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Abstract

The reliability of a complex industrial system can rarely be assessed analytically. As system
failure is often a rare event, crude Monte-Carlo methods are prohibitively expensive from
a computational point of view. In order to reduce computation times, variance reduction
methods such as importance sampling can be used. We propose an adaptation of this method
for a class of multi-component dynamical systems.

We address a system whose failure corresponds to a physical variable of the system
(temperature, pressure, water level) entering a critical region. Such systems are common in
hydraulic and nuclear industry. In these systems, the statuses of the components (on, off,
or out-of-order) determine the dynamics of the physical variables, and is altered both by
deterministic feedback mechanisms and random failures or repairs. In order to deal with
this interplay between components status and physical variables we model trajectory using
piecewise deterministic Markovian processes (PDMP).

We show how to adapt the importance sampling method to PDMP, by introducing a
reference measure on the trajectory space, and we present a biasing strategy for importance
sampling. A simulation study compares our importance sampling method to the crude
Monte-Carlo method for a three-component-system.

Keywords: Monte-Carlo acceleration, importance sampling, hybrid dynamic system,
piecewise deterministic Markovian process, cross-entropy, reliability, PyCATSHOO

1. Introduction

For both safety and quality issues, nuclear, hydraulic and other industries resort to
probabilistic safety assessment to quantify the reliability of their systems. In recent years,
dynamic reliability methods have been gaining interest as they avoid conservative static ap-
proximations of the systems and better capture the dynamics involved in the systems. When
dealing with complex industrial systems, reliability analysis faces two main challenges: the
first challenge is related to the modeling of such complex systems, the second one concerns
the quantification of the reliability.
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1.1. A model based on a PDMP

In many industrial systems, failure corresponds to a physical variable of the system
(temperature, pressure, water level) entering a critical region. The physical variables usually
can enter this region only if a sufficient number of the basic components of the system are
damaged. In order to estimate the reliability we need an accurate model of the trajectories
of the physical variables. In industrial systems, the physics of the system is often determined
by ordinary differential equations which depend on the statuses of the components within
the system (on, off or failed). It is also possible that the failure and repair rates of the
components depend on the physical conditions, so the values of physical variables can impact
the statuses of the component. In order to deal with this interplay between the physical
variables and the statuses of components, we need to model their joint evolution. The vector
gathering these two elements is called the state of the system. To address the challenge of
modeling the trajectory of the state of the system, we fall in with the work of [15] and [7],
as we model the evolution of the state of the system by a piecewise deterministic Markovian
process (PDMP). PDMPs were introduced by M.H.A Davis in [5, 6], they are meant to
represent a large class of Markovian processes that do not include diffusion, and as such
they benefit from high modeling capacity. These processes can easily incorporate component
aging, failure on demand, and delays before repairs.

1.2. Accelerate reliability assessment by using importance sampling

The second challenge is that the reliability of a complex industrial system can rarely
be assessed analytically, so reliability analysis often relies on Monte-Carlo simulations tech-
niques. EDF has recently developed the PyCATSHOO toolbox [3] [4], which allows the
simulation and the modeling of dynamic hybrid systems. PyCATSHOO bases this modeling
on PDMPs. Thanks to Monte Carlo simulation, PyCATSHOO evaluates the dependability
criteria of the system among which is the reliability of the system. The objective of our
work is to set up new algorithms to accelerate the reliability assessment with PyCATSHOO.

In the context of reliable systems, crude Monte-Carlo techniques perform poorly because
the system failure is a rare event. Indeed, with the Monte-Carlo method when the probability
of failure approaches zero, the number of simulations needed to get a reasonable precision
on the relative error increases dramatically and so does the computational time. To reduce
this computational burden, one option is to reduce the number of simulations needed by
using a variance reduction method. Amongst variance reduction techniques, we may think
at multilevel splitting techniques and at importance sampling techniques. In this article, we
provide an adaptation of importance sampling to PDMP trajectories.

1.3. Prerequisite for importance sampling

Importance sampling consists in simulating from a more fragile system, while eliminating
the induced bias by weighting the simulation outputs by a likelihood ratio. To define such
a likelihood ratio for PDMP trajectories, it is necessary to have a measure dominating both
the law of the trajectories of our system and the law of the weaker system used for simu-
lations. PDMP are very degenerate processes, their laws involve hybrid random variables
which have continuous and discrete parts. In this context, it is important to ensure we do
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have a reference measure to define properly the likelihood ratio.

In our case the state of the system at time t is denoted by Zt. It is given by both values
of the physical variables, gathered in the vector Xt, and the statuses of all the components
in the system, represented by a vector Mt, so Zt = (Xt,Mt). Throughout the paper we call
Xt the position of the system, and Mt the mode of the system. Z = (Zt)t∈[0,tf ) represents a
trajectory of our PDMP up to a final observation time tf . We consider that the trajectories
are all initiated in a state zo. Let A be the critical region corresponding to system failure,
then, we denote by A the set of the trajectories of Z that pass through A. We want to
estimate the probability

p = P
(
Z ∈ A|Z0 =zo

)
= Pzo

(
Z ∈ A

)
.

Suppose ζ is a reference measure for Pzo
(
Z ∈ .

)
, and f is the density of Z with respect

to ζ, and g is the density of an importance process with respect to ζ. If ζ exists, and
∀z ∈ A, f(z) 6= 0⇒ g(z) 6= 0, then we can write:

Pzo
(
Z ∈ A

)
= Ef

[
1A(Z)

]
=

∫
A

f(z) dζ(z) =

∫
A

f(z)

g(z)
g(z) dζ(z) = Eg

[
1A(Z)

f(Z)

g(Z)

]
(1)

Therefore if
(
Z′1, . . .Z

′
Nsim

)
is a sample of independent trajectories simulated according to

an importance process with density g, then Pzo
(
Z ∈ A

)
can be estimated without bias by:

p̂IS =
1

Nsim

Nsim∑
i=1

1A(Z′i)
f(Z′i)

g(Z′i)
with Var(p̂IS) = Ef

[
1A

f(Z)

g(Z)

]
− p2 (2)

When Ef
[
1A(Z)f(Z)

g(Z)

]
< ∞ and the conditions above are verified, we have a central limit

theorem on p̂IS. The estimator p̂IS is unbiased and
√
N(p̂IS − p) converges in law to a cen-

tered Gaussian with variance Ef
[
1A(Z)f(Z)

g(Z)

]
−p2. Theoretically the variance can be brought

to zero if the importance density g is equal to g∗(z) = 1A(z)f(z)
p

, but this can be done only
if we already know the value of p which we are trying to estimate. In practice, one tries to
approach this optimal density choosing g as close as possible from g∗ to reduce the variance.

