain (Ek)Tk=1

on the level of trajectories, which we call ∆sE,T (ω). Then,

∆sS,T (ω) + ςT (ω) = ∆sE,T (ω), (3.2)

and ςT (ω) measures the difference between these two entropy variations, on the trajectory ω.
Moreover, Proposition 3.4 below, whose proof is also left for the Appendix, links expression (3.1) to

the entropy balance equation (2.8). Indeed, by showing that under suitable hypotheses the two terms on
the right hand side of (3.1) average to the corresponding terms in (2.8), we show that ET (ςT ) = σtot

T . In
other words, σtot

T coincides with the relative entropy or Kullback–Leibler divergence D(PFT ||PBT ) between
the classical distributions PFT and PBT . Recall that D(PFT ||PBT ) = 0 if and only if PFT = PBT . Hence, we will
refer to (3.1) as the entropy balance equation on the level of trajectories.

Proposition 3.4. Assume that ρi is faithful and a function of Ai, that ρf
T is faithful and a function of

Af, and the state ξk (or equivalently hEk) is a function of Yk for each k = 1, . . . , T , then

ET
(

log
(Tr(πi

aiρi)

Tr(πf
afρf)

dimπf
af

dimπi
ai

))
= −ET (∆sS,T ) = S(ρf)− S(ρi) (3.3)

and

ET
( T∑

k=1

βk(E
(k)
jk
− E(k)

ik
)
)

= ET (∆sE,T ) =

T∑

k=1

βk∆Qk. (3.4)

Therefore,

ET (ςT ) = σtot
T , (3.5)

and relation (3.1) reduces to the entropy balance equation (2.8) upon taking expectation with respect to PFT .

9



We are interested in the full statistics of the random variables ςT (ω) that we will address through its
cumulant generating functions in the limit T → ∞. We will consider two cases: limT→∞ σtot

T < ∞, and
limT→∞ σtot

T = ∞. The behaviour of this averaged quantity was investigated in [HJPR17]. For a RIS
satisfying the assumptions ADRIS and Prim, the condition

lim sup
T→∞

σtot
T <∞

can be shown to be equivalent to the identity X(s) ≡ 0, where

X(s) := U(s)
(
ρinv(s)⊗ ξi(s)

)
U(s)∗ − ρinv(s)⊗ ξi(s), (3.6)

and ρinv(s) is the unique invariant state of L(s). If the assumption X(s) ≡ 0 does not hold, then
limT→∞ σtot

T = ∞. We will consider the case X(s) ≡ 0 in Section 4, and the case sups∈[0,1] ‖X(s)‖1 > 0
in Section 5. In either case, our main object of interest will be the moment generating function of the
variables ∆ytot

T and ∆aT , which we can relate to deformations L(α)(s) of L(s).

3.2 Moment generating functions and deformed CP maps

We recall that the quantities ∆aT and ∆ytot
T are defined in (2.11) and (2.12). We also recall that the

moment generating function (MGF) of a real-valued random variable V (with respect to the probability
distribution PFT , which will always be implicit in the present paper) is defined as the map MV : α 7→
ET
(
eαV

)
, and the MGF of a pair (V1, V2) as the map M(V1,V2) : (α1, α2) 7→ ET

(
eα1V1+α2V2

)
. When V

or (V1, V2) are given by the random variables ∆ytot
T , ∆aT , the above functions MV (resp. M(V1,V2)) are

defined for all α ∈ C (resp. for all (α1, α2) ∈ C2). For relevant properties of moment generating functions
we refer the reader to sections 21 and 30 of [Bil95].

Our main tool to study these moment generating functions is the following proposition:

Proposition 3.5. For α ∈ C, define an analytic deformation of L(s) by the complex parameter α
corresponding to the observable Y (s):

L(α)
Y (s) : I1(HS) → I1(HS)

η 7→ TrE
(
eαY (s)U(s)(η ⊗ ξ(s))e−αY (s)U(s)∗

)
.

(3.7)

Under assumption Comm, the moment generating function of ∆ytotT is given by

M∆ytotT
(α) = TrS

(
L(α)
Y (TT ) · · · L(α)

Y ( 1
T )(
∑

ai

πi
aiρiπi

ai)
)
.

If in addition [Ai, ρi] = 0, then the moment generating function of the pair (∆ytotT ,∆aT ) is given by

M(∆ytotT ,∆aT )(α1, α2) = Tr
(
e−α2A

fL(α1)
Y (TT ) · · · L(α1)

Y ( 1
T )(e+α2A

i

ρi)
)
.

so that in particular the moment generating function of −∆aT + ∆ytotT is given by

M−∆aT+∆ytotT
(α) = TrS

(
e+αAfL(α)

Y (TT ) · · · L(α)
Y ( 1

T )(e−αA
i

ρi)
)
.

See Appendix C for the proof. In Section 5 we will analyze the above moment generating functions,

with the help of an adiabatic theorem for the non-unitary discrete time operators L(α)
Y . The case Y (s) =

β(s)hE(s) plays a particular role for the analysis of Landauer’s principle. The complex deformation of the
map L(s) we consider is similar to the deformations introduced in [HMO07] for hypothesis testing on spin
chains, and to the complex deformation of Lindblad operators introduced in [JPW14] suited to the study
of entropy fluctuations for continuous time evolution.

Dropping the s-dependence from the notation, below, we first provide the expression for the adjoint
of the deformation of L(s) with respect to the duality bracket on B(HS), 〈C1, C2〉 = TrS(C∗1C2). We

temporarily make explicit the dependency of L(α)
Y in τ by denoting it L(α;τ)

Y ; in particular, L(α;−τ)
Y is

obtained by replacing the unitary U(s) with its adjoint U∗(s).
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Lemma 3.6. The adjoint of the operator L(α)
Y is given by

L(α)
Y

∗
: η 7→ TrE

(
e−(αY+βhE)U∗(η ⊗ ξ(β)) e(αY+βhE)U

)
. (3.8)

In particular, L(0;τ)
Y

∗
= L(−1;−τ)

Y , and for Y = βhE we have L(α;τ)
βhE

∗
= L(−α−1;−τ)

βhE
.

Proof. First note the identity TrE((Id ⊗ C)D) = TrE(D(Id ⊗ C) for any operators C and D on HE and
HS ⊗HE , respectively. Let C1, C2 ∈ B(HS). The straightforward computation

〈L(α;τ)
Y (C1), C2〉 = TrS

((
TrE(e

αY U (τ)(C1 ⊗ ξ(β)) e−αY U (−τ))
)∗
C2

)

= TrS
(

TrE(U
(τ)e−αY (C∗1 ⊗ ξ(β))U (−τ)eαY )C2

)

= Z−1
β Tr

(
(eαY U (τ)(C∗1 ⊗ e−βhE )e−αY U (−τ))(C2 ⊗ Id)

)

= Z−1
β Tr

(
(C∗1 ⊗ Id)e−(αY+βhE)U (−τ)(C2 ⊗ e−βhE )e(αY+βhE)U (τ)

)

= TrS
(
C∗1 TrE(e

−(αY+βhE)U (−τ)(C2 ⊗ ξ(β))e(αY+βhE)U (τ))
)

directly yields the result.

We now consider the Kraus form of this deformation.

Lemma 3.7. Assume that Comm holds. For all α ∈ R, L(α)
Y is a completely positive map. In addition,

there exists a Kraus decomposition

LY (η) =
∑

i,j

Ki,jηK
∗
i,j

of LY such that L(α)
Y admits the Kraus decomposition

L(α)
Y (η) =

∑

i,j

eα(yj−yi)Ki,jηK
∗
i,j .

Proof. Let {ψm}dimHE
m=1 be an orthonormal basis of eigenvectors of Y . We introduce

Id⊗ |ψm〉 : HS → HS ⊗HE defined by ϕ 7→ ϕ⊗ ψm
Id⊗ 〈ψm| : HS ⊗HE → HS defined by ϕ⊗ ψ 7→ 〈ψm, ψ〉ϕ,

so that (Id⊗ |ψm〉)∗ = Id⊗ 〈ψm|. We observe that using [Y, ξ] = 0 and TrE((Id⊗ C)D) = TrE(D(Id⊗ C)
for any operators C and D on HE and HS ⊗HE , respectively, we can write

L(α)
Y (η) = TrE

(
(Id⊗ eαY/2)U(Id⊗ e−αY/2ξ1/2)(η ⊗ Id)(Id⊗ ξ1/2e−αY/2)U∗(Id⊗ eαY/2)

)
. (3.9)

This shows that L(α)
Y is a completely positive map. Then we express the partial trace on HE using the

orthonormal basis {ψm}dimHE
m=1 by means of the set of operators on HS

K
(α)
i,j := (Id⊗ 〈ψj |)(Id⊗ eαY/2)U(Id⊗ e−αY/2)(Id⊗ ξ1/2 |ψi〉) (3.10)

(again K
(α)
i,j depends on the choice of Y ). Thus for any η ∈ I1(HS), and all α ∈ R,

L(α)
Y (η) =

∑

i,j

K
(α)
i,j η(K

(α)
i,j )∗. (3.11)

This yields the Kraus decomposition of L(α)
Y . Moreover, we note that

K
(α)
i,j = eα(yj−yi)/2K(0)

i,j ,

and letting Ki,j := K
(0)
i,j gives our final statement.
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Lemma 3.7 proves in particular that L(α)
Y is a deformation of L in the sense of Appendix A. Let us

now address the regularity of L(α)
Y (s) in (s, α).

Lemma 3.8. Assume ADRIS and suppose s 7→ Y (s) ∈ C2
(
[0, 1],B(HS)

)
. Then, the map

[0, 1]× C 3 (s, α) 7→ L(α)
Y (s) ∈ B(HS)

is of class C2.

Proof. First observe that since the dimensions of HS and HE are finite, it is enough to check regularity

of the matrix elements of L(α)
Y (s). From the Kraus decomposition above, if {ϕj}dimHS

m=1 and {ψl}dimHE
l=1 are

fixed orthonormal bases of HS and HE , it is enough to check regularity of the C valued functions

〈ϕk|Ki,jϕl〉 = 〈ϕk ⊗ ψj |eαY (s)U(s)e−αY (s)ξ(s)1/2ϕl ⊗ ψi〉 .

By ADRIS and the explicit dependence in α of the matrices involved, one gets immediately the result.

Remark 3.9. In case the regularity assumption in s in ADRIS and that of Y are understood in norm

sense, and hE(s) is such that ξ(s) is C2 in the trace norm sense on HE , the map (s, α) 7→ L(α)
Y (s) ∈

B(I1(HS)) is C2 in norm sense, irrespectively of the dimensions of HS and HE ; see Appendix C.

We conclude this section with a discussion of the effect of time-reversal on the operator Ki,j , and

therefore on the operator L(α)
Y . A relevant assumption will be the following:

TRI We say that an ADRIS satisfies time-reversal invariance if for every s ∈ [0, 1] there exist two
antiunitary involutions CS(s) : HS → HS and CE(s) : HE → HE such that if C(s) = CS(s) ⊗ CE(s) one
has for all s ∈ [0, 1]

[hS , CS(s)] = 0, [hE(s), CE(s)] = 0, [v(s), C(s)] = 0.

This holds for example if each hS , hE and v are real valued matrices in the same basis, and CS , CE are
complex conjugation in the corresponding basis.

In the following result we denote by K
(τ)
i,j (s) the operator Ki,j(s) associated with the unitary U(s) as

defined in (2.6). The operator K
(−τ)
i,j (s) is therefore associated in the same way with the unitary U∗(s).

Lemma 3.10. Assume that an ADRIS satisfies Comm and TRI. Then for all i, j and all s ∈ [0, 1] one
has

CS(s)K
(τ)
i,j (s)CS(s) = K

(−τ)
i,j (s). (3.12)

This implies in particular that for Y = βhE and all s ∈ [0, 1],

λ(α)(s) = λ(−1−α)(s), (3.13)

or equivalently that the function α 7→ λ(α)(s) is symmetric about α = −1/2 for all s ∈ [0, 1].

Proof. Once again we drop the s variable. Using (3.10), K
(τ)
i,j we have

〈ϕ1, CSK
(τ)
i,j CSϕ2〉 = 〈CSϕ1,K

(τ)
i,j CSϕ2〉

= 〈CSϕ1 ⊗ ψj , Uξ1/2CSϕ2 ⊗ ψi〉

and by Comm we can choose the basis (ψi)i such that CEψi = ψi, CEψj = ψj , so that

= 〈C(ϕ1 ⊗ ψj), Uξ1/2C(ϕ2 ⊗ ψi)〉
= 〈ϕ1 ⊗ ψj , CUCξ1/2ϕ2 ⊗ ψi〉
= 〈ϕ1 ⊗ ψj , U∗ξ1/2ϕ2 ⊗ ψi〉

and this proves relation (3.12). If we now denote KS = CS · CS the map on B(HS), then for α ∈ R this
implies KS ◦ L(α,τ) ◦KS = L(α;−τ) for any Y satisfying Comm. By Lemma 3.6, for Y = βhE this implies
KS ◦ L(α,τ) ◦KS = L(−α−1;τ)∗ which in turn implies λ(α) = λ(−α−1).
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3.3 A general adiabatic result

The moment generating functions of ∆ytot
T and ∆aT have been related in Proposition 3.5 to products

of T operators L(α)
Y (s) that differ little from each other, locally, by an amount of order 1/T . The general

result stated below will allow us to discuss the asymptotic behaviour of ∆ytot
T as T →∞.

