Symmetry theorems for the Newtonian 4- and 5-body problems with equal masses - Archive ouverte HAL
Communication Dans Un Congrès Année : 1999

Symmetry theorems for the Newtonian 4- and 5-body problems with equal masses

Jean-Charles Faugère
Ilias Kotsireas
  • Fonction : Auteur

Résumé

We present a new proof of the algebraic part of a symmetry theorem for the central configurations of the newtonian planar 4-body problem with equal masses, using Gröbner bases. This approach is used to obtain a new symmetry theorem for the central configurations of the newtonian spatial 5-body problem with equal masses in the convex case. In fact we prove a more general statement of the theorem, valid for a class of potentials defined by functions with increasing and concave derivatives.

Dates et versions

hal-01573957 , version 1 (11-08-2017)

Identifiants

Citer

Jean-Charles Faugère, Ilias Kotsireas. Symmetry theorems for the Newtonian 4- and 5-body problems with equal masses. 2nd Workshop on Computer algebra in scientific computing, May 1999, Munich, Germany. pp.81-92, ⟨10.1007/978-3-642-60218-4_6⟩. ⟨hal-01573957⟩
61 Consultations
0 Téléchargements

Altmetric

Partager

More