Thus the use importance sampling on PDMP trajectories requires the following three
conditions:

(C1) We have a measure ζ on the trajectory space, and the trajectory Z of the system state
has density f with respect to ζ

(C2) We are able to simulate trajectories according to an importance process Z′ which has

density g with respect to ζ on A such that Ef
[
1A(Z)f(Z)

g(Z)

]
<∞.

(C3) ∀ z ∈ A, f(z) 6= 0⇒ g(z) 6= 0
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Many authors have used importance sampling on particular cases of PDMP sometimes
without noting it, see [12] [10] [11] [13]. Most of the models considered in the literature rarely
used all the possibilities offered by PDMPs. Authors tend to consider only constant failure
rates and constant repair rates, not taking into account component aging and dependency of
failure rate on physical conditions. Or sometimes, they avoid considering automatic control
mechanisms which activate and deactivate components depending on the values of physical
variables. In [13], and in the more recent work [14], importance sampling is used on PDMP
while taking into account automatic control mechanisms but the reference measure is not
clearly identified. In part 3, we show how to find a reference measure ζ defining the likelihood
ratio and we try to highlight the possible kinds of importance processes associated with ζ.

1.4. Optimization of the variance reduction

Finding the optimal importance process is equivalent to solving the following minimiza-
tion problem:

g∗ = argmin
g

Ef
[
1A(Z)

f(Z)

g(Z)

]
− p2

Minimizing a quantity on a density space being difficult, we usually consider a parametric
family of importance densities {gα} and look for a parameter α which yields an estimator
with the smallest possible variance.
One generally tries to approach the optimal importance density by specifying a certain kind
of parametric family whose form is determined by a large deviation analysis. But such large
deviation behavior can be difficult to describe with degenerate processes like PDMP.
Therefore we focus on other methods which rather try to minimize an approximation of
the distance between the importance density g and the optimal one g∗. For instance, if the
approximated distance happens to be D(g, g∗) = Ef

[g∗(Z)
g(Z)

]
it is equivalent to minimize the

variance of the estimator, and if we consider the Kullback-Leibler divergence in place of a

distance so that D(g, g∗) = Eg∗
[

log
(g∗(Z)
g(Z)

)]
, we would be using the Cross-Entropy method

[1]. These two options have been compared on a set of standard cases in [2]. They yielded
similar results, though results obtained with the Cross-Entropy seemed slightly more stable
than with the other option. In [16], the Cross-Entropy method was applied on a model
equivalent to a PDMP without boundaries and showed good efficiency. Therefore we choose
this method to select the parameters of the importance process in our paper. Of course,
the efficiency of this procedure strongly depends on the choice of the parametric family of
importance densities. In this article, we give an example of parametric family for systems
consisting in parallel identical components in redundant back up.

The rest of the paper is organized as follows: Section 2 introduces our model of multi-
component system based on a Piecewise deterministic Markovian process. In section 3, we
introduce a reference measure on the space of the PDMP trajectories which allows us to
properly define the likelihood ratio involved in the importance sampling weighting. Finally,
in section 4 we present a possible biasing strategy, and we compare our adaptation of the
importance sampling technique with the Monte-Carlo on a three-component system.
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2. A model for multi-component system based on PDMP

2.1. Possible state of the system
We consider a system with Nc components and d physical variables. Remember we call

position the vector X ∈ Rd which represents physical variables of the system, and we call
mode the vector M = (M1,M2, ...,MNc) gathering the statuses of the Nc components. The
state of the system Z includes the position and the mode: Z = (X,M). For ease of the
presentation, we consider the status of a component can be alternatively On, or Off , or
out-of-order (noted F ), so that the set of modes is M = {On,Off, F}Nc , but as long as M
stays countable, it is possible to consider more options for the statuses of the components:
For instance, one could consider different regimes of activity instead of the simple status
On, or different types of failure instead of the status F . Note that we can also deal with
continuous degradations, like the size of a breach in a pipe for instance: the presence of the
degradation can be included in the mode and its size in the position.
The components in the system can be programmed to activate or deactivate when the
position takes specific values. To take into account these automatic control mechanisms,
within a mode m the physical variables are restricted to an open and connected set Ωm ⊂ Rd.
With Em = {(x,m), x ∈ Ωm}, the state space is then:

E =
⋃
m∈M

Em =
⋃
m∈M

{
(x,m), x ∈ Ωm

}
(3)

2.2. Flow functions
In a given mode m, i.e. a given combination of statuses of components, the evolution of

the position is determined by an ordinary differential equation. We note φmx the solution of
that equation initiated in x. If we consider a position state Zt at time t, there exists a time
T > 0 such that ∀s ∈ [0, T ), Xt+s = φMt

Xt
(s) and Mt+s = Mt. For an initial state z ∈ E,

we can introduce the flow function Φz with values in E. Regarding the evolution of the
trajectory after a state Zt = (Xt,Mt), the next states are locally given by ΦZt :

∃T > 0, ∀s ∈ [0, T ),

Zt+s = ΦZt(s) =
(
φMt
Xt

(s),Mt

)
=
(
Xt+s,Mt

)
(4)

2.3. Jumps
The trajectory of the state can also evolve by jumping. This typically happens because

of control mechanisms, failures, repairs, or natural discontinuities in the physical variables.
When such a jump is triggered, the current state moves to another one by changing its mode
and/or its position.
We note E the closure of E, and B(E) the Borelian σ-algebra on E. If a jump occurs at
time T , then the destination of the jump is determined according to a transition Kernel
KZ−T

where Z−T ∈ E is the departure state of the jump. If Z+
T ∈ E is the arrival state, and

∀z− ∈ E , νz− is a σ-finite measure on E, then the Kernel is defined by:

∀B ∈ B(E), P
(
Z+
T ∈ B|Z

−
T = z−

)
=

∫
B

Kz−(z) dνz−(z) . (5)

The Kernel density must verify Kz(z) = 0 so we can not jump on the departure state.
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2.4. Jump times

Jumps at boundaries

For m ∈ M, let ∂Ωm be the boundary of Ωm. The boundary of the set Em is the set
∂Em = {(x,m), x ∈ ∂Ωm}. For z = (x,m) ∈ E, we define t∗z = inf{s > 0,Φz(s) ∈ ∂Em}
the time until the flow hits the boundary. We take the convention t∗z = +∞ if {s >
0,Φz(s) /∈ Em} = ∅. Assume that the system starts in state z = (x,m). When the flow
leads the position out of its restricted set Ωm, i.e the state touches ∂Em, an automatic jump
is triggered (see the scheme in 1).

Figure 1: A jump at boundary.