Let s 7→ L(s) be a family of CPTP maps satisfying Irr, and define L(α)
Y (s) by (3.7). For each s ∈ [0, 1],

the map L(α)
Y (s) satisfies (3.11), and is therefore a deformation of L(s) in the sense of Appendix A. From

Proposition A.3, there exist maps λ
(α)
Y (s), I

(α)
Y (s) and ρ

(α)
Y (s) from [0, 1]× R 3 (s, α) to, respectively, R∗+,

the set of positive-definite operators, and the set of faithful states of HS ; and maps z(s), u(s) from [0, 1]
to, respectively, N and the set of unitary operators, with the following properties:

• the identities [u(s), I
(α)
Y (s)] = [u(s), ρ

(α)
Y (s)] = 0, and u(s)z(s) = Id hold;

• the peripheral spectrum of L(α)
Y (s) is λ

(α)
Y (s)Sz(s), where Sz = {θm, θ = e2iπ/z,m = 0, . . . , z − 1};

• the spectral decomposition u(s) =
∑z(s)
n=1 e2iπm/z(s)pn(s) holds;

• the map η 7→ Tr(I
(α)
Y (s)u(s)−mη)ρ

(α)
Y (s)u(s)m is the spectral projector of L(α)

Y (s) associated with

λ
(α)
Y (s) e2iπm/z(s);

• the unitary u(s) and cardinal z(s) of the peripheral spectrum of L(α)
Y (s) do not depend on α or Y .

Note that we have λ
(0)
Y (s) = 1, I

(0)
Y (s) = Id and ρ

(0)
Y (s) = ρinv(s) for all Y and s. As mentioned above, the

case Y = βhE will be particularly relevant to the discussion of the Landauer principle. We therefore drop
the indices Y , and simply denote by λ(α)(s), I(α)(s) and ρ(α)(s) the above quantities, in the case where
Y = βhE . We define

L̃(α)
Y (s) =

(
λ

(α)
Y (s)

)−1L(α)
Y (s).

The following result will be our main technical tool.

Proposition 3.11. Consider an ADRIS with the family (L(s))s∈[0,1] satisfying Irr with z(s) ≡ z. Then,
there exist continuous functions R 3 α 7→ `′(α) ∈ (0, 1) and R 3 α 7→ C(α) ∈ R+, and a function
α 7→ T0(α) ∈ N that is bounded on any compact set of R, such that for all α ∈ R, T ≥ T0(α), and k ≤ T ,

∥∥∥L̃(α)
Y ( kT ) . . . L̃(α)

Y ( 1
T )ρi − ze−ϑ

(α)
Y

z−1∑

n=0

Tr
(
I(α)(0)pn(0)ρi

)
ρ

(α)
Y ( kT )pn−k( kT )

∥∥∥

≤ C(α)

T (1− `′(α))
+ C(α)`′(α)k.

where the index of the spectral projector pn−k( kT ) is interpreted modulo z, and

ϑ
(α)
Y :=

∫ k/T

0

Tr
(
I
(α)
Y (s)

∂

∂s
ρ

(α)
Y (s)

)
ds.

Proof. By expression (3.11), the map R × [0, 1] 3 (α, s) 7→ L(α)
Y (s) is real analytic in α and C2 in s. We

know from Proposition A.3 that the spectral radius λ
(α)
Y (s) of L(α)

Y (s) is a simple eigenvalue for L(α)
Y (s) with

eigenvector ρ
(α)
Y (s), and for L(α)

Y (s)∗ with eigenvector I(α)(s). By standard perturbation theory, the maps

(α, s) 7→ λ
(α)
Y (s), I

(α)
Y (s), ρ

(α)
Y (s) are C2 functions of s ∈ [0, 1] and real analytic functions of α ∈ R. The

unitary u(s) is an eigenvector for the isolated eigenvalue θ = e2iπ/z of L∗(s), and is therefore a C2 function

of s. The peripheral spectrum of L̃(α)
Y (s) is the set Sz = {θm,m = 0, . . . , z−1}, each peripheral eigenvalue

θm is simple, and the associated peripheral projector η 7→ P
(α)
m (s) = Tr

(
I
(α)
Y (s)u(s)−mη

)
u(s)mρ

(α)
Y (s)

is therefore a C2 function of s and a real analytic function of α. In addition, denoting Q(α)(s) =

Id−∑z
m=1 P

(α)
m (s) the quantity `(α) = sups∈[0,1] spr L̃(α)

Y (s)Qα(s) < 1 is a continuous function of α.
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From the above discussion, the family s 7→ L̃(α)
Y (s) satisfies Hyp0–Hyp4 and is therefore admissible,

in the sense of Appendix B, with simple peripheral eigenvalues. We can therefore apply Corollary B.9.

Denote by ϑ
(α)
Y,m the integral appearing in the exponential factor:

ϑ
(α)
Y,m =

∫ k/T

0

Tr
(

I
(α)
Y (t)u(t)−m

∂

∂t

(
um(t)ρ

(α)
Y (t)

))
dt. (3.14)

We can prove that ϑ
(α)
Y,m does not depend on m:

Lemma 3.12. We have for m = 0, . . . , z − 1

ϑ
(α)
Y,m = ϑ

(α)
Y :=

∫ k/T

0

Tr
(
I
(α)
Y (t)

∂

∂t
ρ

(α)
Y (t)

)
dt.

Proof. The proof follows from a simple expansion of ∂
∂t

(
um(t)ρ

(α)
Y (t)

)
and commutation properties:

ϑ(α)
m = ϑ

(α)
Y +

∫ k/T

0

Tr
(
I
(α)
Y (t)u−m(t)

m−1∑

k=0

uk(t)
∂u

∂t
(t)um−k−1(t)ρ

(α)
Y (t)

)
dt

= ϑ
(α)
Y +m

∫ k/T

0

Tr
(
I
(α)
Y (t)u−1(t)

∂u

∂t
(t)ρ

(α)
Y (t)

)
dt.

However, as u(t)z = Id, plugging m = 0 or m = z in the right-hand side of expression (3.14) gives the

same expression ϑ
(α)
Y , so that necessarily

∫ k/T

0

Tr
(
I
(α)
Y (t)u−1(t)

∂u

∂t
(t)ρ

(α)
Y (t)

)
dt = 0

and the conclusion follows.

Lemma 3.12 and Corollary B.9 therefore imply that for any `′(α) ∈ (`(α), 1), there exist T0(α) ∈ N,
and C(α) > 0 which is a (fixed) continuous function of

cP (α) = sup
s∈[0,1]

max
m=1,...,z

max
(
‖φ(α)

Y,m(s)‖, ‖φ(α)
Y,m
′(s)‖, ‖ψ(α)

Y,m(s)‖, ‖ψ(α)
Y,m
′(s)‖

)

with
φ

(α)
Y,m(s) = ρ

(α)
Y (s)u(s)m ψ

(α)
Y,m(s) = I

(α)
Y (s)u(s)m,

such that for any T ≥ T0(α),

∥∥∥L̃(α)
Y ( kT ) . . . L̃(α)

Y ( 1
T )ρi − e−ϑ

(α)
Y

z−1∑

m=0

θmk ρ
(α)
Y ( kT )um( kT ) Tr

(
I(α)(0)u−m(0)ρi

)∥∥∥

≤ C(α)

T
(
1− `′(α)

) + C(α) `′(α)k. (3.15)

In addition, T0(α) can be chosen depending on cP (α) and `′(α) alone.
Recall that we have the spectral decomposition u =

∑z
m=1 θ

mpm. Then, with all sums from 0 to z− 1
understood modulo z, we have by a discrete Fourier-type computation

∑

m

θmk Tr
(
I(α)(0)u−m(0)ρi

)
ρ

(α)
Y ( kT )um( kT )

=
∑

m

θmk
∑

n

θ−nm Tr
(
I(α)(0)pn(0)ρi

)∑

`

θ`mρ
(α)
Y ( kT )p`(

k
T )

=
∑

n,`

Tr
(
I(α)(0)pn(0)ρi

)
ρ

(α)
Y ( kT )p`(

k
T )
∑

m

θm(k−n+`)

14



=
∑

n,`

Tr
(
I(α)(0)pn(0)ρi

)
ρ

(α)
Y ( kT )p`(

k
T ) z1`=n−k

= z
∑

n

Tr
(
I(α)(0)pn(0)ρi

)
ρ

(α)
Y ( kT )pn−k( kT ).

This expression along with (3.15) yields the result.

By taking α = 0, this result allows adiabatic approximation of the state of S under the physical
evolution Lk · · · L1 after k steps of an irreducible RIS. This corresponds to a generalization of the results
of [HJPR17], which could only treat the case

Corollary 3.13. Consider an ADRIS with the family (L(s))s∈[0,1] satisfying Irr with z(s) ≡ z. Then,
there exists `′ < 1, C > 0, and T0 > 0 such that for all T ≥ T0, and k ≤ T ,

∥∥∥Lk · · · L1ρ
i − ρadiab(k, T )

∥∥∥ ≤ C

T (1− `′) + C`′k

where

ρadiab(k, T ) := z

z−1∑

n=0

Tr
(
pn(0)ρi

)
ρinv( kT )pn−k( kT ) (3.16)

is state, and the index of the spectral projector pn−k( kT ) is interpreted modulo z. Moreover, if ρi is faithful,
we have the uniform bound

inf
T>1

inf
k≤T

inf sp ρadiab(k, T ) ≥ z
(

min
1≤j≤z

Tr
(
pj(0)ρi

))
inf

s∈[0,1]
inf sp ρinv(s) > 0.

Proof. We apply Proposition 3.11 for α = 0, and use that I(0)(s) ≡ Id, ρ
(0)
Y = ρinv, and ϑ

(α)
Y = 0 which

follows from Tr ρ
(0)
Y (s) ≡ 1. Next, we check the formula Tr(ρinv( kT )p`(

k
T )) = 1

z for each ` = 0, . . . , z−1. We

drop the argument k
T in what follows, and write Lk/T (·) =

∑
i Vi · V ∗i the Kraus decomposition. Recalling

that p`Vi = Vip`+1 for all i and ` as discussed in Appendix A,

Tr(ρinvp`) = Tr(L(ρinv)p`) =
∑

i

Tr(Viρ
invV ∗i p`) =

∑

i

Tr(Viρ
invp`+1V

∗
i ) = Tr(L(ρinvp`+1)),

so Tr(ρinvp`) = Tr(ρinvp`+1) using that L is trace-preserving. As
∑
` Tr(ρinvp`) = Tr ρinv = 1, we must

have Tr(ρinvp`) = 1
z . Therefore,

Tr(ρadiab(k, T )) = z
∑

n

Tr
(
pn(0)ρi

)
Tr(ρinv( kT )pn−k( kT )) =

∑

n

Tr
(
pn(0)ρi

)
= Tr ρi = 1.

Moreover, given a normalized vector ψ ∈ H, we have

〈ψ, ρadiab(k, T )ψ〉 = z
∑

n

Tr
(
pn(0)ρi

)
〈ψ, ρinv( kT )pn−k( kT )ψ〉

= z
∑

n

Tr
(
pn(0)ρi

)
〈pn−k( kT )ψ, ρinv( kT )pn−k( kT )ψ〉 .

using [ρinv( kT ), pn−k( kT )] = 0. Since ρinv( kT ) > 0 and Tr
(
pn(0)ρi

)
> 0, each term in the sum is non-negative,

and we have

〈ψ, ρadiab(k, T )ψ〉 ≥ z[ min
1≤j≤z

Tr
(
pj(0)ρi

)
]
∑

n

〈ψ, ρinv( kT )pn−k( kT )ψ〉

= z[ min
1≤j≤z

Tr
(
pj(0)ρi

)
] 〈ψ, ρinv( kT )ψ〉

≥ z[ min
1≤j≤z

Tr
(
pj(0)ρi

)
] inf
s∈[0,1]

inf sp ρinv(s).
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Remarks 3.14.

• Given an ADRIS the family (L(s))s∈[0,1] satisfying Irr, for faithful ρi the state ρf
T = LT · · · L1ρ

i is
faithful for each T > 1 (see the remark after Definition A.1). Corollary 3.13 and Weyl’s inequalities
(see Section III.2 in [Bha97]) give the stronger result infT>1 inf sp ρf

T > 0. In particular, we may
make the choice Af = − log ρf

T which is bounded uniformly in T .

• If we assume, in the notation of [HJPR17], that ρi = (P 1
0 +Q0)ρi (i.e. ρi has no components corre-

sponding to the peripheral eigenvalues of L(0) other than 1), then one can check that ρadiab(k, T ) =
ρinv( kT ).

4 Special case: bounded adiabatic entropy production

In this section we consider
(
L(s)

)
s∈[0,1]

satisfying ADRIS and the primitivity assumption Prim, with

X(s) ≡ 0. We specialize to the case Y (s) = β(s)hE(s) for all s ∈ [0, 1], and thus drop the subscript Y
in the notation. We recall from [HJPR17] that the condition X(s) ≡ 0 is equivalent to the existence of
a family (kS(s))s∈[0,1] of observables on HS such that [kS(s) + hE(s), U(s)] ≡ 0. We claim that for any
α ∈ C,

e−β(s)(1+α)kS(s) (4.1)

is an invariant for L(α)(s), the deformation of L(s) corresponding to Y (s) = β(s)hE(s). This follows from
the straightforward computation

L(α)(s)
(
e−β(s)(1+α)kS(s)

)
= TrE

(
eαβ(s)hE(s)U(s)

(
e−β(s)(1+α)kS(s) ⊗ e−β(s)hE(s)

Zβ(s)

)
e−αβ(s)hE(s)U(s)∗

)

= e−β(s)(1+α)kS(s).