Boundaries can be used to model automatic control mechanisms, or any automatic change
in the status of a component. For instance in a dam, if the water level X reaches a given
threshold xmax the evacuation valve automatically opens to avoid overflow. If M = C, O, F
represent respectively the modes where the valve is closed, or opened, or failed, this control
system could be modeled by setting ΩC = (0, xmax) and K(xmax,C)({(xmax, O)}) = 1.
Boundaries also allow to include failure on demand, by incorporating a probability of jump-
ing to a failed mode at the boundary. In our example this would be modeled by setting
K(xmax,C)({(xmax, O)}) = 1 − γ and K(xmax,C)({(xmax, F )}) = γ, where γ ∈ [0, 1] is the
probability of failure on demand on this boundary.

Spontaneous jumps

The trajectory can also jump to another state when a random failure or a repair occurs
(see Figure 2). The distribution of the random time at which it happens is usually modeled
through a state-related intensity function λ : E → R+. For z ∈ E, λ(z) represents the
instantaneous risk of having a failure or a repair at state z. If Zt = z and T is the duration
until the next jump, ∀s < T we have Zt+s = Φz(s). To simplify the notations in the
later, we introduce the time-related intensity λz such that λz(s) = λ(Φz(s)) and Λz(s) =
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Figure 2: A spontaneous jump.

∫ s
0
λ
(
Φz(u)

)
du. If Pz(.) is the probability of an event knowing Zt = z, we have:

Pz(T ≤ s) =

{
1− exp [−Λz(s)] if s < t∗z ,

1 if s ≥ t∗z .
(6)

The law of T has a continuous and a discrete part (see Figure 3). As T has no density with

Figure 3: An example of the cdf of T ,

where x ∈ R+, z = (x,m), Φz(t) = (x+ t,m), λ(z) = x(5−x)
12 , and t∗z = 4

respect to the Lebesgue measure, we introduce the following reference measure

µz(.) = leb(. ∩ (0, t∗z)) + δt∗z(.) , (7)

where leb(.) corresponds to the Lebesgue measure. The measure µz(.) will be useful to define
the dominant measure ζ in section 3. It also allows to reformulate the law of T under an
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integral form:

Pz(T ≤ t) =

∫
(0,t]

(
λz(u)

)
1u<t∗z

exp
[
− Λz(u)

]
dµz(u) . (8)

Destination of a jump

Note that equations (6) or (8) give the time of the next jump, but do not tell whether it is
a failure, or a repair, or an automatic control mechanism. To specify the nature of the jump,
we use the transition Kernel KZ−t

. Consider each transition from a departure mode M− = m

to an arrival mode M+ is indexed by a number in {1, ..., Jm} where Jm is the number of the
possible transitions. Let T j be the time of occurrence of the transition indexed by j if the
physical variables had followed the flow φm

−
x indefinitely. Let λj : E → R+ be its associated

state-related intensity function, such that Pz(T j ≤ t) = 1 − exp
[∫ t

0
λj
(
Φz(u)

)]
du. The

function λj is either a failure rate or a repair rate depending on the nature of the transition
j. Knowing the initial state z = (x,m), and therefore, knowing the indefinite trajectory of
the positions given by φmx , we make the assumption that the times T j are independent. This
assumption is true if the position gathers all the variables affecting failures or repairs when
the system is in mode m. As T = min{T 1, T 2, . . . , T JM , t∗z}, this conditional independence
implies that:

∀z = (x,m) ∈ E, λ(z) =
Jm∑
j=1

λj(z) , (9)

and then we have:

∀z+ =
(
x+,m+

)
∈ E, Kz

(
z+
)

=
λj(m,m

+)(z)∑Jm
j=1 λ

j(z)
qz
(
x+
)

(10)

where j(m,m+) is the index of the transition from m to m+ and qz(x
+) is the density of a

transition Kernel for positions. Typically if the physical variables are all continuous then
qz(x

+) = 1x=x+ and the reference measure of the transition Kernel is defined by ∀B ∈
B(E), νz(B) =

∑
w∈M\{m} δ(x,w)(B) .

2.5. Generate a trajectory

To generate a realization of the PDMP, one can follow these steps:

- Start at a state Z0 = z

- Generate T the time of the next jump using (8)

- Follow the flow Φ until T using (4)

- Generate ZT = zT the arrival state of the jump knowing the departure state is Z−T =
Φz(T ) using (5) and (10)

- Repeat starting with zT until you get a trajectory of size tf
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2.6. Example

As an example of system, we consider a room heated by three identical heaters. Xt

represents the temperature of the room at time t. xe is the exterior temperature. β1 is the
rate of the heat transition with the exterior. β2 is the heating power of each heater. The
differential equation giving the evolution of the position (i.e the temperature of the room)
take this form:

dXt

dt
= β1(xe −Xt) + β21M1

t orM
2
t orM

3
t =On .

Figure 4: Scheme of a trajectory of the heated-room system

(mode is represented with colors)

The heaters are programmed to maintain the temperature within an interval (xmin, xmax)
where xe < 0 < xmin. Heaters can be on, off, or out-of-order, so M = {On,Off, F}3. We
consider that the three heaters are in passive redundancy in the sense that: when X ≤ xmin
the second heater activates only if the first one is failed, and the third one activates only
if the two other heaters are failed. When a repair of a heater occurs, if X ≤ xmin and all
other heaters are failed the heater status is set to On, else the heater status is set to Off .
To handle the programming of the heaters, we set Ωm = (−∞, xmax) when all the heaters are
failed m = (F, F, F ) or when at least one is activated, otherwise we set Ωm = (xmin, xmax).
Due to the continuity of the temperature, the reference measure for the Kernel is ∀B ∈ B(E),
ν(x,m)(B) =

∑
m+∈M\{m} δ(x,m+)(B). On the top boundary in xmax, heaters turn off with

probability 1. On the bottom boundary in xmin, when a heater is supposed to turn on,
there is a probability γ = 0.01 that the heater will fail on demand: For instance, if
z− =

(
xmin, (Off, F,Off)

)
, we have Kz−

(
xmin, (On, F,Off)

)
= 1 − γ,

Kz−
(
xmin, (F, F,On)

)
= γ(1− γ), and Kz−

(
xmin, (F, F, F )

)
= γ2.

Let j be a transition from m to m+. For the spontaneous jumps that happen outside bound-
aries, if the transition j corresponds to the failure of a heater, then: λj(x,m) = 0.003 x

xmax
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and, if the transition corresponds to a repair, then λj(x,m) = 0.2 when M j = F . An
scheme of a possible trajectory of the state of this system is presented in figure 4. Here the
system failure occurs when the temperature of the room falls below zero, so A = {(x,m) ∈
E, x < 0}.

3. A reference measure for trajectories

We have seen in section 2.3 that when the position is restricted to a bounded set in some
modes, the time to the next jump can be a hybrid random variable. We have to be cautious
when considering the density of a trajectory of a PDMP for several reasons: first the refer-
ence measure for such hybrid random variable is a mixture of Dirac and Lebesgue measures,
secondly these hybrid jumps are involved multiple times and in a nested way in the law of the
trajectory of PDMP. Indeed, with these mixtures of Dirac and Lebesgue measures involved,
the existence of a sigma-finite reference measure on the trajectory space is not obvious, yet
it is mandatory to properly define the density of a trajectory. The existence of a reference
measure is therefore crucial, because it preconditions the existence of the likelihood ratio
needed to apply the importance sampling method.

We begin this section by introducing a few notations: For a trajectory Z on the observa-
tion interval [0, tf ), we note N the number of jumps before tf , and Sk the time of the k-th
jump with the convention S0 = 0 , and ∀k < N, Tk = Sk+1 − Sk is the duration between
two jumps and TN = tf − Sn is the remaining duration between the last jump and tf . One
can easily verify the sequence of the (ZSk

, Sk+1 − Sk) is a Markov chain: it is called the
embedded Markov chain of the PDMP.

Figure 5: notations

3.1. The law of the trajectories

The main idea in building the law of the trajectory Z is to summarize the trajectory by the
truncated embedded Markov chain of the process: the vector

(
ZS0 , T0, ZS1 , T1, . . . , ZSN

, TN
)
.

As the trajectory is piecewise deterministic, we only need to keep the states of the arrivals
of the jumps and the durations between the jumps to describe the trajectory. If we have
the vector

(
ZSk

, Tk
)
k≤N and we know the flow function Φ, we have enough information to

reconstruct the trajectory using (4). Noting Θ the map that changes Z into
(
ZSk

, Tk
)
k≤N ,

the law of Z can be defined as the image law of
(
ZSk

, Tk
)
k≤N through Θ.
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We can get the law of
(
ZSk

, Tk
)
k≤N , by using the dependencies between its coordinates.

Thanks to (8) and (5) we can get the density of Tk knowing ZSk
with respect to µZSk

, and

the density of ZSk+1
knowing

(
ZSk

, Tk
)

with respect to νZ−Sk+1

, where Z−Sk+1
= ΦZSk

(Tk):

fTk|ZSk
=z(u) =

(
λz(u)

)
1u<t∗z

exp
[

- Λz(u)
]
, (11)

fZSk+1
|ZSk

,Tk(z) = KZ−Sk+1

(z) . (12)

Using the Markov structure of the sequence
(
ZSk

, Tk
)
k≤N , the law of

(
ZSk

, Tk
)
k≤N can be

expressed as an integral of the product of the conditional densities given by (11) and (12).

We define the σ-algebra S on the set of the possible values of
(
ZSk

, Tk
)
k≤N as the σ-

algebra generated by the sets in
⋃
n∈N∗

B
({(

zsk , tk
)
k≤n ∈ (E×R∗+)n,

n∑
i=0

ti = tf

})
, where B(.)

indicates the Borelians of a set. We get that for B ∈ S:

Pzo
(
Z ∈ Θ−1(B)

)
=

∫
B

n∏
k=0

(
λzk(tk)

)
1tk<t∗zk exp

[
− Λzk(tk)

] n∏
k=1

Kz−k
(zk)

× dδt∗n(tn) dνz−n (zn) dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0) , (13)

where z−j = Φzj−1
(tj−1), and t∗n = tf −

∑n−1
i=0 ti. Note that with our construction, this is

a probability law on the space of the trajectories that satisfy (4), not on the set of all the
trajectories with values in E.

3.2. The dominant measure and the density

We define the measure ζ so that

ζ(Θ−1(B)) =

∫
dδt∗n(tn) dνz−n (zn)

(z
k
,t
k

)k≤n∈B

dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0) (14)

If ∃C > 0,∀z ∈ E , νz(E) < C and tf < ∞, then ζ is a σ-finite measure (see the
Appendix B for the proof), and by Radon-Nikodym theorem, the density of a trajectory
z = Θ

(
(z0 , t0), ... , (zn , tn)

)
is

f(z) =
n∏
k=0

(
λzk(tk)

)1tk<t∗zk

exp
[
− Λzk(tk)

] n∏
k=1

Kz−k
(zk) , (15)

Note that it is always possible to choose the measures νz− so they are all bounded by the
same constant. Indeed the transition Kernel is itself bounded by 1, as it is a probability
measure. So, to get a measure ζ that is σ-finite, we can simply take the measures ν equal
to the transition Kernel :

∀B ∈ B(E), νz−(B) = P
(
Z+ ∈ B|Z− = z−

)
⇒ ζ is σ-finite

which shows that the densities can be properly defined when the observation time tf is finite.
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3.3. Possible importance processes

The elements relative to the importance process are noted with a ′.

3.3.1. Conditions and some possible importance process

Recall that a possible importance process is a process whose law is absolutely continuous
with respect to ζ (condition C2) and which has a density g with respect to ζ that satisfies
∀ z ∈ A, f(z) 6= 0⇒ g(z) 6= 0 (condition C3).
Condition C2 implies that the importance process must generate trajectories in E which
satisfy equation (4), so the importance process has to follow the same flows piecewisely.
Therefore the bias must focus on the timing and nature of changes in flow, i.e. jumps.
To generate an importance process, we keep generating trajectories by successively gener-
ating the arrival state of a jump (Z ′Sk

) and the time until the next jump (T ′k). As their is
no requirement for the importance process to be Markovian, we consider that the law of a
point of the trajectory Z ′t only depends on the past values of states. In other words, the law
of Z ′Sk

can depend on
(
Z ′Si

, T ′i
)
i<k

and the law of T ′k can depend on
(
Z ′Si

, T ′i
)
i<k

and Z ′Sk
.

Note that in order to ensure condition C2, the law of T ′k still has to be dominated by µZ′Sk
,

and the law of Z ′Sk+1
still has to be dominated by νZ′−Sk

. This means that the boundaries of

the Ωm’s remain unchanged. For a jump time Sk, we note Z ′Sk
=
(
(Z ′Si

, T ′i )i≤k, Z
′
Sk

)
, and we

denote λ′zk(.) the intensity function associated to T ′k when Z ′Sk
= zk, we have that:

∀t ∈ (0, t∗z0 ], P(T ′k ≤ t|Z ′Sk
= zk) =

∫
(0,t]

(
λ′zk(u)

)
1u<t∗zk

exp
[
− Λ′zk(u)

]
dµzk(u) (16)

Noting Z ′Sk

−
=
(
(Z ′Si

, T ′i )i<k -1

)
and K ′z− the importance Kernel when Z ′Sk

−
= zk

−, we have
that:

∀B ∈ B(E), P(Z ′Sk
∈ B|Z ′Sk

−
= zk

−) =

∫
B

K ′
z−k

(z)dνz−k
(z) (17)

Another possibility is that the intensity function of T ′k does not have to be of the form
λ′ ◦ φzk where λ′ is a positive function on E. This means that at the time t, the intensity
function can depend on the arrival state of the last jump and on previous pairs (Z ′Si

, T ′i ),
and not necessarily only on the state Z ′t as it is the case in a PDMP.
Note that this way of generating the trajectory jump by jump knowing the past states is
not necessarily the only possible one. We considered it essentially because in terms of im-
plementation, it is similar to the way PDMPs are generated in PyCATSHOO, and therefore
it should be convenient to incorporate it in the PyCATSHOO toolbox.