Since L(α)(s) is completely positive and irreducible for α ∈ R (see Appendix A for details), and
e−β(s)(1+α)kS(s) is positive-definite, 1 is necessarily the spectral radius of L(α)(s). We therefore have
λ(α)(s) = 1, for all s and α ∈ R, and in addition,

ρ(α)(s) =
e−(1+α)β(s)kS(s)

Tr
(
e−(1+α)β(s)kS(s)

) , (4.2)

with ρ(0)(s) = ρinv(s), the invariant state of L(s). Similarly, using Lemma 3.6, eᾱβ(s)kS(s) is an invariant
for L(α)(s)∗, so that for α ∈ R

I(α)(s) =
Tr
(
e−(1+α)β(s)kS(s)

)

Tr
(
e−β(s)kS(s)

) eαβ(s)kS(s) (4.3)

satisfies the normalization condition Tr
(
I(α)(s)ρ(α)(s)

)
≡ 1.

Lemma 4.1. Under the assumptions ADRIS and Prim, and with X(s) ≡ 0, and `′(α) ∈ (0, 1), C(α) ∈ R+,
T0(α) ∈ N as in Proposition 3.11, for all α ∈ R and T ≥ T0(α), all η ∈ I1(H),

∥∥L(α)(TT ) · · · L(α)( 1
T )η − Tr(ρinv(0)−αη) ρinv(1)1+α

∥∥ ≤ C(α)

T (1− `′(α))
) + C(α)(`′(α))T ,

Proof. First note that in the primitive case, z ≡ 1 so that θ = 1 and only the term with m = 0 is present.
In addition, as we have proved above, for X(s) ≡ 0 one has λ(α)(s) ≡ 1 and therefore L̃(α)(s) = L(α)(s).
Proposition 3.11 together with expressions (4.2) and (4.3) then yield

∥∥∥L(α)(TT ) · · · L(α)( 1
T )η − e−ϑ

(α) Tr
(
e−(1+α)β(0)kS(0)

)
Tr
(
eαβ(0)kS(0)η

)

Tr
(
e−(1+α)β(1)kS(1)

)
Tr
(
e−β(0)kS(0)

) e−(1+α)β(1)kS(1)
∥∥∥

≤ C(α)

T (1− `′(α))
) + C(α)(`′(α))T .
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with

ϑ(α) =

∫ 1

0

Tr
(Tr

(
e−β(s)(1+α)kS(s)

)

Tr
(
e−β(s)kS(s)

) eαβ(s)kS(s) d

ds

e−β(s)(1+α)kS(s)

Tr(e−β(s)(1+α)kS(s))

)
ds

=

∫ 1

0

Tr(e−β(s)(1+α)kS(s))

Tr(e−β(s)kS(s))
Tr
(

eαβ(s)kS(s) d

ds

e−β(s)(1+α)kS(s)

Tr(e−β(s)(1+α)kS(s))

)
ds

=

∫ 1

0

(
Tr(e−β(s)kS(s))

)−1
Tr
(

eαβ(s)kS(s) d

ds
e−β(s)(1+α)kS(s)

)
ds

−
∫ 1

0

(
Tr(e−β(s)(1+α)kS(s))

)−1 d

ds
Tr
(
e−β(s)(1+α)kS(s)

)
ds.

Thanks to the general formula d
dseA(s) =

∫ 1

0
exA(s) d

dsA(s) e(1−x)A(s) dx and to the cyclicity of the trace,
we have

Tr
(
eαβ(s)kS(s) d

ds
e−β(s)(1+α)kS(s)

)
= −(1 + α) Tr

( d

ds

(
β(s)kS(s)

)
e−β(s)kS(s)

)

= (1 + α)
d

ds
Tr(e−β(s)kS(s)),

so that

ϑ(α) = (1 + α)

∫ 1

0

d

ds
log Tr(e−β(s)kS(s)) ds−

∫ 1

0

d

ds
log Tr(e−(1+α)β(s)kS(s)) ds

and

e−ϑ
(α)

=

(
Tr(e−β(0)kS(0))

)1+α
Tr(e−(1+α)β(1)kS(1))

(
Tr(e−β(1)kS(1))

)1+α
Tr(e−(1+α)β(0)kS(0))

.

The rest of the proof is obtained by direct computation.

Recall that for ρi, ρf two faithful states, Ai = − log ρi, Af = − log ρf and Y (s) = β(s)hE(s), we have
the decomposition ςT = −∆sS,T + ∆sE,T (see (3.2)).

Theorem 4.2. Under the assumptions ADRIS and Prim, and with X(s) ≡ 0, the distribution of the pair
(∆sS,T ,∆sE,T ) converges weakly to a probability measure characterized by its moment generating function

M(∆sE ,∆sS)(α1, α2) = Tr
(
ρinv(0)−α1(ρi)1−α2

)
Tr
(
ρinv(1)1+α1+α2

)
.

This probability measure has finite support, contained in the set
(

log sp ρinv(1)− log sp ρinv(0)
)
×
(

log sp ρinv(1)− log sp ρi
)

=
{

(log r1 − log r0, log r′1 − log ri) | r1, r
′
1 ∈ sp ρinv(1), r0 ∈ sp ρinv(0), ri ∈ sp ρi

}
.

(4.4)

In particular, the limiting moment generating function Mς(α) = limT→∞MςT (α) satisfies

logMς(α) = S−α(ρinv(0)|ρi),

where Sα denotes the (unnormalized) Rényi relative entropy Sα(η|ζ) := log Tr(ηαζ1−α).

Remark 4.3. Relation (3.5), and the fact that the derivative of S−α(η|ζ) is the relative entropy S(η|ζ) =
Tr
(
η(log η−log ζ)

)
imply in particular (again see Section 30 of [Bil95]) that under the assumptions ADRIS

and Prim, and with X(s) ≡ 0,
lim
T→∞

σtot
T = S(ρinv(0)|ρi).

Theorem 4.2 therefore gives us a refinement of the results of [HJPR17], where an explicit expression of
the limit was missing. Remark also that the quantity S−α(ρinv(0)|ρi) can be expressed as the cumulant
generating function of an explicit distribution related to the relative modular operator for ρinv(0) and ρi

(see e.g. Chapter 2 in [JOPP12]).
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Proof. By a direct application of Proposition 3.5, for all α1, α2 ∈ R we have

M(∆sE,T ,∆sS,T )(α1, α2) = Tr
(
e−α2A

fL(α1)(TT ) · · · L(α1)( 1
T )(e+α2A

i

ρi)
)
,

so that by Lemma 4.1

lim
T→∞

∣∣M(∆sE,T ,∆sS,T )(α1, α2)− Tr(ρinv(0)−α1(ρi)1−α2) Tr
(
ρinv(1)1+α1(ρf)α2

)∣∣ = 0,

and again from Lemma 4.1 with α = 0, limT→∞ ρf = ρinv(1) and the latter state is faithful. This shows
that the moment generating function converges as T →∞ for all (α1, α2), to the desired identity. By the
results in section 30 of [Bil95], this shows the convergence in distribution of the pair (∆sE,T ,∆sS,T ).

Corollary 4.4. Under the assumptions of the Theorem 4.2, if in addition ρi = ρinv(0) then the limiting
distribution for (∆sE,T ,∆sS,T ) has support on the diagonal and equivalently the limiting distribution for
ςT is a Dirac measure at zero. If we write the spectral decomposition of ρinv(0), ρinv(1) as

ρinv(0) =
∑

j

τj(0)πj(0) ρinv(1) =
∑

j

τj(1)πj(1)

then the limiting distribution for ∆sE,T gives the following weight to s ∈ R
∑

k,j

Tr
(
ρinv(0)πj(0)

)
Tr
(
ρinv(1)πk(1)

)
1s

(
log τk(1)− log τj(0)

)
,

where 1s(t) = 1 if s = t and 0 otherwise.

Proof. If ρi = ρinv(0) then with the notation of Theorem 4.2, one has logMς(α) ≡ 0, so that the limiting
distribution for ςT is a Dirac measure at zero. In addition, the limiting moment generating function for
∆sE,T is

Tr
(
ρinv(0)1−α)Tr

(
ρinv(1)1+α

)

and the expression of the corresponding distribution follows by inspection.

Example 4.5. Let us recall the simplest non-trivial RIS, which is considered in [HJPR17, Example 6.1],
for which the system and probes are 2-level systems, with HS = HE = C2, along with Hamiltonians
hS := Ea∗a and hEk ≡ hE := E0b

∗b where a/a∗ (resp. b/b∗) are the Fermionic annihilation/creation
operators for S (resp. E), with E,E0 > 0 constants with units of energy. As matrices in the (ground
state, excited state) bases {|0〉, |1〉} for S and E , we write

a = b =

(
0 1
0 0

)
, a∗ = b∗ =

(
0 0
1 0

)
, a∗a = b∗b =

(
0 0
0 1

)
.

We consider a constant potential vRW ∈ B(HS ⊗HE),

vRW =
µ1

2
(a∗ ⊗ b+ a⊗ b∗)

where µ1 = 1 with units of energy. Given s 7→ β(s) ∈ [0, 1] a C2 curve of inverse probe temperatures, an
interaction time τ > 0 and coupling constant λ > 0, we let

U = exp
(
− iτ(hS + hE + λvRW)

)
.

Then spL(s) is independent of s, with 1 as a simple eigenvalue with eigenvector

ρinv(s) = exp(−β∗(s)hS)/Tr(exp(−β∗(s)hS))

for β∗(s) = E0

E β(s).

With ν :=
√

(E − E0)2 + λ2, the assumption ντ 6∈ 2πZ yields that L(s) is primitive, and moreover,
the fact that [vRW, a

∗a + b∗b] = 0 yields X(s) ≡ 0. Here, we may take kS ≡ E0

E hS independently of s,
which satisfies [kS + hE , U ] ≡ 0.
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We choose an initial system state ρi > 0, and set Y (s) := β(s)hE , Ai := log ρi, Af := log ρf
T , for

ρf
T := L(TT ) · · · L( 1

T )ρi. By considering the forward and backward processes of Section 2.3, we define the

forward (resp. backward) probability distribution PFT (resp. PBT ), and the entropy production ςT = log
PFT
PBT

on Ω = sp ρi × sp ρf × {0, 1}T × {0, 1}T . Then Theorem 4.2 yields the asymptotic moment generating
function of ςT : let ρi = r0|v0〉〈v0|+ r1|v1〉〈v1| > 0 be the spectral decomposition of the initial state, then

lim
T→∞

MςT (α) = (1 + e−β(0)E0)α
(
r1+α
0 (|〈0|v0〉|2 + |〈1|v0〉|2eαβ(0)E0)

+ r1+α
1 (|〈0|v1〉|2 + |〈1|v1〉|2eαβ(0)E0)

)
. (4.5)

5 General case: large deviations and the central limit theorem

In this section we come back to a general observable Y (s) with [Y (s), hE(s)] ≡ 0. We will prove a large
deviation principle, and essentially deduce from it a law of large numbers and a central limit theorem.

Our main technical tool will be Proposition 3.11, together with the following result:

Lemma 5.1. Under the assumptions ADRIS and Irr with z(s) ≡ z, for any faithful initial state ρi > 0,
for any α in R we have

0 < lim inf
T→∞

Tr
(
L̃(α)
Y (TT ) · · · L̃(α)

Y ( 1
T )ρi

)
≤ lim sup

T→∞
Tr
(
L̃(α)
Y (TT ) · · · L̃(α)

Y ( 1
T )ρi

)
<∞.

Proof. By Proposition 3.11,

Tr
(
L̃(α)
Y (TT ) · · · L̃(α)

Y ( 1
T )ρi

)

= ze−ϑ
(α)
Y

z−1∑

n=0

Tr
(
I(α)(0)pn(0)ρi

)
Tr
(
ρ

(α)
Y (1)pn−T (1)

)
+O

(
C

T (1− `′)

)
+O(C`′

T
). (5.1)

Because I
(α)
Y (0), ρi, are strictly positive matrices we have Tr

(
I
(α)
Y (0)pn(0)ρi

)
> 0 for all n, and because

ρ
(α)
Y (1) is a trace one non-negative matrix, Tr

(
ρ

(α)
Y (1)pn−T (1)

)
> 0 for some n. By strict positivity

of e−ϑ
(α)
Y , the leading term in (5.1) is therefore strictly positive. This proves the first inequality, whereas

the second follows from continuity of the operator-valued maps (α, s) 7→ I
(α)
Y (s), ρ

(α)
Y (s).

Lemma 5.2. Under the assumptions ADRIS and Irr with z(s) ≡ z, for any faithful initial state ρi > 0,
for any α ∈ R, the moment generating function of the random variable ∆ytotT with respect to PFT satisfies

lim
T→∞

1

T
logM∆ytotT

(α) =

∫ 1

0

log λ
(α)
Y (s) ds =: ΛY (α). (5.2)

Proof. By Lemma 5.1,

lim
T→∞

1

T
log Tr

(
L̃(α)
Y (TT ) · · · L̃(α)

Y ( 1
T )(ρi)

)
= 0.