Concerning Condition C3, things are more delicate, indeed with complex systems, the
set A can be very hard to manipulate. So we will only provide a sufficient condition to
satisfy C3. To verify condition C3 a sufficient condition is to impose for any zk ∈ E and
z− ∈ E :

λ(Φzk(t)) > 0 ⇒ λ′zk(t) > 0

K ′z−(z+) > 0 ⇒ K ′z−(z+) > 0

12



3.3.2. Extension trick

In order to devise a more efficient bias, one can use an extension trick as mentioned in
random weight importance sampling in [8] and in [9]. The idea is to consider we are no
longer working only on trajectories Z, but on a pair (Z, Y ) where Y is a random vector,
and (Z, Y ) admits f(z) as marginal. If h is the density of the pair (Z, Y ) and h′ the density

of (Z′, Y ′) the estimator of P(Z ∈ A) becomes p̂ISext = 1
Nsim

∑Nsim

i=1 1A(Z′i)
h(Z′i,Y

′
i )

h′(Z′i,Y
′
i )

. The

advantage is that the law of the trajectories in the importance process can now depend on
the added random variables, which makes the construction of an efficient importance process
easier. Although the variance tends to increase when the dimension of the simulation output
increases, this is generally compensated by the gain of variance offered by a more efficient
importance process. If one dispose of the analytical expression of EfY |Z

[ h(Z′,Y ′)
h′(Z′,Y ′)

]
, one can

use the Rao-Blackwellized estimator: p̂ISRB = 1
Nsim

∑Nsim

i=1 1A(Z′i)EfY |Z=Z′
i

[ h(Z′i,Y
′)

h′(Z′i,Y
′)

]
. The

Rao-Blackwellization compensates the increase of the variance due to the increase of the
dimension of the simulation outputs.

3.3.3. Optimal bias

In the importance process, generate the trajectories jump by jump by using (16) and
(17) is not necessarily restrictive. Indeed, it still theoretically allows to simulate according
to a process that cancels the variance of the estimator.
If we set:

f ′T ′k|Z′Sk
=zk

(u) =
E
[
1A(z)|Tk = u, ZSk

= zk
]

E
[
1A(z)|ZSk

= zk
] (

λzk(u)

)
1u<t∗zk

exp
[
− Λzk(u)

]
(18)

with f ′T ′k|Z′Sk
=zk

(u) = 0 when E
[
1A(z)|ZSk

= zk
]

= 0, and

K ′zk−(z) =
E
[
1A(z)|ZSk

= zk
]

E
[
1A(z)|Z−Sk

= z−k
]Kz−k

(zk) (19)

then we have that ∀z ∈ A, such that z = Θ
(
(z0 , t0), ... , (zn , tn)

)
:

f ′(z) =

∏n
k=0

(
λzk(tk)

)1tk<t∗zk

exp
[
− Λzk(tk)

]∏n
k=1Kz−k

(zk)

Ez0
[
1A(z)

] 1A(z)

f ′(z) =
1A(z)f(z)

Ez0
[
1A(z)

] = g∗(z) (20)

where g∗(z) is the density of the optimal process. So equations (18) and (19) give some
optimal densities for the jumps, and as such we will note these densities g∗T ′k|Z′Sk

=zk
and K∗zk− .
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If there exists a constant K > 1 such that the importance densities for the jumps verify

f ′T ′k|Z′Sk
=zk

(u) = g∗T ′k|Z′Sk
=zk

(u) ε1(u) with
1

K
≤ ε1(u) ≤ K

K ′zk−(z) = K∗zk−(z) ε2(z) with
1

K
≤ ε2(z) ≤ K

then, providing the probability of having a trajectory with N jumps while being in A fades
out quickly enough as N tends to infinity, we get the following inequalities :

pE
[
1A(Z)K−2N

]
− p2 ≤ Var(p̂IS) ≤ pE

[
1A(Z)K2N

]
− p2

Although these bounds on the variance get very loose when K is far from 1, this inequality
shows that the variance tends to zero when the constant K tends to 1. Therefore when
specifying the bias through the times between jumps and the arrivals of jumps, one should
try to specify densities as close as possible from equations (18) and (19).
This is of course difficult as we do not know the value of the conditional expectations
involved in (18) and (19), but despite that, these two equations can still give us information
on how to specify importance densities for the jumps. For instance, as E

[
1A(z)|ZSk

= zk
]

=

E
[
1A(z)|Tk = u, ZSk

= zk
]

= 1 when τA < Sk, the optimal densities remain unchanged
after τA, so there is no need to apply a bias after τA. It is also possible to derive the optimal
intensity associated to the time of a spontaneous jump as we will show in the following.
To ease the presentation, we slightly modify the state space by adding a boundary at the
frontier of A and we add a coordinate on the mode which indicates if the trajectory has
already visited A. So the state becomes Z =

(
X, (M,MA)

)
where MA = 0 if A has not been

visited, and 1 if it has. This way, for any time t we have Zt = (Xt, (Mt,1τA≤t). For instance,
with heated-room system the set of modes therefore becomes M = {On,Off, F}3 × {0, 1}.
The Kernel KZ−(Z) is unchanged when M−

A = M+
A , and is null when M−

A 6= M+
A , except at

the frontier of A where K(0,(F,F,F,0))

(
0, (F, F, F, 1)

)
= 1. Now, noting

U∗(z, s) = E
[
1A(Z)|Zs = z

]
and U -(z-, s) =

∫
E

U∗(z+, s)Kz-(z+)dνz-(z+) (21)

equations (18) and (19) can be rewritten as follows:

g∗T ′k|Z′Sk
, Sk=z,s(u) =

U -
(
Φz(u), s+ u

)
U*
(
z, s
) (

λz(u)
)
1u<t∗z

exp
[
− Λz(u)

]
, (22)

K∗z-,s(z) =
U∗
(
z, s
)
Kz-(z)

U -
(
z-, s

) . (23)

Using (22) we can get the expression of the optimal intensity of the time of the k-th jump
knowing (Z ′Sk

, Sk) = (z, s), we have:

λ∗z,s(u) =
U -
(
Φz(u), s+ u

)(
λz(u)

)
1u<t∗z

exp
[
− Λz(u)

]
∫

(u,t∗z ]
U -
(
Φz(v), s+ v

)(
λz(v)

)
1v<t∗z

exp
[
− Λz(v)

]
dµz(v)

, (24)
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which can be rewritten as:

λ∗z,s(u) =
U -
(
Φz(u), s+ u

)
U∗
(
Φz(u), s+ u

)λz(u) . (25)

The detailed proof of this result is in Appendix B. As it plays an important role in the
expression of the optimal process, we looked for more information about the function U∗.
We found that U∗ verifies these two properties:
U∗ is Kernel invariant on boundaries:

∀z ∈ E, U -
(
Φz(t

∗
z), s+ t∗z

)
= lim

t↗t∗z
U∗
(
Φz(t), s+ t

)
. (26)

And if u → U -
(
Φz(u), s + u

)
and u → λz(u) are continuous almost everywhere on [0, t∗z),

then almost everywhere U∗ is derivable along the flow, with:

∂U∗
(
Φz(v), s+ v

)
∂v

= U∗
(
Φz(v), s+ v

)
λz(v)− U -

(
Φz(v), s+ v

)
λz(v) (27)

The proof of these two properties of U∗ is in Appendix B.

3.3.4. Parametric bias

To find an importance process that gives a good variance reduction, we usually restrict
the search within a parametric family of importance densities, in order to use optimization
routines. In the case of PDMP, we propose to use the cross-entropy method presented in
[1] to select the parameters of the importance density as it was done in [16]. However, to
our knowledge, there is no guaranty that the minimization routine used in the cross entropy
method converges to a global optimum. Therefore, to avoid falling in a local optimum,
one should run several times the cross entropy method with different initial values for the
vector of parameters. Note that the parametrization must be chosen carefully: indeed the
family of the importance densities must contain densities that are close to the zero-variance
density g(z) = 1A(z)f(z)

p
to obtain a good variance reduction, otherwise we could even obtain

a variance increase. Also the parametric family should contain the original density f . When
this is the case, the density associated to the best parameters is at least better than f ,
therefore it ensures that the variance decreases. Ideally we want to specify parametric
densities that increase the likelihoods of all the elements in A. In practice, we increase the
probability of A, while trying to simulate the elements of A in proportion to their natural
probabilities.

4. Simulation study on a test case

In this section we present how we built an importance process for the heated room system
presented in section 2.6.
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4.1. A biasing strategy

In order to specify the importance densities close to the optimal ones, we propose to con-
sider a parametric approximation of E

[
1A(Z)|Zs = z

]
, and then combine it with equations

(25) and (22) to get the form of the importance Kernel and of the importance intensities.
Let Uα(z, s) be our approximation of U∗(z, s). The corresponding importance intensities
and Kernel are:

λ′z,s(u) =
U -
α

(
Φz(u), s+ u

)
Uα
(
Φz(u), s+ u

)λz(u) , (28)

K ′z-,s(z
+) =

Uα
(
z+, s

)
Kz-(z+)

U -
α

(
z-, s

) , (29)

where U -
α

(
z-, s

)
=
∫
E
Uα(w, s)Kz-(w)dνz-(w)

In the heated-room system, the three heaters are identical and are in parallel redundancy,
so we expected the probability E

[
1A(z)|Zs = z

]
to increase with the number of failed heaters

in state z. Therefore, noting b(z) the number of failed heaters in state z, we start by setting

Uα(z, s) = Hα

(
b(z)

)
Q(x, s) (30)

where Q is some function on position and time, and Hα a function on integers. We set
Hα(0) = 1, so Hα has to be an increasing function, if we want Uα(z, s) to increase with b(z).
If T denotes the time to the next jump after being in state z, then

U∗(z, s) = E
[
U∗(ZT , s+ T )

∣∣Zs = z
]

As the repair rates are larger than the failure rates by one order of magnitude, when there
is at least one failed heater, the probability of arriving in a more degraded state ZT is much
lower than the probability of having repair. (This last remark can be applied to any reliable
industrial systems. See for instance [4].) Ideally we would like Uα to mimic the property of
U∗ so would like too have

Uα(z, s) = E
[
Uα(ZT , s+ T )

∣∣Zs = z
]

(31)

which can be reformulated as :

Hα

(
b(z)

)
=
∑
m+∈M

Hα

(
b(x,m+)

) ∫
(0,t∗z ]

KΦz(u)

(
(φmx (u),m+)

)
Q(φmx (u), s+u) exp

[
−Λz(u)

]
dµz(u)

(32)
As repair is much more likely than failure, if j(m,m+) indexes a repair KΦz(u)

(
(φmx (u),m+)

)
is larger than if it had indexes a failure. So, (32) implies that, when b(z) > 1, the value
of Hα(b(z)) is closer from Hα(b(z) − 1) than from Hα(b(z) + 1). As Hα was supposed
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increasing, it must be convex. So we propose that Hα(b(z)) = exp
[
α1b(z)2], with α1 > 0.

The associated failure rates are then:

λj′z,s(u) = λjz(u) exp
[
α1

(
2b(z) + 1

)
] , (33)

and the associated repair rates are :

λj′z,s(u) = λjz(u) exp
[
− α1

(
2b(z)− 1

)
] , (34)

with

λ′z,s(u) =
∑
j

λj′z,s(u) and K ′Φz(u)-,s(z
+) =

λ
j(m,m+)′
z,s (u)

λ′z,s(u)
qz(x

+) . (35)

Remark that plugging Uα into the equations (18) and (19) imposes some kind of symmetry
in the biasing of failure and repair rates. It is especially visible in equations (33) and (34):
On one hand the failure rate associated to the transition from a state z− to z+ is multiplied
by a factor exp

[
α1

(
2b(z−) + 1

)
], and on the other hand the repair rate corresponding to the

reversed transition (from state z+ to state z−) is divided by the same factor. The equations
(18) and (19) not only imply that the failures should be enhanced and the repairs inhibited,
but it also states that the magnitude of the bias should be equivalent for a transition and
its reversal.

The square in Hα’s formula was introduced to strengthen the failure rates when the
number of broken heaters gets larger. The idea was to shorten the duration where several
heaters are simultaneously failed in the simulated trajectories. Indeed, as repair is expo-
nential and faster than failure, the shorter the durations with a failed heater are the more
likely is the trajectory. Increase the failure rates with the number of broken heaters is a
mean to simulate more trajectories in A while maintaining the natural proportion between
the likelihoods of the trajectories, which should decrease the variance.