But the moment generating function reads

M∆ytot
T

= Tr
(
L(α)
Y (TT ) · · · L(α)

Y ( 1
T )ρi

)

=
( T∏

k=1

λ
(α)
Y ( kT )

)
Tr
(
L̃(α)
Y (TT ) · · · L̃(α)

Y ( 1
T )(ρi)

)

by definition of L̃(α)
Y (s). Hence, the result follows from the Riemann sum convergence

lim
T→∞

1

T
log
( T∏

k=1

λ
(α)
Y ( kT )

)
= lim
T→∞

T∑

k=1

( kT − k−1
T ) log λ

(α)
Y ( kT )
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=

∫ 1

0

log λ
(α)
Y (s) ds.

Remark 5.3. Lemma 5.2 also holds for e.g. the random variable ∆aT + ∆ytot
T in place of ∆ytot

T because

Lemma 5.1 holds with additional factors of e−αA
i

and eαA
f

inside the trace. Alternatively, one may remark
that −∆aT + ∆ytot

T (ω) and ∆ytot
T (ω) only differ by a uniformly bounded term ∆aT (ω).

The regularity of Λ, and the value of its first and second derivatives at zero, are relevant to the
asymptotic behaviour of ∆ytot

T . We therefore give the following simple lemma.

Lemma 5.4. Assume ADRIS and Irr. Then the function ΛY is twice continuously differentiable on R,
with

Λ′Y (0) =

∫ 1

0

∂λ
(α)
Y

∂α
(s)|α=0 ds Λ′′Y (0) =

∫ 1

0

(∂2λ
(α)
Y

∂α2
(s)|α=0 −

(∂λ(α)
Y

∂α
(s)|α=0

)2)
ds, (5.3)

and

∂λ
(α)
Y

∂α
(s)|α=0 =

∑

i,j

(yj − yi) Tr
(
Ki,j(s)ρ

inv(s)K∗i,j(s)
)
,

∂2λ
(α)
Y

∂α2
(s)|α=0 =

∑

i,j

(yj − yi)2 Tr
(
Ki,j(s)ρ

inv(s)K∗i,j(s)
)

+ 2
∑

i,j

(yj − yi) Tr
(
Ki,j(s)η(s)K∗i,j(s)

)
(5.4)

where η(s) is the unique solution with zero trace of
(
Id− L(s)

)
(η) =

∑

i,j

(yj − yi)Ki,j(s)ρ
inv(s)K∗i,j(s)−

∑

i,j

(yj − yi) Tr
(
Ki,j(s)ρ

inv(s)K∗i,j(s)
)
ρinv(s).

In particular, for Y (s) = β(s)hE(s), one has

∂λ(α)

∂α
(s)|α=0 = β(s) Tr

(
X(s)

(
Id⊗ hE(s)

))
. (5.5)

Proof. That Λ is twice continuously differentiable is clear from the expression (5.2) and the fact that
(α, s) 7→ λ(α)(s) is C2 in s and analytic in α, bounded and bounded away from zero. The expressions
(5.3) follow from the dominated convergence theorem. The expressions (5.4) are obtained by an explicit

expansion to second order in α of the relation L(α)
Y (ρ

(α)
Y ) = λ

(α)
Y ρ

(α)
Y , together with the fact that Tr(ρ

(α)
Y ) ≡

1. Last, remark that η(s) is uniquely determined as 1 is a simple eigenvalue of L(s), and the associated
eigenvectors have nonzero trace.

The above technical results allow us to give a large deviation principle for ∆sE,T or, equivalently, for
ςT . In the statement below we denote, for E a subset of R, by intE and clE its interior and closure
respecively.

Theorem 5.5. Assume ADRIS and Irr, and that the initial state ρi is faithful. Let ΛY be defined by
relation (5.2) and denote by Λ∗Y the Fenchel–Legendre transform of ΛY , i.e. for x ∈ R let

Λ∗Y (x) = sup
α∈R

(
αx− ΛY (α)

)
.

Then for any subset E of R one has

− inf
x∈intE

Λ∗Y (x) ≤ lim inf
T→∞

1

T
logPFT

(∆ytotT
T
∈ intE

)
≤ lim sup

T→∞

1

T
logPFT

(∆ytotT
T
∈ clE

)
≤ − inf

x∈clE
Λ∗Y (x).

The same statement holds with −∆aT + ∆ytotT in place of ∆ytotT . In particular, for Y = βhE , one has

− inf
x∈intE

Λ∗(x) ≤ lim inf
T→∞

1

T
logPFT

( ςT
T
∈ intE

)
≤ lim sup

T→∞

1

T
logPFT

( ςT
T
∈ clE

)
≤ − inf

x∈clE
Λ∗(x)

and the same statement holds with ∆sE,T in place of ςT .
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Proof. This follows immediately from the Gärtner–Ellis theorem (Theorem 2.3.6 in [DZ10]) and the fact
from Lemma 5.4 that Λ is continuously differentiable on R so that, in the notation of [DZ10], Λ is
essentially smooth. That the same statement holds with −∆aT + ∆ytot

T in place of ∆ytot
T follows from

Remark 5.3.

Remarks 5.6.

• In the case of Y (s) = β(s)hE(s), and under the assumption (TRI), the symmetry 3.13 in Lemma
3.10 implies that Λ is symmetric about the α = −1/2 axis. A direct computation shows that

Λ∗(x) = x+ Λ∗(−x). (5.6)

A consequence of Theorem 5.5 together with this equality is that if e.g. Λ′′(0) 6= 0,

lim
δ→0

lim
T→∞

1

T
log

P(+∆sE,T ∈ [s− δ, s+ δ])

P(−∆sE,T ∈ [s− δ, s+ δ])
= −s.

This is obtained by observing that in the present case, Λ is analytic in a neighbourhood of the real
axis, and so is Λ∗ if Λ is strictly convex. See e.g. [JOPP12] for more information on the role of
symmetries such as (5.6).

• In the case of Y (s) = β(s)hE(s), and under the assumption that X(s) ≡ 0, we have observed in
Section 4 that λ(α)(s) = 1 for all α ∈ R and s ∈ [0, 1]. In that case Λ(α) ≡ 0 and

Λ∗(x) =

{
0 if x = 0,

+∞ otherwise.

The above large deviation statement therefore gives a faster-than-exponential concentration of 1
T ςT

or 1
T ∆sE,T at zero.

A first consequence is a result similar to a law of large numbers for ∆ytot
T :

Corollary 5.7. Under the same assumptions as in Theorem 5.5, for all ε > 0 there exists rε > 0 such
that for T large enough

PFT
(
| 1
T

∆ytotT − Λ′Y (0)| > ε
)
≤ exp−rεT. (5.7)

Proof. See e.g. Theorem II.6.3 in [Ell85].

Remark 5.8. Such a result is sometimes called exponential convergence. If one could replace PFT by a T -
independent probability measure PF in (5.7) (see Remark 2.2) then the Borel–Cantelli lemma would imply
that 1

T ∆ytot
T converges PF -almost-surely to Λ′Y (0). It implies, however, that limT→∞ 1

T E(∆ytot
T ) = Λ′Y (0).

In the case Y = βhE , the positivity of σtot
T implies Λ′(0) ≥ 0. Formula (5.5) shows that Λ′(0) = 0 if

X(s) ≡ 0.

We also obtain a central limit-type result by a slight improvement of the results in Theorem 5.5.

Theorem 5.9. Under the same assumptions as in Theorem 5.5 we have

1√
T

(
∆ytotT − T Λ′Y (0)

)
→

T→∞
N
(
0,Λ′′Y (0)

)

in distribution.

Proof. From Corollary A.8, for fixed s ∈ [0, 1], there exists a complex neighbourhood N(s) of the origin

such that for α ∈ N(s) the peripheral spectrum of L(α)
Y (s) is of the form {λ(α)

Y (s)θm,m = 0, . . . , z−1}, and

each λ
(α)
Y (s)θm is a simple eigenvalue. Denote by φ

(α)
m (s)ψ

(α)
m
∗(s) the corresponding spectral projector,

parameterized so that (α, s) 7→ φ
(α)
m (s), ψ

(α)
m (s) are C2 functions. By compactness of [0, 1], we can find a
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complex neighbourhood N of the origin containing
⋂
s∈[0,1]N(s) such that the following holds: for α ∈ N ,

the family
(
L̃(α)(s)

)
s∈[0,1]

satisfies Hyp0–Hyp4. Moreover,

sup
α∈N

sup
s∈[0,1]

|1− λ(α)
Y (s)| < 1/2,

sup
α∈N

sup
s∈[0,1]

max
(
‖φ(α)

m (s)‖, ‖φ(α)
m
′(s)‖, ‖ψ(α)

m (s)‖, ‖ψ(α)
m
′(s)‖

)
<∞,

sup
α∈N

∣∣∣
∫ 1

0

ψ(α)
m
∗(φ(α)

m
′(t)
)

dt
∣∣∣ <∞.

We therefore have

sup
α∈N

sup
T∈N

∣∣∣ 1

T

T∑

k=1

log λ
(α)
Y

( k
T

)∣∣∣ <∞

and by Corollary B.9,

sup
α∈N

sup
T∈N

∣∣∣ 1

T
log Tr

(
L̃(α)
Y (TT ) · · · L̃(α)

Y ( 1
T )(ρi)

)∣∣∣ <∞.

This implies

sup
α∈N

sup
T∈N

∣∣∣ 1

T
logM∆ytot

T
(α)
∣∣∣ <∞.

In addition, from Lemma 5.2, 1
T logM∆ytot

T
(α) converges as T → ∞ for α ∈ N ∩ R. By Bryc’s theo-

rem [Bry93] (see also Appendix A.4 in [JOPP12]) as T →∞, 1√
T

(
∆ytot

T −T Λ′Y (0)
)

converges in distribu-

tion to N
(
0,Λ′′Y (0)

)
.

Remark 5.10. In the case Y = βhE , Remark 5.8 and Theorem 5.9 show that, if Λ′′(0) 6= 0 (which is
generically expected) then σtot

T →∞ as T →∞.

Example 5.11. Let us consider the setup of Example 4.5 using the full-dipole interaction potential
vFD ∈ B(HS ⊗HE),

vFD =
µ1

2
(a+ a∗)⊗ (b+ b∗),

instead of vRW. This example was considered in [HJPR17, 7.1], where it was shown that Prim is satisfied,
and that σT →∞ with a finite and nonzero rate limT→∞ 1

T σT for generic choices of parameters {E,E0, τ}.
We take Y (s) = β(s)hE as in Example 4.5. Introducing η :=

√
(E0 + E)2 + λ2, we compute a matrix

expression for L(α)
s by identifing I1(HS) ∼= Mat2×2(C) ∼= C4 via

(
a b
c d

)
7→
(
a
b
c
d

)
. Working in the (ground

state, excited state) basis for S, we obtain




eE0β(s)
(
2(E0+E)2+λ2+λ2 cos(ητ)

)
2
(
1+eE0β(s)

)
η2

+
2(E0−E)2+λ2+λ2 cos(ντ)

2
(
1+eE0β(s)

)
ν2

0 0 λ2

− 2e−E0αβ(s)(cos(ητ)−1)

4
(
1+eE0β(s)

)
η2

− 2eE0(α+1)β(s)(cos(ντ)−1)

4
(
1+eE0β(s)

)
ν2


0

C
0

0 0

e−E0αβ(s)λ2

4
(
1+eE0β(s)

) ( 2−2 cos(ντ)

ν2 − 2eE0(2α+1)β(s)(cos(ητ)−1)

η2

)
0 0

e−E0β(s)
(
2(E0+E)2+λ2+λ2 cos(ητ)

)
2
(
1+e−E0β(s)

)
η2

+
2(E0−E)2+λ2+λ2 cos(ντ)

2
(
1+e−E0β(s)

)
ν2




with

C :=




(
iη cos

(
ητ
2

)
+(E0+E) sin

(
ητ
2

))(
(E0−E) sin

(
ντ
2

)
−iν cos

(
ντ
2

))
√
E4

0+2
(
λ2−E2

)
E2

0+
(
E2+λ2

)2 a1

a1

e
− 1

2
iντ (−eiντE0+E0−E+ν+eiντ (E+ν)

)(
η cos

(
ητ
2

)
+i(E0+E) sin

(
ητ
2

))
2ην




for

a1 :=
λ2 cosh

(
E0β(s)( 1

2 + α)
)

sech
(
E0β(s)

2

)
sin
(
ητ
2

)
sin
(
ντ
2

)
√
E4

0 + 2 (λ2 − E2)E2
0 + (E2 + λ2)

2
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which depends on s through β(s). The computation was performed with Mathematica, using [Cub09].
We make a particular choice of parameters, λ = 2, τ = 0.5, E0 = 0.8, E = 0.9, and two choices of
[0, 1] 3 s 7→ β(s):

β1(s) =
2(3 + 4 tanh(2s))

3 + 2 log(cosh(2))
(5.8)

and
β2(s) = a1 tanh(2s)− a2 tanh

(s
2

)
− a3s

3 + a4s
2 − a5s+ a6 (5.9)

for a1 = 35.483, a2 = 141.929, a3 = 42.945, a4 = 93.5, a5 = 17.808, a6 = 1.061. We have β1(0) = β2(0) =

1.06, and β1(1) = β2(1) = 2.43, as well as
∫ 1

0
β1(s) ds =

∫ 1

0
β2(s) ds = 2. These are plotted in Figure 1.

We compute numerically the function Λ(α) for each choice of s 7→ β(s), as shown in Figure 2. Figures 3
and 4 shows the convergence described by Theorem 5.9 by simulating 2,000 instances of this repeated
interaction system at four values of T .

Figure 1: Right: Two choices of curves
s 7→ β(s). In the solid blue line, β(s) =
β1(s), given by (5.8), and in dashed red
line, β(s) = β2(s), given by (5.9).
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Figure 2: Left: The function Λ(α) for Y = βhE in the system of Example 5.11, with λ = 2, τ = 0.5,
E0 = 0.8, E = 0.9, plotted for each choice of β(s). Right: The rate function Λ∗(α), for the same setup.
In each plot, the solid blue line corresponds to the choice β(s) = β1(s), defined in (5.8), and the dashed
red line corresponds to β(s) = β2(s), defined in (5.9).
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Figure 3: Convergence of 1√
T

(
∆ytot

T −T Λ′(0)
)

to a normal distribution, where Λ′(0) ≈ 0.240, with β(s) =

β1(s) given by (5.8). Each plot was generated by simulating the two-time measurement protocol in 2,000
instances of the repeated interaction system described in Example 5.11. The value of 1√

T

(
∆ytot

T −T Λ′(0)
)

was calculated for each instance and plotted in a histogram in blue, with bar heights normalized to yield
total mass 1. In red, the probability density function of N (0,Λ′′(0)) is plotted, where Λ′′(0) ≈ 0.530. As
T increases, one sees qualitatively the convergence of 1√

T

(
∆ytot

T − T Λ′(0)
)

to the normal distribution, as

guaranteed by Theorem 5.9.
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Figure 4: The same setup as Figure 3, with β(s) = β2(s) given by (5.9). Here, Λ′(0) ≈ 0.275, and
Λ′′(0) ≈ 0.716.
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A Peripheral spectrum of CPTP maps and their deformations

In this section we discuss a full study of the peripheral spectrum, and associated spectral projectors,
of CPTP maps and their deformations. This will in particular apply to the deformed reduced dynamical

operators L(α)
Y .

We start by collecting various results from the seminal paper [EHK78]. Let us therefore consider a
finite-dimensional Hilbert space H, and Φ a completely positive, not necessarily trace-preserving map Φ
on I1(H). Since H is finite-dimensional, we can identify I1(H) and B(H), so that all definitions below
apply to either Φ or Φ∗. Any completely positive map on B(H) (with finite-dimensional H) admits a
Kraus decomposition, i.e. there exist maps Vi ∈ B(H) for i in a finite set I, such that Φ(ρ) =

∑
i∈I ViρV

∗
i

for all ρ.

Definition A.1. If the completely positive map Φ satisfies either of the following equivalent properties

• the only self-adjoint projectors P on H satisfying Φ
(
PI1(H)P

)
⊆ PI1(H)P are Id and 0,

• the only subspaces E of H such that ViE ⊂ E for all i ∈ I are {0} and H,

we say that Φ is irreducible. If for any nonzero self-adjoint projector P on H, there exists n such that
the map Φn(P ) is positive-definite, we say that Φ is primitive.

Clearly, if Φ is primitive then it is irreducible. In addition, it is immediate to see from the above
equivalences that Φ is irreducible (resp. primitive) if and only if Φ∗ is irreducible (resp. primitive).
Remark also that an irreducible completely positive map Φ will map a faithful state ρ to a positive-
definite operator, as otherwise the support projector P of Φ(ρ) will satisfy P ≤ cρ, and therefore Φ(P ) ≤
cΦ(ρ) ≤ c′P , for some c, c′ > 0, and therefore contradict the definition of irreducibility above.

It is shown in [EHK78] that, if Φ is irreducible, then its spectral radius λ is a simple eigenvalue and
the associated spectral subspace is generated by a positive-definite operator. An immediate consequence
is that any positive-definite eigenvector of Φ must be an eigenvector for λ.

If Φ is CPTP then necessarily λ = 1. It is also shown in [EHK78] that, if Φ is completely positive,
irreducible, and trace-preserving, then

• the peripheral spectrum of Φ is a subgroup Sz = {θm,m = 0, . . . , z − 1} of the unit circle, where
θ = e2iπ/z, and each θm is a simple eigenvalue,

• there exists a unitary operator u (called a Perron–Frobenius unitary of Φ) such that uk 6= Id for
k = 0, . . . , z − 1 and uz = Id, satisfying [ρinv, u] = 0 and

Φ(ρu) = θΦ(ρ)u ∀ρ ∈ I1(H)

Φ∗(uX) = θuΦ∗(X) ∀X ∈ B(H),
(A.1)

• there exists a faithful state ρinv such that the (unique up to a multiplicative constant) eigenvector
of Φ (resp. Φ∗) associated with the eigenvalue θm is ρinvum (resp. u−m), and the spectral projector
of Φ associated with θm is η 7→ Tr(u−mη)ρinvum.

Remark that relations (A.1) are equivalent to Viu = θuVi (see [FP09]). Last, a CPTP map is primitive if
and only if it is irreducible with z = 1, or equivalently if and only if Φn is irreducible for any n ∈ N.

Conversely, a CPTP map that admits a faithful state as a unique (up to a multiplicative constant)
invariant is irreducible. If in addition, 1 is the only eigenvalue of modulus one, then Φ is primitive. In
particular, our description of assumptions Irr and Prim are consistent with the above definitions.

In addition, the spectral decomposition of u is of the form u =
∑z−1
m=0 θ

mpm, where the projectors pm
satisfy pmVi = Vipm+1 for all i and m (here and below, m+ 1 means m+ 1 mod z whenever it appears
as the index of a projector p. We adopt the same convention for m − 1), each subspace B(Ran pm) of
B(H) is invariant by Φ∗z and the restriction of Φ∗z to that subspace is primitive.

We now define deformations of CPTP maps, or, rather, of their Kraus decompositions. For this, fix a
finite set I. We call a family V = (Vi)i∈I of operators on B(H) an irreducible Kraus family (indexed by
I) if

∑
i∈I V

∗
i Vi = Id, and the only subspaces E of H such that ViE ⊂ E for all i ∈ I are {0} and H. We

fix a set I and denote by KI the set of irreducible Kraus maps indexed by I. From the above discussions,
any irreducible Kraus family (Vi)i∈I defines an irreducible CPTP map Φ by Φ(ρ) =

∑
ViρV

∗
i .

26



Remark A.2. Conversely, any irreducible CPTP admits an irreducible Kraus decomposition indexed by
I = {1, . . . , (dimH)2} (possibly with Vi = 0 for some i). However, in applications of the present results in
Section 3.3, where H = HS , our model yields a Kraus family indexed by pairs (i, j) ∈ spY × spY where
Y is an operator acting on a Hilbert space HE unrelated to HS . We therefore need to consider Kraus
families indexed by an arbitrary set I.

Now fix v = (vi)i∈I a family of strictly positive real numbers. For (Vi)i∈I an irreducible Kraus family
and α ∈ R we define a map Φ(α) on I1(H) by

Φ(α)(ρ) =
∑

i

vαi ViρV
∗
i .

This map Φ(α) is a completely positive map, and since Φ(0) = Φ, it can be viewed as a deformation of Φ.
We will prove the following result about the peripheral spectrum of Φ(α).

Proposition A.3. Let u be a Perron–Frobenius unitary for Φ, and denote by pm,m = 0, . . . , z − 1 its
spectral projectors, as above. There exist three smooth maps α 7→ λ(α), I(α), ρ(α) from R to, respectively,
R∗+, the set of positive-definite operators, and the set of faithful states, such that for all α in R,

• the peripheral spectrum of Φ(α) is λ(α)Sz = {λ(α)θk : k = 0, . . . , z − 1},

• one has the commutation relations [I(α), u] = 0, and [ρ(α), u] = 0,

• one has Tr(ρ(α) I(α)) = 1 for all α ∈ R,

• the (unique up to a multiplicative constant) eigenvector of Φ(α) (resp. Φ(α)∗) associated with the
eigenvalue λ(α)θm is ρ(α)um (resp. I(α)u−m), and the spectral projector of Φ(α) associated with
λ(α)θm is η 7→ Tr(I(α)u−mη)ρ(α)um.

Remark A.4. For α = 0 we have λ(α) = 1, I(α) = Id and ρ(α) = ρinv. Note also that λ(α), I(α), ρ(α)

depend on the choice of v = (vi)i∈I .

Proof. By the criterion on irreducibility cited above, the map Φ(α)∗ is completely positive and irreducible.
Therefore, its spectral radius λ(α) > 0 is a simple eigenvalue, which is locally isolated, with positive-definite
eigenvector I(α). Moreover, recall that I(α) is the unique positive-definite eigenvector (up to a positive
constant) associated to a positive eigenvalue. By standard perturbation theory we can parameterize the
map α 7→ I(α) to be analytic in a neighbourhood of the origin. This I(α) is defined up to a multiplicative
constant, which we will specify later on. We define a map Φ̂(α) and its adjoint Φ̂(α)∗ by

Φ̂(α)(η) = (λ(α))−1 (I(α))1/2Φ(α)
(

(I(α))−1/2η (I(α))−1/2
)

(I(α))1/2

Φ̂(α)∗(X) = (λ(α))−1 (I(α))−1/2Φ(α)∗
(

(I(α))1/2X(I(α))1/2
)

(I(α))−1/2.
(A.2)

Note that Φ̂(α) writes Φ̂(α)(ρ) =
∑
i∈I V̂i(α)ρV̂i(α)∗, with

V̂i(α) = (vαi /λ
(α))

1/2
(I(α))+1/2Vi (I(α))−1/2. (A.3)

The application Φ̂(α)∗ is completely positive, irreducible since I(α) entering in the definition of its Kraus
operators is invertible, and satisfies Φ̂(α)∗(Id) = Id. Hence the map Φ̂(α) is irreducible, completely positive

and trace-preserving, so that V̂ = (V̂i(α))i∈I ∈ KI . We can therefore define a map T
(α)
v on KI by

T
(α)
v : V 7→ V̂ (α). Note that V̂i(0) = Vi, so that V̂ is a deformation of V . We have the following easy

result:

Lemma A.5. With the above notation (and fixed (vi)i∈I), for any α ∈ R the map T
(α)
v is invertible with

inverse T
(−α)
v .
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Proof of Lemma A.5. For ρ ∈ I1(H) consider

ρ 7→
∑

i

v−αi V̂i(α) ρ V̂i(α)∗ = λ(α)−1
∑

i

(I(α))+1/2Vi (I(α))−1/2 ρ (I(α))−1/2V ∗i (I(α))+1/2.

The dual of this map is X 7→ λ(α)−1
∑
i(I

(α))−1/2V ∗i (I(α))+1/2X (I(α))+1/2Vi (I(α))−1/2, which admits
(I(α))−1 as an eigenvector for (λ(α))−1. Since (I(α))−1 is positive-definite, (λ(α))−1 is the spectral radius

of this map, with associated eigenvector (I(α))−1. Applying the above definition of T
(−α)
v therefore shows

that T
(−α)
v (V̂ ) consists of maps (v−αi /λ(α)−1)1/2 (I(α))−1/2V̂i(α) (I(α))+1/2 = Vi.

As mentioned above, Φ̂(α) is an irreducible CPTP map. From the results recalled above, its peripheral
spectrum is of the form Sz(α) , all peripheral eigenvalues are simple, and an eigenvector associated with

θ(α) = e2ijπ/z(α)

is of the form ρ̂(α)(u(α))m with ρ̂(α) ∈ D(H) positive-definite and u(α) unitary. Remark
already that since ρ̂(α) is associated with the simple, isolated eigenvalue 1, we can parameterize α 7→ ρ̂(α)

to be analytic in a neighbourhood of the origin. In addition, an operator η ∈ I1(H) is an eigenvector of

Φ(α) for the eigenvalue µ if and only if (I(α))+1/2η (I(α))+1/2 is an eigenvector of Φ̂(α) for the eigenvalue
(λ(α))−1µ. Therefore, ρ(α) = (I(α))−1/2ρ̂(α) (I(α))−1/2 is an eigenvector of Φ(α) associated with λ(α), the
peripheral spectrum of Φ(α) is λ(α)Sz(α) , and the peripheral eigenvalues are simple. Because the definition

of Φ̂(α) does not depend on the free multiplicative constant in I(α), this ρ̂(α) is uniquely defined; we can
therefore fix the constant in I(α) so that ρ(α) has trace one. What’s more, the same considerations for
(Φ(α))n and (Φ̂(α))n show that the spectral radius of (Φ(α))n is (λ(α))n, for all n ∈ N. We now prove that
z(α) is independent of α, and that u(α) can be chosen to be constant equal to u.

Lemma A.6. With the above notations we have z(α) = z for all α ∈ R.