As the failure on demand was likely to play an important role in the system failure, we
choose to separate it from spontaneous failure in our parametrisation setting Uα((xmin,m), s) =
exp[−α2b(z)2]Hα(xmin, s). This allows to better fit Uα to U∗. Under this assumption, the
equation (29) implies that when z− = (xmin,m), the importance Kernel has this form:

K ′z-(z+) =
Kz-(z+) exp

[
− α2 b(z

+)2
]∫

E
Kz-(z) exp

[
− α2 b(z)2

]
dνz-(z)

(36)

4.2. Results

For the Monte-Carlo method simulations have been carried out using the Python library
PyCATSHOO currently developed by EDF R&D. As the Cross-Entropy method was not
implemented yet in PyCATSHOO, we used a specific Python code for the Cross-Entropy
and the importance sampling methods. Note the Cross-Entropy method will be integrated
to the PyCATSHOO tool in 2017. The system parameters used in the simulation were the
following: xmin = 0.5, xmax = 5.5, xe = −1, β1 = 0.1, β2 = 5, tf = 100. Trajectories were
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all initiated in the state z0 =
(
7.5, (Off,Off,Off)

)
. The probability of having a system

failure before tf was estimated to p = 1.29× 10−5 with an intensive Monte-Carlo estimation
based on 108 runs.
For the cross-entropy method, the approximations of the Kullback-Leiber divergence between
g∗ and gα were realized with a sample of 105 simulations. For the first step of the method, the
approximation was obtained by simulating from a biased density with parameters (0.5, 0.5).
Note that it is important to ensure that all the types of failing trajectories are represented in
the sample used in the approximation of the divergence in the first step. Otherwise the cross-
entropy method may yield a vector of parameters that favors only the types of trajectories
present in the sample, which generally leads to underestimate both the probability p and
the variance of the estimator.
The values of the parameters selected by the cross-entropy method were α1 ' 0.915 and
α2 ' 1.197. A comparison between Monte-Carlo and the associated importance sampling
estimate is presented in table 1, where we display the number of simulations used for each
method, the estimates of the probability, the associated empirical variances and confidence
intervals. To compare the two methods we look at the ratio between the relative variance of
the Monte-Carlo estimator p(1 − p) and the estimated relative variance of the importance
sampling estimator NIS × σ̂2

IS. This ratio indicates that our importance sampling strategy
reduced the variance by approximately a factor 25 500. For 106 simulations the results shows
the Monte-Carlo estimator has not converged yet, whereas the importance sampling estimate
is very accurate.

Nsim p̂ σ̂2 IC×105

IS 106 1.288× 10−5 5.05× 10−16 [1.283, 1.292]

MC
106 0.4× 10−5 4.00× 10−12 [0.01, 0.79]

107 1.3× 10−5 1.28× 10−12 [1.07, 1.51]

Table 1: Comparison between Monte-Carlo and importance sampling estimations

5. Discussion

Our work shows that importance sampling is applicable on any PDMPs with boundaries.
We have given an expression of the intensities and Kernel of the optimally biased distribution,
and we have seen that it depends on the function U∗(z, s) = E

[
1A(Z)|Zs = z

]
. Although we

do not have a closed form of the function U∗, these expressions are important for two reasons:
1) They prove the existence of an optimal bias, which ensures that the importance sampling
technique can be very efficient on PDMPs. 2) They can guide the specification of the
biasing strategy. This expression shows that the optimal bias presents a symmetry between
a transition and its reversal. By replacing U∗ by an approximation in the optimal expressions
of the transition rates and kernels, we preserve this specific structure. The presented method
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therefore helps designing a bias which has the same behavior as the optimal one, which
yielded an efficient biasing strategy for our case study.

This biasing strategy can be applied on any system, but the parametric shape of the
approximation of U∗ may have to be adapted from case to case. The parametric shape
presented in this article is suited to any system with similar components in terms of failure
rates and repair rates and containing one minimal group. (A minimal group being a group
of components that need to fail so that the system can fail.) For a system with a different
configuration, we expect the shape of the function U∗ will differ, and the method may require
a different parametric approximation for the function U∗.

When choosing the importance process there is a risk of over-biasing the importance
process. Over-biasing happens when one type of failing trajectories is over represented
in the importance distribution comparatively to other types of failing trajectories. This
phenomenon can result in underestimating the probability of the system failure and in
underestimating the variance. To avoid it, we must satisfy two points: 1) We must design
a parametric importance density that can increase the likelihoods of each type of failing
trajectories separately. 2) We need to initiate the Cross-Entropy method with a sample of
trajectories that contains all types of failing trajectories. It is therefore preferable to apply
this method only on systems of reasonable complexity, for which it is possible to determine
the different types of failing trajectories.

6. Conclusion

We have presented a model for multi-component systems based on PDMPs. In order to
speed up reliability assessment on such systems, we have adapted the importance sampling
method to trajectories of PDMP. We have given a dominant measure for PDMP trajectories,
allowing to properly define the likelihood ratio needed to apply the importance sampling
method on such processes. The possible kinds of importance processes were discussed, and
the theoretical optimal biasing strategy when simulating jump by jump was exhibited. We
developed and tested a biasing strategy for a three-component heated-room system. Our
importance sampling method has shown good performance, dividing the variance by a factor
25 500.
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Appendix A. Proof that the measure ζ is σ-finite

Remember that we defined the σ-algebra S on the set of the possible values of
(
ZSk

, Tk
)
k≤N

as the σ-algebra generated by the sets in
⋃
n∈N∗

B
({(

zsk , tk
)
k≤n ∈ (E × R∗+)n,

n∑
i=0

ti = tf

})
.

The measure ζ is defined by: :

B ∈ S, ζ
(
Θ−1(B)

)
=

∫
dδt∗n(tn)

(z
k
,t
k

)k≤n∈B

dνz−n (zn) dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0) (A.1)

Let Bn =
{(
zsk , tk

)
k≤n ∈ (E × R∗+)n,

n∑
i=0

ti = tf

}
. Then Θ−1(Bn) is the set of possible

trajectories with n jumps, and the sets Bn for n ∈ N∗ form a partition of the set of all
possible trajectories. Note that Bn ⊆ (E × [0, tf ])

n, so

ζ
(
Θ−1(Bn)

)
≤ ζ(Θ−1

(
(E × [0, tf ])

n
)

≤
∫

dδt∗n(tn)

(E×[0,tf ])n

dνz−n (zn) dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0)

We suppose that the νz− are bounded, ∃M > 0,∀z− ∈ E , νz−(E) < M . Under this
assumption, we have:

ζ
(
Θ−1(Bn)

)
≤M

∫
dµt∗zn−1

(tn−1)

(E×[0,tf ])n−1

... dνz−1 (z1) dµt∗zo (t0)

≤M

∫
(E×[0,tf ])n−2

∫
E

∫
[0,tf ]

dµt∗zn−1
(tn−1) dνz−n−1

(zn−1) ... dνz−1 (z1) dµt∗zo (t0)

≤M(tf + 1)

∫
(E×[0,tf ])n−2

∫
E

dνz−n−1
(zn−1)dµt∗zn−2

(tn−2) ... dνz−1 (z1) dµt∗zo (t0)

≤M2(tf + 1)

∫
(E×[0,tf ])n−2

dµt∗zn−2
(tn−2)dνz−n−2

(zn−2) ... dνz−1 (z1) dµt∗zo (t0)

By recurrence we get that ζ
(
Θ−1(Bn)

)
≤Mn(tf + 1)n, which proves that ζ is σ-finite.
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Appendix B. Optimal intensity’s expression, and some properties of U∗

Appendix B.1. Proof of equality (26)
Let z- ∈ δE and s ∈ [0, tf ]. Remember that equality (26) states that

U -
(
Φz(t

∗
z), s+ t∗z

)
= lim

t↗t∗z
U∗
(
Φz(t), s+ t

)
We note T the time until the next jump after the trajectory has reached the state
Zs+t = φz(t)

U∗
(
Φz(t), s+ t

)
= E

[
1A(z)

∣∣Zs+t = φz(t)
]

= E
[
E
[
1A(z)

∣∣ZT+s+t

]∣∣∣Zs+t = φz(t)
]

= E
[
(1T<t∗

Φz(t)
+ 1T=t∗

Φz(t)
)U∗(ZT+s+t, s+ t+ T )

∣∣∣Zs+t = φz(t)
]

=

∫ t∗
Φz(t)

0

U−(ΦΦz(t)(u), s+ t+ u)λΦz(t)(u) exp
[
− ΛΦz(t)(u)

]
du

+ exp
[
− ΛΦz(t)(t

∗
Φz(t))

] ∫
E

Kz−(z+)U∗(z+, s+ t+ t∗Φz(t))dνz−(z+)

where z− = ΦΦz(t)(t
∗
Φz(t))

U∗
(
Φz(t), s+ t

)
=

∫ t∗z

t

U−(Φz(u), s+ u)λz(u) exp
[
− ΛΦz(t)(u− t)

]
du

+ exp
[
− ΛΦz(t)(t

∗
z − t)

] ∫
E

Kz−(z+)U∗(z+, s+ t∗z)dνz−(z+)

where z− = Φz(t
∗
z)

so U∗
(
Φz(t), s+ t

)
= o(1) + (1 + o(1))U -

(
Φz(t

∗
z), s+ t∗z

)
as t→ t∗z, t < t∗z.

Appendix B.2. Proof of equality (25)
We have seen in the proof above that

U∗
(
Φz(t), s+ t

)
=

∫ t∗z

t

U−(Φz(u), s+ u)λz(u) exp
[
− ΛΦz(t)(u− t)

]
du

+ exp
[
− ΛΦz(t)(t

∗
z − t)

] ∫
E

Kz−(z+)U∗(z+, s+ t∗z)dνz−(z+)

=

∫ t∗z

t

U−(Φz(u), s+ u)λz(u) exp
[
− Λz(u)

]
exp

[
+ Λz(t)

]
du

+ exp
[
− Λz(t

∗
z)
]

exp
[

+ Λz(t)
] ∫

E

Kz−(z+)U∗(z+, s+ t∗z)dνz−(z+)

=
1

exp
[
− Λz(t)

] ∫
[t,t∗z ]

U−(Φz(u), s+ u)
(
λz(u)

)
1t<t∗z

exp
[
− Λz(u)

]
dµz(t)
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This last equality allows to transform (24) in (25).

Appendix B.3. Proof of equality (27)

Let z ∈ E and s ∈ [0, tf ]. Remember that equality (27) states that if the functions
u → U -

(
Φz(u), s + u

)
and u → λz(v) are continuous almost everywhere on [0, t∗z), then

almost everywhere

∂U∗
(
Φz(v), s+ v

)
∂v

= U∗
(
Φz(v), s+ v

)
λz(v)− U -

(
Φz(v), s+ v

)
λz(v)

We note T the time until the next jump after the trajectory has reached Zs = z.
For 0 ≤ h < t∗z, we define τ = min(h, T ).

U∗(z, s) = E
[
1A(Z)

∣∣Zs = z
]

= E
[
E
[
1A(Z)

∣∣Zs+τ]∣∣∣Zs = z
]

= E
[
(1τ=h + 1τ<h)E

[
1A(Z)

∣∣Zs+τ]∣∣∣Zs = z
]

= E
[
1T=h E

[
1A(Z)

∣∣Zs+h = Φz(h)
]∣∣∣Zs = z

]
+ E

[
1T<h E

[
1A(Z)

∣∣Zs+T ]∣∣∣Zs = z
]

= U∗(φz(h), s+ h) E
[
1T=h

∣∣Zs = z
]

+ E
[
1T<h U

∗(Zs+T , s+ T )
∣∣∣Zs = z

]
= U∗(φz(h), s+ h) exp

[
− Λz(h)

]
+

∫ h

0

∫
E

KΦz(u)(z
+)U∗(z+, s+ u)dνΦz(u)(z

+)λz(u) exp
[
− Λz(u)

]
du

As λz(.) is continuous almost everywhere we have that almost everywhere :

U∗(z, s) = U∗(φz(h), s+ h) (1− λz(0)h+ o(h))

+

∫ h

0

U -(Φz(u), s+ u)λz(u) exp
[
− Λz(u)

]
du

As u → U -(φz(u), s + u)λz(u) is continuous almost everywhere, and we can do a Taylor
approximation of the integral, which gives :

U∗(z, s)− U∗(φz(h), s+ h) = −λz(0)hU∗(φz(h), s+ h) + hU -(z, s)λz(0) + o(h)

So u→ U∗(φz(u), s+u) is right-continuous almost everywhere. Therefore U∗(φz(h), s+h) =
U∗(z, s) + o(1), and we get :

U∗(z, s)− U∗(φz(h), s+ h)

h
= −λz(0)U∗(z, s) + U -(z, s)λz(0) + o(1)
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Making h tends to zero we get that u → U∗(φz(u), s + u) has a right-derivative in zero.
Applying the same kind of reasoning in state Φz(−h) instead of z, we would find that the
left-derivative exists and is equal to the right-derivative. So for almost every state z ∈ E,(

∂U∗
(
Φz(v), s+ v

)
∂v

)
v=0

= U∗
(
Φz(0), s+ 0

)
λz(0)− U -

(
Φz(0), s+ 0

)
λz(0)

Applying the same reasoning in a state Φzo(v) instead of z and using the additivity of the
flow, we get that almost everywhere:

∀zo ∈ E, v > 0,
∂U∗

(
Φzo(v), s+ v

)
∂v

= U∗
(
Φzo(v), s+ v

)
λzo(v)− U -

(
Φzo(v), s+ v

)
λzo(v)
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