Proof of Lemma A.6. We have Φ(α)∗(pjXpj) = pj+1Φ(α)∗(X)pj+1 for all X in B(H) from the commutation
relations for pj and Vi, so that the subspace B(Ran pj) of B(H) is invariant by (Φ(α)∗)z and the restriction

of (Φ(α)∗)z to that subspace is irreducible. Therefore its spectral radius, which we denote by (µ
(α)
j )z, is a

simple eigenvalue. Since (λ(α))z is the spectral radius of (Φ(α)∗)z, there exists a positive-definite operator
η(α) such that (Φ(α)∗)z(η(α)) = (λ(α))z η(α). The commutation relations above imply immediately that
(Φ(α)∗)z(pjη(α)pj) = (λ(α))z pjη

(α)pj , and pjη
(α)pj is positive-definite as an operator on Ran pj , so that

µ
(α)
j = λ(α) for all j. In addition, the relation Φ(α)∗(pjη(α)pj) = pj+1η

(α)pj+1 allows us to construct z

idependent eigenvectors of Φ(α)∗ so that z ≤ z(α).
Lemma A.5 shows that this same inequality applied to Φ̂(α) in place of Φ and −α in place of α gives

z(α) ≤ z. We therefore have z = z(α).

This implies in turn that u(α) is an eigenvector of Φ̂(α)∗ for the simple isolated eigenvalue θ, so that
we can parameterize α 7→ u(α) to be analytic in a neighbourhood of the origin.

Lemma A.7. With the above notation, we have u(α) = u and [I(α), u] = 0, [ρ(α), u] = 0 for all α ∈ R.

Proof of Lemma A.7. Consider the simple eigenvalue θ of Φ̂(α)∗. The associated eigenspace is one-
dimensional and contains u(α). We show that (I(α))+1/2u (I(α))−1/2 is another eigenvector of θ for Φ̂(α)∗:

Φ̂(α)∗((I(α))+1/2u (I(α))−1/2
)

=
∑

i

(vαi /λ
(α))(I(α))−1/2V ∗i I(α)uVi(I

(α))−1/2

= θ
∑

i

(vαi /λ
(α))(I(α))−1/2V ∗i I(α)Viu (I(α))−1/2

= θλ(α)−1 (I(α))−1/2
(∑

i

vαi V
∗
i I(α)Vi

)
u (I(α))−1/2

= θ (I(α))+1/2u (I(α))−1/2.

We therefore have (I(α))+1/2u (I(α))−1/2 = γu(α) for some γ ∈ C, and the relation uz = (u(α))z = Id
requires that γ is a zth root of unity. Now, (u(α))∗u(α) = Id implies that u∗I(α)u = I(α), so that

28



[I(α), u] = 0. This finally gives us u = θk
(α)

u(α) for some k(α) ∈ {0, . . . , z − 1}. Since we chose u(α) to be

analytic in α, the phase θk
(α)

is necessarily 1. Last, [ρ̂(α), u(α)] = 0 and this implies [ρ(α), u] = 0.

We can now conclude the proof of Proposition A.3. The validity of our parameterizations rely only on
the fact that the peripheral eigenvalues for Φ(α), Φ̂(α) and Φ̂(α)∗ are isolated. Since the peripheral spectra
for these maps are, respectively, λ(α)Sz, Sz and Sz, all peripheral eigenvalues are isolated uniformly for
α in any compact set containing the origin. This allows us to extend all parameterizations to be analytic
on R. Last, the eigenvector of Φ(α) (resp. Φ(α)∗) associated with the eigenvalue λ(α)θm is ρ(α)um (resp.
I(α)u−m), and this gives the form of the corresponding spectral projectors.

The following result gives some information about the peripheral spectrum of Φ(α) for complex α:

Corollary A.8. Let Φ, and u be as above. For any α0 in R, there exists a neighbourhood Nα0
of α0 in

C, such that for α in Nα0
the peripheral spectrum of Φ(α) is of the form {λ(α)θm,m = 0, . . . , z − 1} for

some λ(α) in C.

Proof. By Proposition A.3, the peripheral spectrum of Φ(α0) is {λ(α0)θm,m = 0, . . . , z − 1}. By standard

perturbation theory, for m = 0, . . . , z−1 there exist analytic functions α 7→ λ
(α)
m defined on a neighbourhood

of α0, such that λ
(α0)
m = λ(α0)θm and the λ

(α)
m are eigenvalues of Φ(α). In particular, there exists a

(complex) neighbourhood Nα0
of α0 such that for α in Nα0

, the eigenvalue of Φ(α) of maximum modulus

is one of the λ
(α)
m . Denote (consistently with the above notation) by I(α) an eigenvector of Φ(α)∗ for λ

(α)

0 .

Since u−1Vi = θViu
−1 we have Φ(α)∗(I(α)) = λ

(α)
0 θmI(α), so that λ

(α)
0 θm is an eigenvalue of Φ(α)∗ for

m = 0, . . . , z − 1. Since all such λ
(α)
0 θm have the same modulus, one has necessarily λ

(α)
m = λ

(α)
0 θm for

m = 0, . . . , z − 1. The conclusion follows by letting λ(α) := λ
(α)
0 .

B Adiabatic theorem for discrete non-unitary evolutions

We devote this section to elements of adiabatic theory that are suitable for discrete non-unitary time
evolution. To be precise, the theory is applicable a discrete dynamics arrising from a family (F (s))s∈[0,1]

of maps from a Banach space X to itself satisfying

Hyp0 The mapping s 7→ F (s) is a continuous B(X)-valued function of s ∈ [0, 1];

Hyp1 For all s ∈ [0, 1], sprF (s) = 1;

Hyp2 The peripheral spectrum of F (s) consists of finitely many isolated semi-simple eigenvalues for all
s ∈ [0, 1];

Hyp3 With P (s) be the spectral projector of F (s) onto the peripheral eigenvalues, the map s 7→ FP (s) :=
F (s)P (s) is a C2 B(X)-valued function of s ∈ [0, 1];

Hyp4 With Q(s) := Id− P (s),
` := sup

s∈[0,1]

sprF (s)Q(s) < 1.

We call such a family admissible for our adiabatic theorems. We emphasize that hypotheses are stated in
terms of spectral radii, and not of norms as was the case for the hypotheses [HJPR17], which we recall
here (adapting slightly the notation for coherence) for comparison:

H1. For all s ∈ [0, 1], ‖F (s)‖ ≤ 1, i.e. F (s) is a contraction;

H2. There is a uniform gap ε > 0 such that, for s ∈ [0, 1], each peripheral eigenvalue ej(s) ∈ spF (s) ∩ S1 is
simple, and |ej(s)− ei(s)| > 2ε for any ej(s) 6= ei(s) in spF (s) ∩ S1;

H3. Let Pm(s) be the spectral projector associated with em(s) ∈ spL(s) ∩ S1, and P (s) =
∑

m Pm(s) the
peripheral spectral projector. The map s 7→ FP (s) := F (s)P (s) is C2 on [0, 1];

H4. With Q(s) := Id− P (s),

` := sup
s∈[0,1]

‖F (s)Q(s)‖ < 1.

In applications, the Banach space X is again I1(HS) equipped with the trace norm, and the role
of F (s) is played by appropriate deformations of the reduced dynamics L(s) arising from a repeated
interaction system satisfying ADRIS.
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B.1 Adiabatic theorem for products of projectors

We start with a result about products of projectors.

Definition B.1. Let
(
Pm(s)

)
s∈[0,1]

, m = 1, . . . , z be C1 families of projector-valued operators in a Banach

space X, satisfying
∑z
m=1 P

m(s) = Id for all s ∈ [0, 1]. Let W : [0, 1]→ B(X) be the family of intertwining
operators given by

W ′(s) =

z∑

m=1

Pm′(s)Pm(s)W (s), W (0) = Id. (B.1)

Standard results (see e.g. section II.5 in [Kat76]) imply that

W (s)Pm(0) = Pm(s)W (s) for all s ∈ [0, 1] and m = 1, . . . , z, (B.2)

and that W (s) is invertible, with inverse W−1(s) solution to V ′(s) = −∑z
m=1 V (s)Pm′(s)Pm(s). Note

that, if we are given a single C1 family (P (s))s∈[0,1] of operators then we can apply the above to
P 1(s) = P (s), P 2(s) = Id− P (s).

Remark that we have the immediate relations (where Pm′(s) is the derivative of s 7→ Pm(s))

Pm(s)Pm′(s)Pm(s) = 0 for all s ∈ [0, 1] and m = 1, . . . , z. (B.3)

For any family
(
Pm(s)

)
s∈[0,1]

as above we will denote by CP the quantity

CP = sup
s∈[0,1]

sup
m=1,...,z

max
(
‖Pm(s)‖, ‖Pm′(s)‖

)
. (B.4)

Proposition B.2. Let
(
Pm(s)

)
s∈[0,1]

and W be as in Definition B.1. Then there exists C > 0 and T0 ∈ N
such that for T ≥ T0 and {sk}k∈{0,1,2,...,T} ⊂ [0, 1] with |sk − sk−1| = 1/T with k ≤ T one has

∥∥Pm(sk)Pm(sk−1) · · ·Pm(s0)−W (sk)Pm(0)W−1(s0)
∥∥ ≤ C/T (B.5)

where C and T0 depend on CP defined by (B.4) only, and C is a continuous function of CP .

Remark B.3. Before we prove this, let us mention

i. For simplicity, differentiability is understood in the norm sense in case dim(X) =∞.

ii. It is enough that the maps s 7→ Pm(s) be C1 for this proposition to hold.

iii. The sk’s need not be distinct, except those with consecutive indices.

iv. The norms ‖Pm(s)‖ are in general larger than one.

Proof. For any s, s′ ∈ [0, 1], we have

Pm(s)Pm(s′) = W (s)Pm(0)W−1(s)W (s′)Pm(0)W−1(s′),

where, using the shorthand K(s) =
∑z
k=1 P

k′(s)P k(s),

W−1(s)W (s′) = Id +W−1(s)(W (s′)−W (s))

= Id +W−1(s)

∫ s′

s

K(t)W (t) dt (B.6)

= Id +

∫ s′

s

(
W−1(s)W (t)

)
W−1(t)K(t)W (t) dt

= Id +

∫ s′

s

W−1(t)K(t)W (t) dt+

∫ s′

s

∫ t

s

W−1(s)K(u)W (u) du W−1(t)K(t)W (t) dt.
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In addition, by relation (B.3), Pm(t)Pm′(t)Pm(t) ≡ 0, so that

Pm(0)W−1(t)K(t)W (t)Pm(0) ≡ 0 (B.7)

and

Pm(s)Pm(s′) = W (s)Pm(0)
(

Id +

∫ s′

s

∫ t

s

W−1(s)K(u)W (u)W−1(t)K(t)W (t) dudt
)
Pm(0)W−1(s′).

Denote by J(s, s′) the integral term:

J(s, s′) =

∫ s′

s

∫ t

s

W−1(s)K(u)W (u)W−1(t)K(t)W (t) du dt

and
J̃(s, s′) = J(s, s′) + [Pm(0), J(s, s′)].

We have
Pm(0)J(s, s′)Pm(0) = J̃(s, s′)Pm(0),

with
max

(
‖J(s, s′)‖, ‖J̃(s, s′)‖

)
≤ c(s− s′)2,

for some c > 0 which is a continuous function of CP , (B.4). Using these considerations iteratively on the
product (B.5), we get

W (sk)Pm(0)W (sk)−1W (sk−1)Pm(0)W−1(sk−1) · · ·W (s0)Pm(0)W−1(s0)

= W (sk)Pm(0)
(
Id + J(sk, sk−1)

)
Pm(0)

(
Id + J(sk−1, sk−2)

)
Pm(0)

· · ·Pm(0)
(
Id + J(s1, s0)

)
Pm(0)W−1(s0)

= W (sk)
(
Id + J̃(sk, sk−1)

)(
Id + J̃(sk−1, sk−2)

)
· · ·
(
Id + J̃(s1, s0)

)
Pm(0)W−1(s0).

We denote by Id +R1 the product

Id +R1 =
(
Id + J̃(sk, sk−1)

)(
Id + J̃(sk−1, sk−2)

)
· · ·
(
Id + J̃(s1, s0)

)
.

With c as above, by a standard combinatorics argument, we get

‖R1‖ ≤
k∑

k=1

(c/T 2)k
(
n
k

)
=
(
1 + c/T 2

)k − 1 ≤
(
1 + c/T 2

)T − 1 = eT ln(1+c/T 2) − 1,

so that ‖R1‖ ≤ C ′/T , for T larger than some T0 (which depends only on c), where C ′ has the required
properties. This yields the result with a C as stated, since sups∈[0,1] ‖W±1(s)‖ and ‖Pm(0)‖ satisfy the
requirements as well.

If the projectors P (s) are rank one, they write P (s) = φ(s)ψ∗(s) with φ(s) ∈ X and ψ(s)∗ ∈ X∗

such that ψ∗(s)(φ(s)) = 1. In applications, we will consider linear forms associated to the inner product
(M,N) 7→ Tr(M∗N) for M and N in B(HS). We then have the following result.

Corollary B.4. Let
(
Pm(s)

)
s∈[0,1]

, m = 1, . . . , z be C1 families of rank one projectors, i.e. Pm(s) =

φm(s)ψ∗m(s), s ∈ [0, 1], where the maps s 7→ φm(s) and s 7→ ψ∗m(s) are C1 and non-vanishing for
m = 1, . . . , z. Then there exist C > 0 and T0 ∈ N such that for T ≥ T0 one has for any k ≤ T

sup
m=1,...,z

∥∥Pm( kT )Pm(k−1
T ) . . . Pm( 1

T )Pm(0)− e−
∫ k/T
0 ψ∗m(t)

(
φ′m(t)

)
dtφm(1)ψ∗m(0)

∥∥ ≤ C/T

where C and T0 depend on

cP = sup
s∈[0,1]

max
m=1,...,z

max
(
‖φm(s)‖, ‖φ′m(s)‖, ‖ψ∗m(s)‖, ‖ψ∗m′(s)‖

)
(B.8)

only, and C is a continuous function of cP .
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Proof. We apply Proposition B.2 with sk = k/T . Since s0 = 0, and ψ∗j (0) is a linear form, it is enough

to compute φ̃m(s) := W (s)φm(0). By the intertwining property, φ̃m(s) ∈ RanPm(s), i.e. φ̃m(s) =
vm(s)φm(s), where vm(s) ∈ C. Because of the differential equation (B.1) and the identity (B.3), φ̃m(s)
satisfies

0 ≡ Pm(s)φ̃′m(s) = φm(s)ψ∗m(s)
(
v′m(s)φm(s) + vm(s)φ′m(s)

)
= (v′m(s) + vm(s)ψ∗m(s)

(
φ′m(s)

))
φm(s),

so that vm(s) = e−
∫ s
0
ψ∗m(φm(t)) dt. This concludes the proof.

B.2 Main result

We now turn to our final adiabatic theorem. We recall that an admissible family
(
F (s)

)
s∈[0,1]

is one

that satisfies Hyp0–Hyp4. We denote by λm(s) and Pm(s), m = 1, . . . , z the peripheral eigenvalues and
associated spectral projectors of F (s); assumptions (Hyp2), (Hyp3) and standard pertubation theory
ensure that one can parametrize eigenvalues such that s 7→ λm(s) and s 7→ Pm(s) are C2 functions. We
denote by CP and W (s) the constant (B.4) and the family of intertwining operators in Definition B.1.

Theorem B.5. If the family (F (s))s∈[0,1] is admissible, then for any `′ ∈ (`, 1) there exist C > 0 and
T0 ∈ N such that for T ≥ T0 one has

sup
k=1,...,T

∥∥F ( kT ) · · ·F ( 1
T )−

z∑

m=1

( k∏

n=1

λjn
)
W ( kT )Pm(0)− FQ( kT ) · · ·FQ( 1

T )Q(0)
∥∥ ≤ C

T (1− `′)

for all T ≥ T0, where FQ(s) denotes Q(s)F (s). Moreover,

‖FQ( kT ) · · ·FQ( 1
T )Q(0)‖ ≤ C`′k,

and C depends on CP only, is a continuous function of CP , and T0 depends on CP and `′ only.

Proof. The proof consists of revisiting the proof of Theorem 4.4 in [HJPR17], relaxing the hypotheses
made there to Hyp0–Hyp4. We first focus on the combinatorial part of the proof stated as Proposition
4.5 in [HJPR17], borrowing freely the notation used there. We denote in particular FP (s) = P (s)F (s) and

F#
k = F ( kT )#, where # ∈ {P,Q}. Under our hypotheses on the spectral radii instead of the assumptions

on the norm used in [HJPR17], we will see below that the starting estimates

‖
∏

a∈An
FQa ‖ ≤ `|An|, ‖

∏

b∈Bn
FPb ‖ ≤ 1. (A9 of [HJPR17])

used in Proposition 4.5 in [HJPR17] are replaced by the following bounds. For some constants D,D′ > 1,
and `′ < 1,

‖
∏

a∈An
FQa ‖ ≤ D(`′)|An|, ‖

∏

b∈Bn
FPb ‖ ≤ D′, (NewBounds)

where D,D′ are independent of the number of terms in the products, and satisfy the required dependence.
Following Proposition 4.5 in [HJPR17], we need to bound the norms of terms of the following forms:

( ∏

a∈Ad
FQa
)( ∏

b∈Bd
FPb
)
. . .
( ∏

a∈A1

FQa
)( ∏

b∈B1

FPb
)
P0, (B.9)

( ∏

b∈Bd+1

FPb
)( ∏

a∈Ad
FQa
)( ∏

b∈Bd
FPb
)
. . .
( ∏

a∈A1

FQa
)( ∏

b∈B1

FPb
)
P0, (B.10)

( ∏

a∈Ad+1

FQa
)( ∏

b∈Bd+1

FPb
)
. . .
( ∏

a∈A2

FQa
)( ∏

b∈B2

FPb
)( ∏

a∈A1

FQa
)
P0, (B.11)

( ∏

b∈Bd+1

FPb
)( ∏

a∈Ad
FQa
)( ∏

b∈Bd−1

FPb
)
. . .
( ∏

a∈A2

FQa
)( ∏

b∈B2

FPb
)( ∏

a∈A1

FQa
)
P0. (B.12)
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In [HJPR17], we obtain the bounds

‖(B.9)‖ ≤ (c/T )2d−1 `
∑
n |An|, ‖(B.10)‖ ≤ (c/T )2d `

∑
n |An|,

‖(B.11)‖ ≤ (c/T )2d+1 `
∑
n |An|, ‖(B.12)‖ ≤ (c/T )2d `

∑
n |An|,

(Bounds from HJPR15)

via (A9 of [HJPR17]). Instead, if we use (NewBounds), we obtain the bounds

‖(B.9)‖ ≤ (c/T )2d−1Dd`′
∑
n |An|D′d, ‖(B.10)‖ ≤ (c/T )2dDd+1`′

∑
n |An|D′d,

‖(B.11)‖ ≤ (c/T )2d+1Dd+1`′
∑
n |An|D′d+1, ‖(B.12)‖ ≤ (c/T )2dDd+1 `′

∑
n |An|D′d.

For the bound on form (B.9), for example, since we assumed D,D′ > 1, then we may simply change
c → cDD′ and obtain essentially the same bound as in [HJPR17]. Thus, the rest of the combinatorial
argument consisting in counting the number of such terms for each d, multiplying by this bound, and
summing over d, yields the same final bounds as in Proposition 4.5 in [HJPR17], up to modified constants.

We now turn to find D,D′, `′ such that we have (NewBounds).

Lemma B.6. Under the assumptions Hyp0–Hyp4, there exist T0 ∈ N and D′ > 0, both depending on
CP only, and D′ being a continuous function of CP , such that for all T ≥ T0 and n0 < n ≤ T , we have

‖FPn · · ·FPn0
‖ < D′.

Proof. For each k ∈ {n0, . . . , n}, write FPk =
∑z
m=1 λ

m
k P

m
k using semisimplicity of peripheral eigenvalues.

Recall that for each m, λm(s) and Pm(s) are C2 in [0, 1]. Then,

n∏

k=n0

FPk =

n∏

k=n0

N∑

m=1

λmk P
m
k

=

z∑

m=1

(
n∏

k=n0

λmk

)
Pmn · · ·Pmn0

+
∑

in0 ,...,in=1,...,z
not all equal

(
n∏

k=n0

λikk

)
P inn · · ·P

in0
n0 .

For each m and all k′ ≤ k, Proposition B.2 gives for T ≥ T0

‖Pmk · · ·Pmk′ ‖ ≤ C/T + sup
1≥s>s′≥0

‖Pm(s)W (s)W (s′)−1‖ ≤ C(1 + 1/T ), (B.13)

for some constant C which depends continuously on CP . Again we can bound this C(1 + 1/T ) by a new
constant C with the properties as the original C. Taking k = n and k′ = n0 in (B.13) bounds the first sum
by z C, since the eigenvalues are on the unit circle. For the second sum, we know that P ikP

m
k−1 ≤ CP /T

if i 6= m, as a consequence of the relation P i(s)Pm(s) = 0. Bounding the terms in the second sum is
again done by a simple combinatorial argument: let d be the number of transitions Pmk P

i
k−1 where m 6= i.

In each term in the second sum, there is at least one such transition by design. If we have n − n0 stars
representing projectors, and d bars representing transitions, then there are n − n0 − 1 gaps between the
stars, from which we need to choose d to put a bar. So

(
n−n0−1

d

)
is the number of ways to divide the

projectors into groupings. For each grouping, we have at most z choices of which projector it should be.
So in total, there are at most (

n− n0 − 1

d

)
zd+1

terms with d transitions. Each such term has norm bounded by Cd+1CdP /T
d via (B.13), and using that

each transition yields a factor CP /T , and that all the eigenvalues have modulus one. Lastly, there cannot
be more than n − n0 − 1 transitions (in fact, fewer than (n − n0)/z). So, in total, we may bound the
second sum by

n−n0−1∑

d=1

zC

(
n− n0 − 1

d

)
(zCCP )d

T d
≤ zC

(
1 +

zCCP
T

)n−n0−1
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≤ zC
(

1 +
zCCP
T

)T
≤ zC exp(zCCP ).

In total then, we have
‖FPn · · ·FPn0

‖ ≤ zC(1 + exp(zCCP )) =: D′.

Let us turn now to compositions of LQ’s.

Lemma B.7. Under the assumptions Hyp0–Hyp4, for all `′ ∈ (`, 1), there exists D > 0, T0 ∈ N
depending on CP only, and D a continuous function of CP , such that for any T ≥ T0 and n0 < n ≤ T ,
we have

‖FQn · · ·FQn0
‖ ≤ D`′n−n0 .

Proof. Let `′ ∈ (`, 1). As shown in Lemma 4.3 of [HJPR17], the spectral hypothesis Hyp4 and the
regularity assumptions Hyp0, Hyp3 imply that given ε > 0, we may choose m ∈ N uniformly in s so
that

‖FQ(s)m‖ < (`+ ε)m. (B.14)

Choose ε so that `+ ε < `′.
We now deduce by induction that for all N 3 m < T , ‖FQk+m · · ·F

Q
k − (FQk )m+1‖ ≤ δm(T ) for some

map δm : R+
∗ → R+

∗ , independent of k, such that limT→∞ δm(T ) = 0. This is trivially true for m = 0 and
for m ≥ 1, we have

FQk+m · · ·F
Q
k − (FQk )m+1 = (FQk+m − F

Q
k )(FQk+m−1 · · ·F

Q
k ) + FQk

(
(FQk+m−1 · · ·F

Q
k )− (FQk )m−1

)
.

With FQj = FQ(s = j
T ), the first term is bounded above by

∥∥FQ
(
k+m
T

)
− FQ

(
m
T

)∥∥( sup
s∈[0,1]

‖FQ(s)‖
)m

≤ sup
s∈[0,1]

s+m
T
∈[0,1]

∥∥FQ
(
s+ m

T

)
− FQ

(
m
T

)∥∥( sup
s∈[0,1]

‖FQ(s)‖
)m
. (B.15)

This expression goes to zero as T →∞ by uniform continuity of FQ on [0, 1], and depends parametrically
on m only. The second term is bounded above by sups∈[0,1] ‖FQ(s)‖δm−1(T ), by induction hypothesis,

hence the claim is proved with δm(T ) = (B.15) + sups∈[0,1] ‖FQ(s)‖δm−1(T ).

Thus, given ε and m chosen so that (B.14) above holds, for ˜̀ = (` + ε)m + δm(T ), we have

‖FQk+m · · ·F
Q
k ‖ < ˜̀, where ˜̀< 1 if T > T (m, ε), for some T (m, ε) large enough.

Any integer p ≥ m can be partitioned as

p = m+m+ · · ·+m︸ ︷︷ ︸
[p/m] times

+ (p−m[p/m])︸ ︷︷ ︸
<m

,

so that for c = suph=1,2,...,m−1

(
sups∈[0,1] ‖FQ(s)‖

)h
, the previous bound yields,

‖FQk+p · · ·F
Q
k ‖ ≤ c˜̀[p/m] ≤ c˜̀(p/m)−1 =

c
˜̀

(
˜̀1/m

)p
.

Note that here, in fact, we do not need p ≥ m. If p < m, then ‖FQk+p · · ·F
Q
k ‖ ≤ c, 1

˜̀
˜̀p/m > 1, and the

bound still holds. Finally, set `′′ = (˜̀)1/m. Since (` + ε)m + δm(T ) ≤ ((` + ε) + δm(T )1/m)m, we have
`′′ < `+ ε+ δm(T )1/m. For T > T ′(m, ε) for some T ′(m, ε) large enough, we have δm(T )1/m < `′ − (`+ ε),
and therefore `′′ < `′. Thus, for D = c/˜̀, we have

‖FQn · · ·FQn0
‖ ≤ D`′′n−n0 < D`′n−n0 .

Our next ingredient is to approximate the composition FPk · · ·FP0 P (0), i.e. to show the equivalent of
Proposition 4.6 in [HJPR17].
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Lemma B.8. Under the assumptions and notation of Proposition B.5, there exist T0 and C > 0 with the
same properties as in that Proposition, such that

sup
k=1,...,T

∥∥FP ( kT ) · · ·FP ( 1
T )P (0)−

z∑

m=1

( k∏

n=1

λmn
)
W ( kT )Pm(0)

∥∥ ≤ C/T. (B.16)

Proof. We define for all k ≤ T

Kk = W ( kT )P (0), K†k = P (0)W−1( kT ), (B.17)

Φk =
∑

j

( k∏

n=1

λmn
)
Pm(0), Φ†k =

∑

j

( k∏

n=1

λ̄mn
)
Pm(0), (B.18)

Ak = KkΦk, A†k = Φ†kK
†
k. (B.19)

The above expression for Ak gives in particular that

Ak =
∑

j

( k∏

n=1

λmn
)
W ( kT )Pm(0). (B.20)

We have the following identities which are consequences of the properties of the intertwining operators
W :

KkK†k = Pk, K†kKk = P (0), KkPm(0) = Pmk Kk, K†kPmk = Pm(0)K†k, (B.21)

ΦkP
m(0) = Pm(0)Φk, Φ†kP

m(0) = Pm(0)Φ†k, ΦkΦ†k = P (0) = Φ†kΦk, (B.22)

and

Kk =WkKk−1, K†k = K†k−1W
†
k, (B.23)

where

Wk = W ( kT )W−1(k−1
T )P (k−1

T ), W†k = W (k−1
T )W−1( kT )P ( kT ). (B.24)

Hence Ak is uniformly bounded in T and k ≤ T , since Kk and Φk are, and satisfies relevant intertwining
properties. The notation is chosen to be close to that used in the proof of Proposition 4.6 in [HJPR17],
and one gets that all steps of that of Proposition 4.6 in [HJPR17] go through, which ends the proof.

This concludes the proof of Theorem B.5.

Combining Theorem B.5 with the proof of Corollary B.4 immediately implies the following:

Corollary B.9. If the family (F (s))s∈[0,1] is admissible, and its peripheral eigenvalues are simple, with
associated projectors Pm(s) = φm(s)ψ∗m(s) then for any `′ ∈ (`, 1) there exist C > 0 and T0 ∈ N, such that
for T ≥ T0 and k ≤ T ,

∥∥F ( kT ) · · ·F ( 1
T )−

z∑

m=1

( k∏

n=1

λmn
)

e−
∫ k/T
0 ψ∗m(t)

(
φ′m(t)

)
dtφm(1)ψ∗m(0)− FQ( kT ) · · ·FQ( 1

T )Q(0)
∥∥ ≤ C

T (1− `′) .

Moreover,

‖FQ( kT ) · · ·FQ( 1
T )Q(0)‖ ≤ C`′k

and C depends on cP defined in (B.8) only, is a continuous function of cP , and T0 depends on cP and `′

only.
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C Proofs for Section 3

Proof of Lemma 3.2. By definition

ςT (ai, af,~ı,~) = log
Tr
(
UT · · ·U1(πi

ai ⊗Π~ı)(ρ
i ⊗ Ξ)(πi

ai ⊗Π~ı)U
∗
1 · · ·U∗T (πf

af ⊗Π~)
)

Tr
(
U∗1 · · ·U∗T (πf

af ⊗Π~)(ρ
f
T ⊗ Ξ)(πf

af ⊗Π~)UT · · ·U1(πi
ai ⊗Π~ı)

)

using assumptions i., ii. and iii.,

= log

Tr(ρiπi
ai )

dimπi
ai

∏T
k=1

Tr(ξkΠ
(k)
ik

)

dim Π
(k)
ik

Tr
(
UT · · ·U1(πi

ai ⊗Π~ı)U
∗
1 · · ·U∗T (πf

af ⊗Π~)
)

Tr(ρfπf

af )

dimπf

af

∏T
k=1

Tr(ξkΠ
(k)
jk

)

dim Π
(k)
jk

Tr
(
U∗1 · · ·U∗T (πf

af ⊗Π~)UT · · ·U1(πi
ai ⊗Π~ı)

)

= log
Tr(ρiπi

ai) dimπf
af

Tr(ρfπf
af) dimπi

ai

+ log

T∏

k=1

Tr(e−βkhEkΠ
(k)
ik

)

Zk dim Π
(k)
ik

− log

T∏

k=1

Tr(e−βkhEkΠ
(k)
jk

)

Zk dim Π
(k)
jk

+ log
Tr
(
UT · · ·U1(πi

ai ⊗Π~ı)U
∗
1 · · ·U∗T (πf

af ⊗Π~)
)

Tr
(
U∗1 · · ·U∗T (πf

af ⊗Π~)UT · · ·U1(πi
ai ⊗Π~ı)

)

and because
Tr(e

−βkhEkΠ
(k)
ik

)

dim Π
(k)
ik

= exp
(
−βk Tr(e

−βkhEk
Π

(k)
ik )

dim Π
(k)
ik

)
by assumption iii. again,

= log
Tr(ρiπi

ai) dimπf
af

Tr(ρfπf
af) dimπi

ai

+

T∑

k=1

Tr(−βkhEkΠ
(k)
ik

)

dim Π
(k)
ik

−
T∑

k=1

Tr(−βkhEkΠ
(k)
jk

)

dim Π
(k)
jk

+ log
Tr
(
UT · · ·U1(πi

ai ⊗Π~ı)U
∗
1 · · ·U∗T (πf

af ⊗Π~)
)

Tr
(
U∗1 · · ·U∗T (πf

af ⊗Π~)UT · · ·U1(πi
ai ⊗Π~ı)

)

and the last term vanishes by cyclicity of the trace.

Proof of Proposition 3.4. We start with the relation (3.3). On one hand,

ET
(

log
Tr(πi

aiρi)

dimπi
ai

)
=
∑

ai

log
Tr(πi

aiρi)

dimπi
ai

∑

af,~ı,~

PFT (ai, af,~ı,~)

=
∑

ai

log
Tr(πi

aiρi)

dimπi
ai

∑

af,~ı,~

Tr
(
UT · · ·U1(πi

aiρiπi
ai ⊗Π~ı Ξ Π~ı)U

∗
1 · · ·U∗T (πf

af ⊗Π~)
)

=
∑

ai

log
Tr(πi

aiρi)

dimπi
ai

∑

~ı

Tr
(
UT · · ·U1(πi

aiρiπi
ai ⊗Π~ı Ξ Π~ı)U

∗
1 · · ·U∗T (Id⊗ Id)

)
.

Using that each ξk is a function of Yk, we have
∑
~ı Π~ı Ξ Π~ı = Ξ, and

ET
(

log
Tr(πi

aiρi)

dimπi
ai

)
=
∑

ai

log
Tr(πi

aiρi)

dimπi
ai

Tr
(
UT · · ·U1(πi

aiρiπi
ai ⊗ Ξ)U∗1 · · ·U∗T

)
.

As ρi is a function of Ai, and using the cyclicity of the trace, we have

ET
(

log
Tr(πi

aiρi)

dimπi
ai

)
=
∑

ai

log
Tr(πi

aiρi)

dimπi
ai

Tr
(
πi
ai ⊗ Ξ

)Tr(πi
aiρi)

dimπi
ai

,

=
∑

ai

Tr(πi
aiρi) log

Tr(πi
aiρi)

dimπi
ai

.

Using the commutation relation [πi
ai , ρi] = 0, the right-hand side is precisely −S(ρi). The term involving

ρf is treated similarly.
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We turn to (3.4):

ET
( T∑

k=1

βk(E
(k)
jk
− E(k)

ik
)
)

=
∑

~ı,~

T∑

k=1

βk(E
(k)
jk
− E(k)

ik
)
∑

ai,af

PFT (ai, af,~ı,~)

using [ρi, Ai] = 0,

=
∑

~ı,~

T∑

k=1

βk(E
(k)
jk
− E(k)

ik
) Tr

(
UT · · ·U1(ρi ⊗Π~ıΞΠ~ı)U

∗
1 · · ·U∗T (Id⊗Π~)

)

=
∑

~

T∑

k=1

βkE
(k)
jk

Tr
(
UT · · ·U1(ρi ⊗ Ξ)U∗1 · · ·U∗T (Id⊗Π~)

)

−
∑

~ı

T∑

k=1

βkE
(k)
ik

Tr
(
UT · · ·U1(ρi ⊗Π~ıΞΠ~ı)U

∗
1 · · ·U∗T (Id⊗ Id)

)

=

T∑

k=1

∑

jk

βk Tr
(
UT · · ·U1(ρi ⊗ Ξ)U∗1 · · ·U∗T (Id⊗Π

(k)
jk
E

(k)
jk

)
)

−
T∑

k=1

∑

ik

βk Tr
(
ρi ⊗ Ξ Π

(k)
ik
E

(k)
ik

)
.

Using that each ξk is a function of Yk, we have
∑
ik

Π
(k)
ik
E

(k)
ik

= hEk and thus

ET
( T∑

k=1

βk(E
(k)
jk
− E(k)

ik
)
)

=

T∑

k=1

βk Tr(ξf
khEk)−

T∑

k=1

βk Tr(ξi
khEk).

Proof of Proposition 3.5.
Assume that [Y (s), ξ(s)] = 0 for all s. Then by definition and from expression (2.9)

E
(
eα∆ytot

T
)

=
∑

~ı,~

∑

ai,af

exp
(
α

Y∑

k=1

(y
(k)
jk
− y(k)

ik
)
)
PFT (ai, af,~ı,~)

=
∑

~ı,~

Tr
(
UT · · ·U1

(∑

ai

πi
aiρiπi

ai ⊗
T∏

k=1

e
−αy(k)

ik Πik Ξ
)
U∗1 · · ·U∗T

(∑

b

πf
af ⊗

T∏

k=1

e
αy

(k)
jk Πjk

))

= Tr
(
UT · · ·U1

(∑

ai

πi
aiρiπi

ai ⊗
T∏

k=1

e−αYk Ξ
)
U∗1 · · ·U∗T

(
Id⊗

T∏

k=1

eαYk
))

= Tr
(
L(α)
Y (TT ) ◦ . . . ◦ L(α)

Y ( 1
T )(
∑

ai

πi
aiρiπi

ai)
)
.

Assume in addition that [Ai, ρi] = 0. Then similarly, for α1, α2 in R,

E
(
eα1∆ytot

T +α2∆aT
)

=
∑

~ı,~

∑

ai,af

exp
(
α1

Y∑

k=1

(y
(k)
jk
− y(k)

ik
)
)

eα2(ai−af) PFT (ai, af,~ı,~)

=
∑

~ı,~

Tr
(
UT · · ·U1

(∑

ai

e+α2a
i

πi
aiρi ⊗

T∏

k=1

e
−α1y

(k)
ik Πik Ξ

)
U∗1 · · ·U∗T (

∑

b

e−α2a
f

πf
af ⊗

T∏

k=1

e
α1y

(k)
jk Πjk)

)
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= Tr
(
UT · · ·U1

(
e+α2A

i

ρi ⊗
T∏

k=1

e−α1Yk Ξ
)
U∗1 · · ·U∗T (e−α2A

f ⊗
T∏

k=1

eα1Yk)
)

= Tr
(
e−α2A

fL(α1)
Y (TT ) ◦ . . . ◦ L(α1)

Y ( 1
T )(e+α2A

i

ρi)
)
.

Proof of Remark 3.9. The dependence in s will be treated last, since it fixes the overall regularity, as we
will see. We consider the applications between the different Banach spaces involved in the definition of

L(α)
Y = TrE(eαY U (τ)(·⊗ξ)e−αY U (−τ)). We will denote the trace norm by ‖·‖1 when the underlying Hilbert

space is determined by the context, and we use the shorthand HT := HS ⊗HE for the total Hilbert space.

1. The map P such that ξ 7→ Pξ = · ⊗ ξ mapping I1(HE) to B(I1(HS), I1(HT )) is a linear isometry,
hence a C∞ map. Indeed, linearity is immediate. For all η ∈ I1(HS), ‖Pξ(η)‖I1(HT ) = ‖η ⊗ ξ‖1 =
‖η‖1‖‖ξ‖1, which shows ‖Pξ‖B(I1(HS),I1(HS⊗HE)) = ‖ξ‖1.

2. For any Hilbert spaces H, the maps (α,A) 7→ αA : C × B(H) 7→ B(H) and (A,B) 7→ AB : B(H) ×
B(H)→ B(H) are bilinear, thus C∞, and the map A 7→ eA : B(H) 7→ B(H) is C∞ as well.

3. The map from B(HT ) × B
(
I1(HE),B

(
I1(HS),B(HT )

))
× B(HT ) → B

(
I1(HE),B

(
I1(HS),B(HT )

))

such that (A,P,B) 7→ APB is well defined and trilinear, which makes it C∞. Indeed, for any
(η, ξ) ∈ I1(HS) × I1(HE), we have APB(ξ) = APξB : η 7→ APξ(η)B. The trace norm of the latter
in HT is

‖APξ(η)B‖1 ≤ ‖A‖B(HT )‖Pξ(η)‖I1(HT )‖B‖B(HT ) = ‖A‖B(HT )‖Pξ(·)‖B(I1(HS),I1(HT ))‖B‖B(HT )‖η‖1.

This yields ‖APB‖B(I1(HE),B(I1(HS),I1(HT ))) ≤ ‖A‖B(HT )‖P·(·)‖B(I1(HE),B(I1(HS)),I1(HT ))‖B‖B(HT ) and
boundedness of the trilinear map.

4. We saw that the map TrE : I1(HS ⊗HE)→ I1(HS) is a linear contraction, hence it is C∞.

Consequently, we get that (α, Y, U (τ), ξ) 7→ TrE(eαY U (τ)(· ⊗ ξ)e−αY U (−τ)) is a C∞ map from C ×
B(HT )×B(HT )×I1(HE) to B(I(HS)). The hypotheses made on the s-dependence of Y , U (τ) and ξ yield
the result.
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